
Acta Polytechnica Hungarica Vol. 10, No. 2, 2013

 – 173 –

Information and Knowledge Retrieval within

Software Projects and their Graphical

Representation for Collaborative Programming

Ivan Polášek
1
, Ivan Ruttkay-Nedecký

2
, Peter Ruttkay-Nedecký

2
,

Tomáš Tóth
2
, Andrej Černík

2
, Peter Dušek

2

1
Faculty of Informatics and Information Technology, Slovak University of

Technology in Bratislava, Slovakia, e-mail: polasek@fiit.stuba.sk

2
Gratex International, a.s., Bratislava, Slovakia, www.gratex.com, e-mails:

peter.ruttkay-nedecky@gratex.com, ivan.ruttkay-nedecky@gratex.com,

tomas.toth@gratex.com, andyc@gratex.com, pdusek@gratex.com

Abstract: This paper proposes information and knowledge mining in the source code of

medium and large enterprise projects. Our methods try to recognize structures and types of

source code, identify authors and users to enhance collaborative programming, and

support knowledge management in software companies. Developers within and outside the

teams can receive and utilize visualized information from the code and apply it to their

projects. This new level of aggregated 3D visualization improves refactoring, source code

reusing, implementing new features and exchanging knowledge.

Keywords: information and knowledge mining; knowledge management; collaborative

programming; visualization; recognition; authors; users; source code type; code tagging

1 Introduction

This paper describes our approach to information and knowledge mining, which

aims to support collaborative programming and to help software developers in

medium and large teams to understand complicated code structures and extensive

content as well as to identify source code authors and concrete people working

with existing modules. Accordingly, newcomers as well as other colleagues can

reference real source code authors and users more efficiently.

There are some works analyzing collaborative source code development and the

impact of individual authors’ contributions to the selected characteristics of source

code [7]. Authors from the data mining domain often utilize code line oriented

SW tools that determine only the latest author of every line [8]. There are also

approaches to monitor source code users’ work [3] [4] including reading,

modifying or showing interest in the source code in some other way.

mailto:peter.ruttkay-nedecky@gratex.com
mailto:ivan.ruttkay-nedecky@gratex.com
mailto:tomas.toth@gratex.com

I. Polášek et al. Information and Knowledge Retrieval within Software Projects and
 their Graphical Representation for Collaborative Programming

 – 174 –

The determination of the source code topics can be used for purposes of

identifying the domain expertise of developers [5]. It is also possible to support

program comprehension by identifying common topics in source code [6].

For tagging (keywords for features, authors, patterns/anti-patterns, rating, etc.) and

comments, we can use two approaches:

 attach tags using comments inserted directly into source code [1],

 separate tags into external DB or sources [2].

We have studied both approaches and now we prefer the second one.

The contribution of our method is to find new level of aggregated visualization for

the identified and interconnected information from the source code for

collaborative development.

We have decided to create an intelligent environment that takes advantage of data

mining methods. It presents information and knowledge in a 3D graphical form

and highlights the interconnections between the information. The key goals of this

environment are to support the source code reuse, to support refactoring and the

implementing of new features. Knowledge exchange and management is also

increased through integration with Gratex Knowledge Office and source code

tagging.

2 Visualization

For knowledge mining purposes, our method extracts Abstract Syntax Tree (AST)

from the source code [10] [14] [15] and the resulting graph structure is then

visualized with acquired information.

We have developed our own graph visualization engine using the graphical engine

Ogre3D [11] and the Fruchterman-Reingold [12] force-directed layout algorithm

(see Figure 1).

Figure 1

Visualization of the source code using Fruchterman-Reingold algorithm

Acta Polytechnica Hungarica Vol. 10, No. 2, 2013

 – 175 –

We are also developing our own graph representations, which are more

semantically oriented than a general force-directed algorithm. Snapshots of these

graphs are provided in the following Figure 2.

Figure 2

Semantically-oriented source code visualizations

3 Tier Recognition

The purpose of tier recognition is to identify domains in three-tier-based systems.

These systems are composed of presentation tier, application processing tier and

data management tier [16]. Each domain is identified by a tier of the associated

source code. It is possible to correlate this information through associated entities

in AST with other mined information. Therefore, it is possible, for example, to

determine the developer’s orientation on a given tier. Tier recognition also

simplifies navigation in the source code through clustering.

The recognition is performed on multiple levels - classes, namespaces, projects

and others. Each code entity (class, method, field, project, etc.) is described by its

child code entities in the sub level (e.g., a class is described by its methods), but

also the code entity itself describes its child code entities (e.g., methods in a data

tier class will most likely belong to the data tier).

In our approach, we determine tiers in several ways that can be combined to

achieve more precise results.

3.1 Keywords

It is common that the name of the type in source code (class, interface, structure,

enumeration) describes its purpose. For instance the name, “DbCommand”, from

the first glance tells us that the type represents a kind of a database command

encapsulation. In our method, we use this common practice to identify specific

keywords in names of code identifiers with the intention of recognizing the code

tier of a given type.

I. Polášek et al. Information and Knowledge Retrieval within Software Projects and
 their Graphical Representation for Collaborative Programming

 – 176 –

3.1.1 Identifiers

Our method uses multiple identifier types as the source for searching. As can be

expected, the primary identifier is type name. Additional identifiers are base type

name, namespace and, in the case of an integrated development environment that

supports grouping of source code into projects, also project name.

3.1.2 Keywords Dictionary

This method requires a set of known keywords and their tier assignments as an

input. We call this set keyword dictionary. It is possible for one keyword to be

used in multiple tiers. Therefore, it is essential to perceive each tier assignment of

a keyword as a rate that defines how much the keyword is specific for a given tier.

This method requires that the sum of tier assignment rates is equal to one for each

keyword in the dictionary. For our test, we used only a small and manually

constructed dictionary, but we are planning to use an automatic keyword

extraction to create a nontrivial dictionary. An example of a dictionary is

presented in the following table.

Table 1

Example keywords dictionary

Keyword Data App Presentation

Data 0,90 0,10 0,00

Db 1,00 0,00 0,00

Table 0,60 0,00 0,40

Workflow 0,10 0,80 0,10

Control 0,00 0,00 1,00

… … … …

3.1.3 Word Extraction

The task of the word extraction is to divide an identifier’s name into separate

words that can be compared with keywords in the dictionary. The extraction result

can be seen in the following figure.

Figure 3

Word extraction

For the purposes of word extraction, we created regular expressions which define

the split points in the identifier’s name.

 Class name- [_<>,]|\d+|(?<=[^A-Z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])

Acta Polytechnica Hungarica Vol. 10, No. 2, 2013

 – 177 –

 Interface name- ^I(?=[A-Z])| [_<>,]|\d+|(?<=[^A-Z])(?=[A-Z])|(?<=[A-

Z])(?=[A-Z][a-z])

 Namespace name- [_.]|\d+|(?<=[^A-Z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])

 Project Name - [_.]|\d+|(?<=[^A-Z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])

3.1.4 Association Rate

After extracting the words from the identifiers, the partial association rate of each

identifier type is computed. Each partial rate is in the range of <0.0, 1.0>. The

partial rate is computed using the following pseudocode.

GetTierPartialRate(IN: words, IN: lookupTable, OUT: rate, OUT: baseRate)

 baseRate = 0

 for word in words :

 if lookupTable.Contains(word) :

 keyword = lookupTable[word]

 baseRate++

 tierRate += keyword.Rate

 if baseRate > 0 :

 rate = tierRate/baseRate

 else :

 rate = 0

Words that have not been successfully matched with any keyword are not

included in the computation. Therefore, they do not lower the resulting rate.

In the next step, these partial rates are merged into final weighted rate. For this

purpose, each identifier type has been given a weight in the range of <0.0, 1.0>. It

is not required that the sum of these weights is equal to one. The computation of

the final weighted rate is presented in the following pseudocode.

GetTierWeightedRate(IN: weights[], IN: unitRates[], IN:baseRates[], OUT:

weightedRate)

 weightSum = 0

 for i in [0..3] :

 if baseRates[i] != 0 : weightSum+=weights[i]

 if weightSum == 0 :

 weightedRate = 0

 else:

 for i in [0..3] :

 if baseRates[i] != 0 :

 weightedRate+=unitRates[i]*weights/weightSum

I. Polášek et al. Information and Knowledge Retrieval within Software Projects and
 their Graphical Representation for Collaborative Programming

 – 178 –

3.1.5 Case Study

In this part, we will demonstrate the application of this method on a very small set

of types (Table 2).

Table 2

Example types

Type BaseType Project Namespace

IGetBlobHelper Frm.DataInterfaces DataInterfaces.Blob

Graph3dControl UserControl Graph3d.WinForm Graph3d.WinForm

IWorkflowHelper Frm.DataInterfaces DataInterfaces.Workflow

IWorkflowEntity Frm.DataInterfaces DataInterfaces.Workflow

WSFrmDataContext DataContext Frm.DataClasses DataClasses

IDBHistoricalTable Frm.DataInterfaces DataInterfaces.HistTable

We will use the dictionary from Table 1 as the keyword dictionary. The following

charts display computed partial rates for each keyword type.

Figure 4

Unit rate assignments (1-by name; 2-by base types; 3-by namespace; 4-by project)

These rates are then composed to a final result using the following identifier type

weights (Table 3).

Table 3

Example identifier type weights

Identifier Weight

Name 1

Base Type Name 0.7

Namespace 0.6

Project Name 0.6

Acta Polytechnica Hungarica Vol. 10, No. 2, 2013

 – 179 –

Figure 5

Weighted assignment rates

Figure 6 shows an application of this method on a real-life project represented as a

Manhattan graph. Each bar represents a single type. Each sub bar represents a

single method, the height of which is determined by its code line count. Bar

darkness represents the rate of a DB tier assignment.

Figure 6

Code tiers as a Manhattan graph in our visualization environment

3.2 Standard Types

Standard types represent generally known types that are usually included in

programming languages or frameworks. Source code is created using standard

types and types that are recursively created from standard types. This method

searches for used standard types in source codes and determines implemented tiers

using a knowledge of the relationships between standard types and tiers.

Figure 7 shows how tiers are determined from given type declarations. For each

type declaration several steps are performed. First, used standard types are

extracted and their namespaces are identified. Using a predefined lookup table, the

tier ratios of the extracted namespaces are determined.

I. Polášek et al. Information and Knowledge Retrieval within Software Projects and
 their Graphical Representation for Collaborative Programming

 – 180 –

Parent entity 0

...

Parent entity i

Type

Body
Used standard

types
Used standard types

namespaces
Tier ratios of used standard

types namespaces
Tier ratios of the
examined type

Lookup table
[Namespace x Tier ratios]

Figure 7

Determining tiers by examining used standard types

Table 4 presents a fragment of a lookup table that maps standard .Net namespaces

to ratios for each of the three tiers. The table is constructed manually in our work,

but we are planning to use automated crawling techniques and clustering

algorithms in the future.

If a namespace is not found in the lookup table, its parent namespace is searched

for, and so on up to the root namespace. If not even the root namespace is found,

the given namespace is ignored.

Standard types themselves can also be present in the lookup table. Furthermore,

identified types and their namespaces can also be placed back to the lookup table

and extend the knowledge base of the process.

Table 4

A fragment of a lookup table, which maps .Net namespaces to tier ratios

Namespace Presentation tier Application tier Data tier

System.ComponentModel 0.4 0.3 0.3

System.Data 0.05 0.05 0.9

System.DirectoryServices 0.15 0.7 0.15

System.Drawing 1.0 0.0 0.0

System.Globalization 0.6 0.1 0.3

System.IdentityModel 0.2 0.8 0.0

Final ratios for the examined type are calculated from extracted ratios.

In our approach we calculate an arithmetic average of all extracted ratios for each

tier separately. Standard namespaces and their types could be weighted. Ratios of

each entity are calculated from ratios of its child entities (e.g. namespace and its

types).

Figure 8 shows example results of this method. Tiers were determined for a

fragment of a system where mostly the presentation tier is present. Empty rows

represent types that were not determined, as they can belong to any tier.

Acta Polytechnica Hungarica Vol. 10, No. 2, 2013

 – 181 –

Figure 8

Example - final ratios of examined types

3.3 Project Meta-Information

Integrated development environments often store meta-information describing

source codes in separate data sources. For example Microsoft Visual Studio (VS)

stores information about source code files in project and solution files. We

examine these files and extract two kinds of information - project types and

project output types.

VS project has one or more project types. Each type describes what framework the

project uses, whether it is an installer or an extension, and so on. Some

frameworks support the development of specific tiers; for example Windows

Presentation Foundation supports the development of a presentation tier.

VS projects can produce three kinds of outputs. Windows application is an

executable file with a graphical user interface which, in general, implements the

presentation tier. Console application is also an executable file, but without a

graphical user interface; therefore we consider it as being without a presentation

tier. Class library is a dynamic link library that can implement all three tiers.

4 Source Code Users

Our method acquires information about users and their activities on code entities.

This information is used to model user behavior and represents a source of

knowledge for our visualization. Two methods are presented in this chapter.

I. Polášek et al. Information and Knowledge Retrieval within Software Projects and
 their Graphical Representation for Collaborative Programming

 – 182 –

4.1 Code Entities Checkout

Revision control systems (RCS) usually allow users to view which source code

files are currently being edited by which users. This helps to avoid conflicts when

two users edit the same file. But conflicts mostly occur only when two users edit

the same portion of the same file. It is not necessary to lock the whole file.

We look at source code not only as a set of files. We go deeper into these files to

examine their code entities. We determine which code entities (not just whole

files) are currently being edited by which users. This information could then be

used to lock concrete code entities rather than whole files.

We use the following algorithm to determine which code entities are currently

being edited:

GetChangedCodeEntities(OUT:changedCodeEntitySet)

 changedLocalFiles = GetChangedLocalFiles()

 for localFile in changedLocalFiles

 originalFile = DownloadOriginalVersionFromRCS(localFile)

 changedLineIndices = Compare(originalFile, localFile)

 originalFileAst = ExtractAst(originalFile)

 for lineIndex in changedLineIndices

 changedCodeEntity = originalFileAst.GetCodeEntityAt(lineIndex)

 changedCodeEntitySet.Add(changedCodeEntity)

4.2 User Activity on Code Entities

This method monitors the activities of users on individual code entities. Our goal

is to determine on which code entities and how users are currently working and

also to measure this activity.

In our approach, activity is a general term for anything a user performs with a

single code entity: editing, pressing the mouse over it, reaching it in source code,

etc. Each activity has a value in interval <0, 1> which represents a measurement

of how active the user is on the code entity. 0 means no activity and 1 means

maximum activity.

A user can perform more activities on a single code entity at the same time.

Figure 9 shows how the final activity of a user on a single code entity is

determined. The final activity is composed of all activities the user performs on

that code entity. This includes different activities and the same activities

performed in different places (typing into a single code entity in two different

editors).

First, final values for all different activities are calculated. For each different

activity, this is the maximum value from all places where the activity is performed

Acta Polytechnica Hungarica Vol. 10, No. 2, 2013

 – 183 –

– e.g. typing in two editors. This represents information: what different activities

the user performs on the code entity and a measurement of “how much”.

The final activity for the code entity is calculated from all different activities. We

sum up all different activities for the code entity. At this point we have the total

value, “how much” the user is active on the code entity.

“Is typing” activity
example: value=0.2

“Is typing” activity
example: value=0.4

“Is typing” final activity
example: value=0.4

“mouse pressed” final
activity

example: value=0.2

Final activity
example: value=0.6

..
.

Min(1, ∑)

Max

...
...

Figure 9

Computing of the final activity of a single user on a single code entity

4.2.1 Activity Initial Value and Cooling of Activities

Every activity has a predefined maximum and minimum value depending on its

relevance. When an activity occurs, its value is maximal. When it is not performed

for a period of time, its value starts to decrease down to the minimal value. We

call this process the cooling down of activities, and it expresses the decreasing

interest of the user in the code entity.

4.2.2 Case Study

Figure 10 shows a prototype where three activities are monitored for a single user.

The cooling down of activities is also shown. These activities are the following:

 In viewport – the code entity is reached in a code editor (scrolling etc.)

 Mouse down – the user pressed the mouse over the code entity

 Is typing – the user types into the code entity

Figure 10

Activities for a single user. Activities are being cooled down.

I. Polášek et al. Information and Knowledge Retrieval within Software Projects and
 their Graphical Representation for Collaborative Programming

 – 184 –

5 Source Code Authors

To identify the programmer’s skills and quality of his work, we must recognize

the authors in the whole source code version history, evaluate their particular

contributions and associate them with analyzed code characteristics. We can then

identify the responsibilities of each programmer and their impact on team

development.

5.1 Author Characteristics

An author of the source code can be anyone who creatively changed the content of

the source code file. We can divide the authors into three basic groups:

 real authors of the content, who modify the logical nature of source code

(adding, modifying or deleting code entities),

 editors who modify the form of source code record but not its logical

meaning (refactoring, sorting elements, formatting code, …),

 reviewers who can comment on the code or an update of the code due to

newer version of used libraries.

By a different criterion, we can separate authors to first, being the author of a

source code part, and coauthors.

Alternatively, we can reduce every developer to a coauthor, because everyone can

considerably modify previous versions of source code.

Also, there are authors whose source code part has persisted to the last, or a

particular version of the source code and authors whose source code part was

deleted or considerably modified over time.

Another criterion determines how the author can be mapped or bound to a given

source code entity and how these bindings will be represented:

 Authors of structural and syntactical entities of source code (project,

package or module, namespace, class, interface, field, property, method,

statement),

 Authors of lines of a source code.

5.2 Presentation of Authorship

The presentation of authorship can be solved by various approaches. In the context

of source code versions (changesets), it can be presented in the following ways:

 Authorship only in a particular version: the authors of the last changes of the

source code elements.

 Authorship based on the life cycle of the source code development to a

particular changeset.

Acta Polytechnica Hungarica Vol. 10, No. 2, 2013

 – 185 –

 Authorship based on the whole life cycle of the source code, not only until

the presented changeset, if it is not the latest one.

Information about authorship should cover: author, changeset, date of change, and

the type of change that has been done (add, edit, delete).

5.3 Determination of Authorship

The author is defined by changes that the author made in some particular version

and in parts of the source code. If we need to evaluate authorship in the whole

history of the code entity, we must match code entities between several versions

of the source code. This is not trivial due to change of identifiers of code entities

and changes of entities positions in AST [14]. The identification of source code

entities is given by their similarities or matching [10]. This approach determines

the authorship of the source code entities in object oriented paradigm, where

syntax units can be represented as AST. It is based on the extraction of source

code entity changes and can be divided into several phases (Figure 11):

Map

Map Ref

Ref

Code Entity
Changes ver.M-N

Diff ver.M-N
Code Changes

ver.M-N

Reduced Code
Entities ver.M

Reduced Code
Entities ver.N

Source Code
File ver.N

Source Code
File ver.M

AST ver.M

AST ver.N

Figure 11

Phases of authorship determination based on extraction of source code entity changes

1) Extraction of source code files from a software solution. Files can be added

into, moved within or deleted from the software solution. It is important to

identify all source code files contained in the solution throughout its history.

2) Extraction of source code from all files valid for given versions. This is done

repetitively for each two adjacent versions and supported by revision control

systems. Some scenarios we consider as a problem are as follows: renaming

the file, moving the file in a solution structure, creating a new file with the

same name instead of the file previously removed.

3) To acquire a history of a source code means getting the history of the source

code file(s). This operation is supported by revision control systems and

managing the source code files. Some scenarios we consider as a problem are

as follows: renaming the file, moving the file in a solution structure, creating

a new file with the same name instead of the file previously removed.

I. Polášek et al. Information and Knowledge Retrieval within Software Projects and
 their Graphical Representation for Collaborative Programming

 – 186 –

4) Representation of each two adjacent versions as ASTs. Transformation to

AST representation is restricted to level of meaningful syntactical units

(classes, functions, properties). Lower level content is represented as lines.

5) Comparison of selected source code versions using Diff function based on

solving the longest common subsequence problem [17]. The output of Diff

function can be represented as a set of code changes, which can be of type

Add, Delete or Modify. Each change holds information about the author and

the range of affected lines: add in a newer version of source code, delete in

older and modify in both versions.

6) Mapping of code differences to code entities and representation of source

code entity changes. In this phase, we create source code entity changes,

which are relations between source code elements and source code changes.

Code change falls to code entity if the intersection of their ranges is not an

empty set. One change can fall to:

a) one code entity in new, old or both compared versions of source code

b) to multiple code entities in one level of AST (for example two functions)

c) to multiple code entities in multiple levels of AST (method, class,

namespace)

One code change can produce many code entity changes, so it is important to

create relations (between change information unit, old and new version of a

code entity) only between syntax units of the same type and on the same level

of AST.

The following algorithm is based on previously described phases. The result is a

set of changes related to the code elements. Based on this output, we can evaluate

the authorship metrics.

ExtractCodeEntityChanges(IN: solutionPath, OUT: CodeEntityChanges[])

for filePath in ParseSolution(solutionPath)

 oldSrcCodeFile = null

 for newSrcCodeFile in GetHistory(filePath)

 ast = ParseAst(newSourceCodeFile)

 newCodeEntities = ReduceCodeEntities(ast.Root, empty)

 if oldSourceCodeFile is not null

 codeChanges[] = GetCodeChanges (oldSrcCodeFile, newSourceCodeFile)

 codeEntityChanges+=MapCodeEntityChange(oldCodeEntities,

newCodeEntities, codeChanges)

 oldSrcCodeFile = newSrcCodeFile

 oldCodeEntities = newCodeEntities

Acta Polytechnica Hungarica Vol. 10, No. 2, 2013

 – 187 –

5.4 Authorship Metrics

We consider the following aspects in the process of authorship metrics evaluation.

First, we calculate authorship for individual types of authors: real authors (as well

as coauthors), editors, reviewers. The total authorship of an author can be

evaluated as their weighted sum, where real author changes will have the heaviest

weight and reviewer changes the lightest.

Next, authorship is based on the source code change types, where total authorship

is weighted by the sum of the particular types: Added (weight 4), Deleted (1) and

Modified, which in fact consists of an old version deleted (2) and a new version

added (1). We can polemize which type of change tends better to the authorship of

the code, and so weights for each type (in the brackets above) can be a part of the

knowledge and can be calibrated. Code changes can be measured in lines of code

or syntactic code entities, in absolute numbers or relative index.

Also, it is meaningful to consider and evaluate metrics depending on time in

expression of change sets, where the oldest commit is ranked as least important

and the latest commit as the most important.

We use these characteristics for visualization of source code entities authorship in

Tent graph. Part of this graph is shown in Figure 12. Our colleagues from Vision

& Graphics Group
1
 analysed similar software visualization methods in 3D space

[21] [25] without these additional features (authors and code users).

Figure 12

Authorship of source code entities presented in Tent graph

1
 vgg.fiit.stuba.sk

I. Polášek et al. Information and Knowledge Retrieval within Software Projects and
 their Graphical Representation for Collaborative Programming

 – 188 –

6 Information Tags for Knowledge Exchange

Information tags represent a way of binding knowledge with the particular source

code. Tags can be created by automated machines or by users. We visualize both

types of tags in an integrated development environment as well as in our own

graph visualization engine. In this way the knowledge obtained through tags can

be presented to programmers, managers and other members of the development

team.

6.1 Tags Visualization

Tags are stored in a database and are referenced to source code entities. When a

user opens a source code file in a development tool, the corresponding tags are

loaded and shown as icons next to corresponding lines. Detailed information of

each tag can be shown.

Figure 13

Displaying tags in a source code editor

The same plugin allows for creating new tags: a right mouse-click above selected

lines (or above method header, class header, project file name etc.) defines an

entity to be tagged, and context menu allows for creating its content. Tag content

with timestamp and author’s name will be stored in a database, where it is

referenced to an existing source code entity.

6.2 Type of Tags

We defined the following types of tags:

 note – free text comment, annotation, remark, recommendation

 links - URL or file references to source, know-how, documentation, etc.

 keywords - categories, destination of code, etc.

 features - technical features like percentage of progress, etc.

 rating, warnings – good or bad rating, warning about mistake etc.

 authors - list of code authors, their kind of participation on code

 history - history of entity code updates

Acta Polytechnica Hungarica Vol. 10, No. 2, 2013

 – 189 –

All types, except for the last two items, are user’s marks, which may be created by

programmers. A programmer can identify his own class with keywords, assign

some feature to method and/or write some recommendation in foreign code.

Metadata like authors and history are read-only tags of each entity. It helps

programmers to find who creates each class, who updates it mostly, or how the

methods of some classes evolve.

Figure 14

Creation of the note mark

6.3 Principle of Positioning

The key problem of tagging a source code is the dynamic changes of the code;

therefore simply referencing tag positions to line numbers is unusable. We use

referencing in Abstract Syntax Tree that remembers the identity of entities (like

classes or methods) in historical file versions. This means that the system

remembers that method x occupies lines (10-25) in version 1, lines (12-32) in

version 2, etc.

When a tag is attached to whole method x, it will be shown next to the class

header line in the actual version of the file.

If a tag is attached to a line range or a single line inside method x, the positioning

is more complicated. The system remembers the file version in which the tag was

created and the line position inside (in relation to) original entity. Thanks to the

entity history, we know the position of method x in an actual file version (e.g. it

occupies lines 12-32) and the relative position offset (e.g. lines 2-3). Therefore,

tagged lines are 12-13 in the new file version. The system must verify if the lines

(12-13) contain equivalent or fairly similar content as the corresponding line range

in the original version. If so, the tag will be shown beside line 12, and if not, the

tag will not be shown.

The tag’s validity may be optionally limited to a code version range. For example,

a link to class documentation has logically unlimited validity, but a warning note

usually loses its sense when the code is corrected or changed.

I. Polášek et al. Information and Knowledge Retrieval within Software Projects and
 their Graphical Representation for Collaborative Programming

 – 190 –

6.4 Utilization of Code Tagging Data

The goal of code tagging is to save the programmers’ time when they find patterns

[13] [18], descriptions, or the same features of existing codes. Information

accumulated in the marking databases allows versatile advanced usage. For

example:

 Searching of projects, classes and methods by keywords, features, etc.:

 Find existing methods for sending E-mail in existing source codes

 Find all classes in projects with low rating

 See the evolution of the class through historical versions

 Comparing projects, classes, methods by features

 Classifying projects, classes, methods by keywords, feature, etc.

 Visualization of summaries, like

 Good-rated / bad-rate rated codes in projects

 Safe / unsafe or problematic methods in projects

 Fast / slow methods in projects

 Just developed / finished codes in projects

 Documented / undocumented methods in projects

Future Work

We plan to complete the existing environment with other methods, namely content

recognition using multiagent systems [24] [19] [22], swarm intelligence [23],

neural networks [20] especially Self-Organizing Maps, and pattern or anti-pattern

matching.

In the tier recognition method we are currently using a simple direct method for

word extraction from identifiers, but we are planning to apply also other and more

sophisticated methods [9].

The presented algorithm for authorship determination does not solve the problem

with proper identification of code entities through history in scenarios, where

identity or position in AST of code elements has changed. To solve this

deficiency, we must focus on methods for the determination of source code

similarities.

Acknowledgment

This contribution is a partial result of the Research & Development Operational

Programme for the project Research of methods for acquisition, analysis and

personalized conveying of information and knowledge, ITMS 26240220039, co-

funded by the ERDF.

Acta Polytechnica Hungarica Vol. 10, No. 2, 2013

 – 191 –

References

[1] Storey M., Li-Te Ch., Bull I., Rigby P.: Shared Waypoints and Social

Tagging to Support Collaboration in Software Development, Proceedings

of the 2006 20
th

 anniversary conference on Computer supported

cooperative work (CSCW '06) ACM, New York, NY, USA, 195-198, 2006

[2] Guzzi A., Hattori L., Lanza M., Pinzger M.; van Deursen A.: Collective

Code Bookmarks for Program Comprehension, Program Comprehension

(ICPC) 2011 IEEE 19
th

 International Conference on, Vol., No., pp. 101-

110, 22-24 June 2011

[3] Peacock A., Xian Ke, Wilkerson M: Typing Patterns: a Key to User

Identification, Security & Privacy, IEEE, Vol. 2, No. 5, pp. 40-47, Sept.-

Oct. 2004

[4] Kot, B., Wuensche, B., Grundy, J., Hosking, J.: Information Visualisation

Utilising 3D Computer Game Engines Case Study: a Source Code

Comprehension Tool, In Proceedings of the 6
th

 ACM SIGCHI New

Zealand Chapter's International Conference on Computer-Human

Interaction: Making CHI Natural (CHINZ '05) ACM, New York, NY,

USA, 2005

[5] Sindhgatta, R.: Identifying Domain Expertise of Developers from Source

Code, In Proceedings of the 14
th

 ACM SIGKDD international conference

on Knowledge discovery and data mining (KDD '08) ACM, New York,

NY, USA, 2008

[6] Kuhn, A., Ducasse, S., Gírba, T.: Semantic Clustering: Identifying Topics

in Source Code, Information and Software Technology, Volume 49, Issue

3, March 2007

[7] Rahman, F., Devanbu, P.: Ownership, Experience and Defects: a Fine-

grained Study of Authorship, In Proceedings of the 33
rd

 International

Conference on Software Engineering, ACM, 2011, pp. 491-500

[8] Bird C., Rigby C. P., Barr T. E., Hamilton J. D., German M. D., Devanbu ,

P.: The Promises and Perils of Mining Git, In Proceedings of the 2009 6
th

IEEE International Working Conference on Mining Software Repositories

(MSR '09) IEEE Computer Society, 2009, pp. 1-10

[9] Enslen, E., Hill, E., Pollock, L., Vijay-Shanker, K.: Mining Source Code to

Automatically Split Identifiers for Software Analysis, Mining Software

Repositories, 2009, MSR '09, 6
th

 IEEE International Working Conference,

pp. 71-80, May 2009

[10] Fluri, B., Wursch, M. Pinzger, M., Gall H.: Change Distilling: Tree

Differencing for Fine-grained Source Code Change Extraction, IEEE

Transactions on Software Engineering, Vol. 33, No. 11 (2007) 725-743

I. Polášek et al. Information and Knowledge Retrieval within Software Projects and
 their Graphical Representation for Collaborative Programming

 – 192 –

[11] Object-Oriented Graphics Rendering Engine OGRE, www.ogre3d.org

(Accessed on 19 August 2011)

[12] Fruchterman, T. M. J., & Reingold, E. M.: Graph Drawing by Force-

Directed Placement. Software: Practice and Experience, 21(11) 1991

[13] Beck K.: Implementation Patterns, Addison-Wesley, 2007

[14] Neamtiu I., Foster J., Hicks M.: Understanding Source Code Evolution

Using Abstract Syntax Tree Matching, MSR '05 Proceedings of the 2005

International Workshop on Mining Software Repositories, NYC (2005)

ACM SIGSOFT Software Engineering Notes, Volume 30, Issue 4, July

2005, NYC

[15] Maletic, J. I., Collard, M. L., Marcus, A.: Source Code Files as Structured

Documents, In: 10
th

 IEEE International Workshop on Program

Comprehension, Paris (2002)

[16] Sommerville, I: Software Engineering, 9
th

 edition. Addison Wesley, 2011

[17] Eppstein, D.: Longest Common Subsequences. ICS 161: Design and

Analysis of Algorithms Lecture notes for February 29, 1996,

http://www.ics.uci.edu/~eppstein/161/960229.html (Accessed on 9 March

2012)

[18] Gamma E. et al.: Design Patterns: Elements of Reusable Object-oriented

Software, Addison-Wesley, 1995

[19] Tomášek M.: Language for a Distributed System of Mobile Agents, Acta

Polytechnica Hungarica, Vol. 8, No. 2, 2011

[20] Lovassy R., Kóczy L. T., Gál L.: Function Approximation Performance of

FuzzyNeural Networks, Acta Polytechnica Hungarica, Vol. 6, No. 5, 2009

[21] Šperka M., Kapec P.: Interactive Visualization of Abstract Data, Science &

Military, 1/2010, pp. 89-90

[22] Cerná A., Cerný J.: Position Identification of Moving Agents in Networks,

Acta Polytechnica Hungarica, Vol. 7, No. 2, 2010

[23] Yilmaz A. E.: Swarm Behavior of the Electromagnetics Community as

regards Using Swarm Intelligence in teir Research Studies, Acta

Polytechnica Hungarica, Vol. 7, No. 2, 2010

[24] Kelemen J.: Agents from Functional-Computational Perspective, Acta

Polytechnica Hungarica, Vol. 3, No. 4, 2006

[25] Kapec P.: Knowledge-based Software Representation, Querying and

Visualization, Information Sciences and Technologies, ACM Slovakia,

Vol. 3, No. 2, 2011

http://www.ogre3d.org/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1021302
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1021302
http://www.ics.uci.edu/~eppstein/161/960229.html

