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Abstract: The development of fuzzy control systems is usually performed by heuristic 
means, incorporating human skills, the drawback being in the lack of general-purpose 
development methods. A major problem, which follows from this development, is the 
analysis of the structural properties of the control system, such as stability, controllability 
and robustness. Here comes the first goal of the paper, to present a stability analysis 
method dedicated to fuzzy control systems with mechatronics applications based on the use 
of Popov’s hyperstability theory. The second goal of this paper is to perform the sensitivity 
analysis of fuzzy control systems with respect to the parametric variations of the controlled 
plant for a class of servo-systems used in mechatronics applications based on the 
construction of sensitivity models. The stability and sensitivity analysis methods provide 
useful information to the development of fuzzy control systems. The case studies concerning 
fuzzy controlled servo-systems, accompanied by digital simulation results and real-time 
experimental results, validate the presented methods. 

Keywords: Mamdani fuzzy controllers, stability analysis, sensitivity analysis, mechatronics, 
servo-systems. 

1 Introduction 

The development of fuzzy control systems (FCSs) is usually performed by heuristic 
means, due to the lack of general development methods applicable to large 
categories of systems. A major problem, which follows from the heuristic method of 
development, is the analysis of the structural properties of the control systems 
including the stability analysis and the sensitivity analysis with respect to the 
parametric variations of the controlled plant. In case of mechatronics applications 
focussed on servo-systems the analysis of these properties becomes more important 
due to the very good steady-state and dynamic performance they must ensure. 
Therefore, the paper aims a twofold goal. Firstly, it presents one stability analysis 
method dedicated to FCSs applied to servo-systems with mechatronics applications, 
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involving the use of Popov’s hyperstability theory. Secondly, the paper performs the 
sensitivity analysis of FCSs with respect to the parametric variations of the 
controlled plant (CP) for a class of servo-systems based on the construction of 
sensitivity models. The considered FCSs contain Mamdani fuzzy controllers with 
singleton consequents, seen as type-II fuzzy systems [1, 2]. 

The stability analysis of an FCS is justified because only a stable FCS can ensure the 
functionality of the plant and, furthermore, the disturbance reduction, guarantee 
desired steady states, and reduce the risk of implementing the fuzzy controller (FC). 
The main approaches in stability analysis of FCSs with Mamdani fuzzy controllers 
concern: the state-space approach based on a linearized model of the nonlinear 
system [3, 4], Popov’s hyperstability theory [5, 6], Lyapunov’s direct method [2, 7], 
the circle criterion [7, 8], the harmonic balance method [8, 9] referred to also as the 
describing function method [10, 11], the passivity approach [12], etc. 

The sensitivity analysis of the FCSs with respect to the parametric variations of the 
CP is necessary because the behaviour of these systems is generally reported as 
“robust” or “insensitive” without offering systematic analysis tools. The sensitivity 
analysis performed in the paper is based on the idea of approximate equivalence, in 
certain conditions, between FCSs and linear ones. This is fully justified because of 
two reasons. The first reason is related with the controller part of the FCS, where the 
approximately equivalence between linear and fuzzy controllers is generally 
acknowledged [13, 14]. The second reason is related with the plant part of the FCS. 
The support for using an FC developed to control a plant having a linear or 
linearized model is in the fact that this plant model can be considered as a simplified 
model of a relatively complex model of the CP having nonlinearities or variable 
parameters or being placed at the lower level of large-scale systems. This is the case 
of servo-systems in mechatronics applications. Although the plant is nonlinear, it 
can be linearized in the vicinity of a set of operating points or of a trajectory. The 
plant model could be also uncertain or not well defined. The FC, as essentially 
nonlinear element, can compensate for the model uncertainties, nonlinearities and 
parametric variations of the CP. Fuzzy control must not be seen as a goal in itself, 
but sometimes the only way to initially approach the control of complex plants. 

This paper is organized as follows. It will be treated in the following Section the 
stability analysis method based on the use of Popov’s hyperstability theory. The 
exemplification of the method is done by a case study regarding the FC development 
to control an electro-hydraulic servo-system. Then, in Section 3 an approach to the 
sensitivity analysis of the FCSs for a class of servo-systems with respect to the 
parametric variations of the CP is presented. This approach is illustrated by a case 
study regarding the fuzzy control of a nonlinear servo-system. Digital simulation 
results and real-time experimental results validate the presented approaches. The 
conclusions are drawn in the end of the paper. 
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2 Stability Analysis Method Based on Popov’s 
Hyperstability Theory 

The SAM based on Popov’s hyperstability theory is applied to FCSs to control SISO 
plants when employing PI-fuzzy controllers (PI-FCs). The structure of the 
considered FCS is a conventional one, presented in Fig. 1 (a), where: r – the 
reference input, y – the controlled output, e – the control error, u – the control signal, 
d1, d2, d3 – the disturbance inputs. 

 
Figure 1 

Structure of FCS (a) and of PI-FC (b) 

The CP includes the actuator and the measuring devices. The application of an FC, 
when conditions for linear operating regimes of the plant are validated, determines 
the FCS to be considered as a Lure-Postnikov type nonlinear control system (for 
example, see [15]). The PI-FC represents a discrete-time FC with dynamics, 
introduced by the numerical differentiation of the control error ek expressed as the 
increment of control error, Δek=ek–ek-1, and by the numerical integration of the 
increment of control signal, Δuk. The structure of the considered PI-FC is illustrated 
in Fig. 1 (b), where B-FC represents the basic fuzzy controller, without dynamics. 

The block B-FC is a nonlinear two inputs-single output (TISO) system, which 
includes among its nonlinearities the scaling of inputs and output as part of its 
fuzzification module. The fuzzification is solved in terms of the regularly distributed 
(here) input and output membership functions illustrated in Fig. 2. Other 
distributions of the membership functions can modify in a desired way the controller 
nonlinearities. 

 
Figure 2 

Membership functions of input and output linguistic variables of B-FC 
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The inference engine in B-FC employs Mamdani’s MAX-MIN compositional rule 
of inference assisted by the rule base presented in Table 1, and the center of gravity 
method for singletons is used for defuzzification. 

Table 1 
Decision table of B-FC 

Δek \ ek NB NS ZE PS PB 
PB ZE PS PM PB PB 
PS NS ZE PS PM PB 
ZE NM NS ZE PS PM 
NS NB NM NS ZE PS 
NB NB NB NM NS ZE 

To develop the PI-FC the beginning is in the expression of the discrete-time 
equation of a digital PI controller in its incremental version: 

)( kkPkIkPk eeKeKeKu ⋅α+Δ=⋅+Δ⋅=Δ , (1) 

where k is the index of the current sampling interval. 

In case of a quasi-continuous digital PI controller the parameters KP, KI and α can be 
calculated as functions of the parameters kC (gain) and Ti (integral time constant) of 
a basic original continuous-time PI controller having the transfer function HC(s): 

)1)](/([)( iiCC TsTsksH += , (2) 

and the connections between {KP, KI, α} and {kC, Ti} have the following form in the 
case of using Tustin’s discretization method: 

)2/(2/  ,/  ,)]2/(1[ sisPIisCIisCP TTTKKTTkKTTkK −==α=−= , (3) 

with Ts – the sampling period chosen in accordance with the requirements of quasi-
continuous digital control. 

The design relations for the PI-FC are obtained by the application of the modal 
equivalence principle [16] transformed into (4) in this case: 

eIuee BKBBB =α= ΔΔ   , , (4) 

where the free parameter Be represents designer’s option. Using the experience in 
controlling the plant one can choose the value of this parameter, but firstly it must be 
chosen to ensure the aim of a stable FCS. 

The CP is supposed to be characterized by the following n-th order discrete-time 
SISO linear time-invariant state mathematical model (MM) including the zero-order 
hold: 
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⋅+⋅=+1 , (5) 

where: uk – the control signal; yk – the controlled output; xk – the state vector, dim xk 
= (n,1); A, b, cT - matrices with the dimensions: dim A = (n, n), dim b = (n, 1), dim 
cT = (1, n). 

To derive the stability analysis method it is necessary to transform the initial FCS 
structure into a multivariable one because the block B-FC in Fig.X.5 is a TISO 
system. This modified FCS structure is illustrated in Fig. 3 (a), where the dynamics 
of the fuzzy controller (its linearized part) is transferred to the plant (CP) resulting in 
the extended controlled plant (ECP, a linear one). The vectors in Fig. 3 (a) represent: 
rk – the reference input vector, ek – the control error vector, yk – the controlled 
output vector, uk – the control signal vector. For the general use (in the continuous 
time, too) the index k may be omitted, and these vectors are defined as follows: 

[ ] [ ] [ ]Tkkk
T

kkk
T

kkk yyeerr Δ=Δ=Δ= yer   ,  , , (6) 

where Δvk = vk – vk-1 stands generally for the increment of the variable vk. 

 
Figure 3 

Modified structure of FCS (a) and structure used in stability analysis (b) 

In relation with Fig. 3 (a), the block FC is characterized by the nonlinear input-
output static map F: 

T
kk fRR ]0  ),([)(  ,: 22 eeFF =→ , (7) 

where f ( RRf →2: ) is the input-output static map of the nonlinear TISO system 
B-FC in Fig. 1. 

As it can be observed in (6), all variables in the FCS structure (in Fig. 3 (a)) have 
two components. This requires the introduction of a fictitious control signal, 
supplementary to the outputs of the block B-FC, for obtaining an equal number of 
inputs and outputs as required by the hyperstability theory in the multivariable case. 

Generally speaking, the structure involved in the stability analysis of an unforced 
nonlinear control system (rk = 0 and the disturbance inputs are also zero) is 
presented in Fig. 3 (b). The block NL in Fig. 3 (b) represents a static nonlinearity 
due to the nonlinear part without dynamics of the block FC in Fig. 3 (a). The 
connections between the variables of the control system structures in Fig. 3 are: 
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kkkkk eyeFuv −=−=−=   ),( , (8) 

with the second component of F being always zero to neglect the effect of the 
fictitious control signal. 

The MM of the ECP can be derived by firstly defining the additional state variables 
{xuk,xyk} according to Fig. 4. Then, the extended state vector E

kx  and the control 

signal vector E
ku  can be expressed in terms of (9): 

[ ] [ ]Tfkk
E
k

T
ykuk

T
k

E
k uuxx ΔΔ== uxx   , , (9) 

where Δufk stands for the fictitious increment of control signal. 

 
Figure 4 

Structure of ECP block 

Using the structure presented in Fig. 4, the (n+2)-th order discrete-time state MM of 
the ECP becomes (10): 

E
k

EE
k

E
k

EE
k

EE
k

xCy

uBxAx

⋅=

⋅+⋅=+1 , (10) 

with the matrices AE (dim AE = (n+2,n+2)), BE (dim BE = (n+2,2)) and CE (dim CE 
= (2,n+2)) expressed as follows: 
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Then, the second equations in (8) and (10) can be transformed into the following 
equivalent expressions: 

k
b

kk
E

k eCxxCe ⋅=⋅−=   , , (12) 

where the matrix Cb, dim Cb = (n+2,2), can be calculated relatively easy as function 
of CE. 

The main part of the proposed stability analysis method can be stated in terms of the 
following theorem giving sufficient stability conditions. 
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Theorem 1. The nonlinear system, with the structure presented in Fig. 3 (b) and the 
MM of its linear part (10), is globally asymptotically stable if: 

- the three matrices P (positive definite, dim P = (n+2,n+2)), L (regular, dim L = 
(n+2,n+2)) and V (any, dim V = (n+2,2)) fulfill the requirements (13): 

VVBPB

LVAPBC

LLAPA

⋅=⋅⋅−

⋅=⋅⋅−

⋅−=⋅⋅

TETE

TTETEE

TETE

)(

)(

)(
, (13) 

- introducing the matrices M (dim M = (2,2)), N (dim N = (2,2)) and R (dim R = 
(2,2)) defined in terms of (14): 

VVR
CBPAVLCN

CPLLCM

⋅=

−⋅⋅−⋅⋅=

⋅−⋅⋅=

T

TEETETb

bTTb

])(2)([)(
)()(

, (14) 

the Popov-type inequality (15) holds for any value of the control error ek: 

0)()( ≥⋅⋅+⋅⋅ k
T

kk
T

kf eMeene , (15) 

where n represents the first column in N. 

The proof of Theorem 1, based on the Kalman-Szegö lemma [17] and on processing 
the Popov sum, is presented in [18] for the PI-FCs with prediction. 

By taking into account these aspects, the stability analysis method dedicated to FCSs 
with PI-FCs consists of the following steps: 

- step (a): express the MM of the CP, choose the sampling period Ts and calculate 
the discrete-time state-space MM of the CP with the zero-order hold, (5), 

- step (b): derive the discrete-time state-space mathematical model of the ECP, 
(10), 

- step (c): compute the matrix Cb in terms of (12), 

- step (d): solve the system of equations (13), with the solutions P, L and V, and 
calculate the matrices M, N and R in (14), 

- step (e): set the value of the free parameter Be > 0 of the PI-FC, and tune the 
other parameters of the PI-FC in terms of (4), 

- step (f): check the stability condition (15) for any values of PI-FC inputs in 
operating regimes considered to be significant for FCS behaviour. 

To test the presented stability analysis method it is considered the CP of an electro-
hydraulic servo-system (EHS) used as actuator in mechatronics applications, with 
the structure presented in Fig. 5 (a) [19], where: NL 1 … NL 5 – nonlinearities, 
EHC – electro-hydraulic converter, SVD – slide-valve distributor, MSM – main 
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servo-motor, M 1 and M 2 – measuring devices; u – control signal, y – controlled 
output; x1 and x2 – state variables; x1M and x2M – measured state variables, ul = 10 V, 
g0 = 0.0625 mm/V, ε2 = 0.02 mm, ε4 = 0.2 mm, x1l = 21.8 mm, yl = 210 mm, Ti1 = 
0.001872 sec, Ti2 = 0.0756 sec, kM1 = 0.2 V/mm, kM2 = 0.032 V/mm. To obtain a 
relatively simple FC, the CP is represented here by the stabilized electro-hydraulic 
servo-system (SEHS), and the FCS structure is presented in Fig. 5 (b). 

 
Figure 5 

Structure of EHS as CP (a) and structure of FCS (b) 

The SEHS represents itself a state feedback control system, with AA – adder 
amplifier, and kx1, kx2, kAA – parameters of the state feedback controller. By omitting 
the nonlinearities of the EHS, imposing the double pole of the SEHS in −1, the pole 
placement method leads to the transfer function of the SEHS block, HCP(s): 

22
202122121

2

)1(
1

)]/([)]/([1
/1)(

sskkgTTskkkkTk
ksH

MAAiixMAAxiM

x
CP +

=
++

= , (16) 

obtained for kx1 = 0.2997, kx2 = 1, kAA = 0.0708. 

The steps of the stability analysis method have been proceeded, but only the values 
of M and nT are presented because these two matrices appear in the stability 
condition (15), tested by digital simulation: 

[ ]09855.0   ,
00
00071.2

=⎥
⎦

⎤
⎢
⎣

⎡
= TnM , (17) 

and the parameters of the PI-FC ensuring the stability of the FCS have been tuned 
as: Be = 0.3, BΔe = 0.0076, BΔu = 0.0203. To verify the stability of all FCS the 
dynamic behaviour of the free control system was simulated, when the system 
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started from two different, arbitrarily chosen, initial states, obtained by feeding a 
d3=–0.5 and a d3=–1.5 disturbance input according to Fig. 1 (a). The FCS behaviour 
is presented in Fig. 6, and it illustrates that the FCS analyzed by using the presented 
SAM is stable. 

 
Figure 6 

FCS behaviour for d3 = − 0.5 (a) and d3 = − 1.5 (b) 

3 Sensitivity Analysis of a Class of Fuzzy Control 
Systems. Case Study 

Let the considered control system structure be a conventional one, presented in Fig. 
7 (a), where: C – controller, CP – controlled plant, RF – the reference filter, r – 
reference input, r~ – filtered reference input, e – control error, u – control signal, y – 
controlled output, d1, d2, d3, d4 – disturbance inputs. Depending on the place of 
feeding the disturbance inputs to the CP and on the CP structure, the accepted types 
of disturbance inputs {d1, d2, d3, d4} are defined in terms of Fig. 7 (b). 

 
Figure 7 

Control system structure (a) and disturbance inputs types (b) 
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The class of plants with the simplified structure illustrated in Fig. 7 (a), is considered 
to be linearized around a steady-state operating point and characterized by the 
transfer function HP(s): 

)]1(/[)( sTsksH PP Σ+= , (18) 

with kP – gain and TΣ – small time constant or sum of all parasitic time constants, 
belongs to a class of integral-type systems with variable parameters in case of servo-
systems with mechatronics applications. 

For these plants, it is recommended the use of linear PI controllers having the 
transfer function HC(s) in (2) with icC Tkk = . Based on the Extended Symmetrical 
Optimum (ESO) method [19], the parameters of the controller {kc (or kC) – 
controller gain, Ti – integral time constant} are tuned in terms of (19) guaranteeing 
the desired control system performance by means of a single design parameter, β: 

)/(1  ,   ),/(1 2/122/3
ΣΣΣ β=β=β= TkkTTTkk PCiPc . (19) 

The PI controllers can be tuned also in terms of the Iterative Feedback Tuning (IFT) 
method, representing a data-based design method where the update of the controller 
parameters is done through an iterative procedure. IFT is a gradient-based approach, 
based on input-output data recorded from the closed-loop system. The control 
system performance indices are specified by the proper expression of a criterion 
function. Optimizing such functions usually requires iterative gradient-based 
minimization, and this can be a complicated function of the plant and of the 
disturbances dynamics. The key property of IFT is that the closed-loop experimental 
data are used to calculate the estimated gradient of the criterion function. Several 
experiments are performed at each iteration and, based upon the input-output data 
collected from the system, the updated controller parameters are obtained. 
Theoretical and practical applications of IFT have been reported in [20, 21, 22, 23]. 
Using the IFT as a design step in the development of fuzzy controllers can result in 
efficient development techniques for fuzzy controller with dynamics. 

According to [24], the variation of CP parameters ({kP, TΣ} for the considered class 
of CPs) due to the change of the steady-state operating points or to other conditions 
leads to additional motion (of the control systems). This motion is usually 
undesirable under uncontrollable parametric variations. Therefore, to alleviate the 
effects of parametric disturbances it is necessary to perform the sensitivity analysis 
with respect to the parametric variations of the CP. 

It is generally accepted that FCs ensure control system performance enhancement 
with respect to the modifications of the reference input, of the load disturbance 
inputs or to parametric variations. This justifies the research efforts focused on the 
systematic analysis of FCSs behaviour with respect to parametric variations and the 
need to perform the sensitivity analysis with this respect that enables to derive 
sensitivity models for the FCs and for the overall FCSs. 
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The sensitivity models enable the sensitivity analysis of the FCSs accepted, as 
mentioned in Section 1, to be approximately equivalent with the linear control 
systems. This justifies the approach to be presented in the sequel, that the sensitivity 
models of the FCSs are approximately equivalent to the sensitivity models of the 
linear ones. Therefore, it is necessary to obtain firstly the sensitivity models of the 
linear control system in Fig. 7 (a). 

Defining the state sensitivity functions {λ1, λ2, λ3} and the output sensitivity 
function, σ, there have been derived several sensitivity models, four of them being 
presented as follows: 

- with respect to the variation of kP, the step modification of r, and d3(t) = 0: 
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- with respect to the variation of TΣ, the step modification of r, and d3(t) = 0: 
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- with respect to the variation of kP, the step modification of d3, and r(t) = 0: 
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- with respect to the variation of TΣ, the step modification of d3, and r(t) = 0: 
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The behaviours of these four sensitivity models, for the unit step modification of r 
followed by a unit step modification of d3 after 250 sec, starting with the initial 
conditions λ1(0) = 2, λ2(0) = 1, λ3(0) = 0, are shown in Fig. 8. 

 
Figure 8 

Behaviour of sensitivity models (20) (in (a)), (21) (in (b)), (22) (in (c)) and (23) (in (d)) 

The PI-FC development method which can be expressed by using the stability and 
sensitivity analyses presented in this paper is applied in case of a nonlinear 
laboratory DC drive, AMIRA DR300. 

The DC motor is loaded using a current controlled DC generator, mounted on the 
same shaft, and the drive has built-in analog current controllers for both DC 
machines with rated speed of 3000 rpm, rated power equal to 30 W, and rated 
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current equal to 2 A. The speed control of the DC motor is digitally implemented 
using an A/D – D/A data converter card. The speed sensors are a tacho generator 
and an additional incremental rotary encoder mounted at the free drive-shaft. 

The schema of the experimental setup is presented in Fig. 9. 

In these conditions, the speed response of the FCS with RF and PI-FC with respect 
to the modification of the reference input and without load is presented in Fig. 10. 

Due to the integral feature of the PI-fuzzy controller structure it is not necessary to 
present the control system behaviour with respect to the modifications of the load 
disturbance inputs. 

 

 

 
Figure 9 

Experimental setup schema 
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Figure 10 

Speed response of FCS without load 

Conclusions 

The paper presents one stability analysis method and performs the sensitivity 
analysis of fuzzy control systems with Mamdani fuzzy controllers dedicated to 
control of servo-systems in mechatronics applications. 

The presentation is focused on PI-fuzzy controllers, but it can be applied with no 
major problems in case of PD- or PID-fuzzy controllers and of complex fuzzy 
controller structures as well [25, 26, 27]. 

The methods can be formulated under the form of useful design recommendations 
for the fuzzy controllers. 

The case studies presented in the paper, accompanied by digital simulation results 
and by experimental results, validate the theoretical approaches. 
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