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Abstract: The paper presents some main aspects regarding multi-parametric quadratic 
programming (mp-QP) problems. Model Predictive Control (MPC) is considered as a 
particular mp-QP problem, and this powerful tool is applied for control and simulation 
through a case study. Since the solutions to mp-QP problems can be expressed as piecewise 
affine linear functions of the state, a new implementation in terms of adaptive network-
based fuzzy inference systems is proposed. The presentation is focused on the double 
integrator plant as a frequently appearing case study (electrohydraulic servo-system). 
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1 Introduction 

By multi-parametric programming, a linear or quadratic optimization problem is 
solved off-line. The multi-parametric approaches are based on off-line 
computation of the feedback law, having their advantages and disadvantages [15]. 
The resulting explicit controller generates regions for the control law, their 
number increases with the complexity of the problem, being able to become easily 
prohibitive. This is mainly due to the exponential number of transitions between 
regions, which can occur when a controller is developed in a dynamic 
programming fashion. 
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The main method to solve multi-parametric linear programming problems was 
proposed in [1] and described in [2]. The method is based on constructing the 
critical regions iteratively, by examining the graph of bases associated to the linear 
programming tableau of the original problem. Other methods are presented in [3, 
4, 5]. 

The most cited method to solve multi-parametric quadratic programming (mp-QP) 
problems was formulated in [6]. The method constructs a critical region in a 
vicinity of a given parameter using Karush-Kuhn-Tucker conditions for 
optimality, and then it explores recursively the parameter space outside such 
regions. A very efficient implementation until now is given in [2], and other 
methods to solve mp-QP problems are presented in [7, 8, 9]. 

Model predictive control (MPC) represents the accepted standard for complex 
constrained control problems in industrial applications [10]. During each sampling 
interval, starting at the current state, an open-loop optimal control problem is 
solved over a finite horizon, leading to a moving horizon strategy. The drawback 
of MPC is the relatively high on-line computational effort, which limits its 
applicability to control relatively slow plants. 

This paper addresses the process of moving the necessary calculations for the 
implementation of MPC off-line in the conditions of considering it a special case 
of mp-QP problem [6]. In case of MPC algorithms solved in terms of mp-QP 
problems with piecewise affine linear solutions as functions of the state, the 
implementation problem is relatively complex [10]. 

One of the aims of the paper is to propose a new implementation of mp-QP 
solutions in terms of adaptive network-based fuzzy inference systems [13, 14]. 

This paper is organized as follows. The next Section presents the main aspects 
concerning the problem setting in mp-QP and an algorithm to solve mp-QP 
problems accompanied by comments. In Section 3 the MPC as particular case of 
mp-QP is analyzed. Then Section 4 is dedicated to the implementation of the 
piecewise affine linear solutions as functions of the state in case of mp-QP in 
terms of a neuro-fuzzy approach using adaptive network-based fuzzy inference 
systems. Section 5 deals with the applications of the mp-QP problems in case 
studies concentrated on the well accepted double integrator plant in several 
settings, and the last Section highlights the conclusions. 
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2 Problem Setting in Multi-parametric Quadratic 
Programming 

The definition of an mp-QP problem is given in terms of [2, 6]: 

xSWzG    Hz'z
2
1)x,z(Jmin)x(Ĵ to subject

z
+≤== , (1) 

where sRz∈  are the optimization (manipulated) variables, nRx∈  is the 
parameter vector, ssRH ×∈ , 0>H , mRW ∈ , nmRS ×∈ . Other non-
homogenous problems with the general objective function (2): 

FzxHzzxzJ ''),( += , (2) 

can always be transformed in the problem (1) using the variable substitution (3): 

xFHzz ' ~ 1−+= . (3) 

To solve the mp-QP problem (1) it is necessary to calculate the polyhedral 
partition of the parameter space. With this respect, the following three definitions 
are useful [15]. 

Definition 1: A convex set nR⊆Q  given as an intersection of a finite number of 
closed half-spaces: 

{ }cxn QxQRx ≤∈= |Q , (4) 

is called polyhedron. 

Definition 2: A bounded polyhedron nR⊆P : 

{ }cxn PxPRx ≤∈= |P ,  (5) 

is called polytope. 

It is obvious from these two definitions that every polytope represents a convex, 
compact (i.e., bounded and closed) set. 

Definition 3: The linear inequality bxa ≤'  is called valid for a polyhedron P if 
bxa ≤'  holds for all P∈x . A subset of a polyhedron is called a face of P if it is 

represented as: 

{ }bxaRx n =∈∩= '|PF , (6) 

for some valid inequality bxa ≤' . The faces of polyhedron P of dimension 0, 1, 
(n – 2) and (n – 1) are called vertices, edges, ridges and facets, respectively. 

Connecting to the mp-QP problem (1), given a close polyhedral set nR⊂K  of 
parameters: 
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{ }zTxRx n ≤∈= |K , (7) 

it is denoted by KK̂ ⊂  the region of parameters K∈x  such that the mp-QP 
problem (1) is feasible and the optimum )(ˆ xJ  is finite. 

The fundamental aspect of multi-parametric approaches to optimization is that for 
any given K∈x , )(ˆ xJ  denotes the minimum value of the objective function in 

(1) for xx = , the function RJ →K̂:ˆ  called value function, expresses the 
dependence on x of the minimum value of the objective function over K̂ , and the 
single-valued function Rz →K̂:ˆ  describes for any fixed K̂∈x  the optimizer 

)(ˆ xz  corresponding to )(ˆ xJ . 

To solve the mp-QP problem (1), the algorithm consisting of the following steps 
can be used [2]: 

- Define the matrices H, G, W and S of the problem and set K in (7) according 
to the desired CS performance objectives. 

- Calculate the partition of K according to the steps 1 … 9: 

1: Let K0 ∈x  the centre of the largest ball contained in K for which a feasible z 
exists, and ε the solution to the linear programming problem (8) related to this 
centre: 

WSxGzniZTfxTf Tiii
xz

≤−=≤+=ε   ,,1  ,||||  subject to  max
,

, (8) 

where nT stands for the number of rows Ti of the matrix T. 

2: If ε ≤ 0, then the partition is calculated (no full dimensional critical region is in 
K).  Else, continue with step 3. 

3: Solve the mp-QP (1) for x = x0 to obtain )ˆ,ˆ( 00 λz . 

4: Determine the set of active constraints A0 when 0ẑz = , x = x0, and build GA0, 
WA0 and SA0. 

5: If r = rank GA0 < l (the number of rows of GA0), then take a subset of r linearly 
independent rows, and redefine GA0, WA0 and SA0 accordingly. 

6: Determine )(ˆ
0 xAλ  and )(ˆ 0 xzA  from (9): 

)(ˆ')(ˆ  ),()'()(ˆ
00

1
000

1
0

1
00 xGHxzxSWGHGx AAAAAAAA λ−=+−=λ −−− . (9) 

7: Characterize the critical region from (10) where the first inequality corresponds 
to the constraints in (1) and the second one to the Lagrange multipliers in (9) that 
must remain nonnegative as x is variable: 
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8: Define and partition the rest of the region according to [2]. 

9: Partition each new sub-region. 

This algorithm explores the set K of parameters recursively. The partition of the 
rest of the region into polyhedral sets can be represented as a search tree, with a 
maximum depth equal to the number of combinations of active constraints. 

Concerning the controller implementation, at each sampling interval a polyhedral 
partition is calculated, with as many different partitions as the length of the 
prediction horizon. If the Receding Horizon Technique (RHT) is used, then only 
one polyhedral partition is used out of those which were calculated. That is the 
reason why the generated controller has only one form. Concerning the algorithm 
presented before, the following three comments must be highlighted. 

Firstly, the very first partition is based on choosing x0 adequately. Since a choice 
is involved, there is no single solution to the algorithm. 

Secondly, the determination of the set of active constraints is critical, since the 
remaining regions are partitioned based on some combination of active 
constraints. Namely, each region represents a region in the parameter space where 
a number of combinations is active. There is an upper bound for the maximum 
number, m2 , where m is the cardinal of the set of all constraints. 

Thirdly, the selection of active constraints is not a simple task. All algorithms are 
based on an iterative procedure that builds up the parametric solution by 
generating new polyhedral regions of the parameter space at each step. The 
methods differ in the way they explore the parameter space, that is, in the way 
they identify active constraints corresponding to the critical regions neighbouring 
to a given critical region [2]. In [6] the unconstrained critical region is constructed 
and then the neighbouring critical regions are generated by enumerating all 
possible combinations of active constraints. 

Note that the expression of (9) and the fact that the algorithm is applied for several 
regions, the control signal will be a piecewise affine linear function of the state. 
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3 Model Predictive Control as Multi-parametric 
Quadratic Programming Problem 

MPC is employed to solve the constrained regulation problem [6] consisting of 
regulating towards the origin the plant represented by the discrete-time linear time 
invariant model (11): 

),( )(
),( )( )1(

txCty
tuBtxAtx

=
+=+

 (11) 

fulfilling the constraints (12): 

maxminmaxmin )(  ,)( utuuytyy ≤≤≤≤ , (12) 

at all time instants t ≥ 0, where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, 
input and output vectors, respectively, the variables in (12) are vectors with 
appropriate dimensions and the pair (A, B) is stabilizable. 

Assuming that the state x(t) is fully available at the current time instant t, the MPC 
is defined in terms of (13): 

.  , 
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The MPC problem (13) is solved at each time instant t, where tktx |+  is referred to 
as the predicted state vector at time t+k, obtained by applying the input sequence 
ut, …, ut+k−1 to the plant (11) starting from the state x(t) in the conditions of K 
being the state-feedback gain. It is assumed in (13) that 0' ≥= QQ , 0' >= RR , 

0≥P  and ),' ( ACCQ =  is detectable. The other parameters in (13) specific to 
MPC are Ny, Nu and Nc representing the output, input and constraint horizon, 
respectively, with Nu ≤ Ny and Nc ≤ Ny – 1. Substituting the state vector tktx |+ : 

∑
−

=
−−++ +=

1

0
1| x(t)

k

j
jkt

jk
tkt BuAAx , (14) 
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(13) can be re-expressed as the mp-QP problem (15): 

),(

subject to  )(' '
2
1)()('

2
1))(( min

tExWGU

UFtxUHUtYxtxtxV
U

+≤

++=
 (15) 

where the column vector U ∈ Rs, s = mNu, is the optimization vector, 0' >= HH , 
and the matrices H, F, Y, G, W and E are obtained from Q, R and (13) [6]. 

Connecting the approaches in Section 2 and Section 3, the control signal 
elaborated by the model predictive controller is also a piecewise affine linear 
function of the state. The following Section will be dedicated to a neuro-fuzzy 
implementation of the controllers as solutions to mp-QP problems. 

4 Neuro-fuzzy Implementation of Piecewise Affine 
Linear Functions of the State 

Examining the algorithm presented in Section 2, the control signal u as piecewise 
affine linear function is considered in the particular case of a second-order system, 
n = 2, where the general function can be expressed as: 

),( 21 xxfu = . (16) 

Considering three linguistic terms for each of the two input variables, defined in 
their initial forms in Fig. 1, the complete rule base of a Takagi-Sugeno fuzzy 
system [16] consisting of 9 rules, R1 … R9, can be expressed in terms of (17): 

][  THEN  ]  IS  [   ]  IS  [  IF:
][  THEN  ]  IS  [   ]  IS  [  IF:
][  THEN  ]  IS  [   ]  IS  [  IF:
][  THEN  ]  IS  [   ]  IS  [  IF:
][  THEN  ]  IS  [   ]  IS  [  IF:
][  THEN  ]  IS  [   ]  IS  [  IF:
][  THEN  ]  IS  [   ]  IS  [  IF:
][  THEN  ]  IS  [   ]  IS  [  IF:

][  THEN  ]  IS  [   ]  IS  [  IF:

9291922119

8281822118

7271722117

6261622116

5251522115

4241422114

3231322113

2221222112

1211122111

CxBxAuXxANDXxR
CxBxAuXxANDXxR
CxBxAuXxANDXxR
CxBxAuXxANDXxR
CxBxAuXxANDXxR
CxBxAuXxANDXxR
CxBxAuXxANDXxR
CxBxAuXxANDXxR

CxBxAuXxANDXxR

PP

PZ

PN

ZP

ZZ

ZN

NP

NZ

NN

++=
++=
++=
++=
++=
++=
++=
++=
++=

. (17) 

The membership function shapes in Fig. 1 have been obtained supposing that the 
fuzzy system includes the scaling factors (which can be non-linear in case of 
implementing MPC), and they correspond to so-called dsigmoidal-type functions 
according to [14] with the expressions in (18) as difference of two sigmoidal ones: 
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}.11,9,7,5,3,1{  },,{
)]},(exp{1/{1)]}(exp{1/{1)(

21

11

∈∈
−−+−−−+= ++

ixxx
cxacxax iiiiiμ  (18) 

In the conditions of using use the max and min operators in the inference engine 
and the weighted average method for defuzzification due to the special form of the 
consequence in each rule it is easy to observe that the Takagi-Sugeno fuzzy 
system described here is well suited to model piecewise affine linear functions of 
the state appearing in case of mp-QP problems. 

 
Figure 1 

Initial membership functions of input linguistic terms 

The adaptive network-based fuzzy inference system, with the schematic diagram 
illustrated in Fig. 2, has 5 layers: 

- Layer I: The inputs x1 and x2 are passed through the input linguistic terms 
with the membership functions having the parameters presented in (18), 

- Layer II: The fuzzy rules in (17) are constructed according to the inference 
engine using the product (П) of the two antecedents, the output of each node 
representing the firing strength of a rule, 

- Layer III: The firing strengths are normalized dividing them to the sum of all 
rule firing strengths, 

- Layer IV: The normalized firing strength is multiplied by the output 
functions of the fuzzy inference system, 

- Layer V: The overall system output is calculated as the sum of all incoming 
signals. 
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Due to this structure similar to that of certain neural networks, the learning 
techniques specific to neural networks can be applied to minimize the quadratic 
objective function E: 

∑
=

−=
N

i
i

d
i uuE

1

2)( , (19) 

where: ui
d – desired control signal, piecewise affine linear function of the state, to 

be implemented by the Takagi-Sugeno fuzzy system, ui – control signal elaborated 
by the Takagi-Sugeno fuzzy system, N – number of input-output data pairs. 

 
Figure 2 

Schematic diagram of adaptive network-based fuzzy inference system 

Minimizing the objective function in (19) using the adaptive structure presented in 
Fig. 2 and appropriate learning techniques leads to the correction of the 
parameters of the Takagi-Sugeno fuzzy systems in both the antecedents and the 
consequents. 
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5 Case Study 

A powerful calculation and simulation tool for multiparametric programming 
consists in the Multi-Parametric Toolbox (MPT). In the paper the MPT is used for 
modelling, control and simulation of a double integrator plant [17] in its 
continuous-time representation (for zero initial conditions) (20): 

)(1)( 2 su
s

sy = , (20) 

its equivalent discrete-time state-space representation obtained discretizing in 
terms of the forward rectangular method for a sampling period of 1 sec., is: 

[ ] ),(01)(

),(
1
0

)(
10
11

)1(

txty

tutxtx

=

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=+

 (21) 

and the system constraints are: 

1515151511 21 ≤≤−≤≤−≤≤− ,xx ,  y ,  u . (22) 

The objective is to regulate the double integrator (21) towards the origin while 
minimizing the following quadratic performance index and input constraint [6]: 

 11  , )](01.0)()('[
0

2 ≤≤−+= ∑
∞

=
ututytyJ

t
. (24) 

This problem can be solved by using the MPC algorithm in (13) with Nu = Ny = 2, 
R = 0.01, Q11 = 1, Q12 = Q21 = Q22 = 0, and the matrices K and P obtained solving 
a Riccati equation [6]. The CS behaviour for initial conditions of (21) is illustrated 
in Fig. 3. 

Applying the mp-QP algorithm presented in Section 2 leads in the first phase to 25 
controller regions. Merging the controller regions, in this case it was achieved 
from 25 regions to 21 regions, for the last sampling interval. These regions can be 
plotted as in Figure 4. 

Applying the mp-QP algorithm the control signal will have the piecewise affine 
linear form (23) that can be well modelled using the neuro-fuzzy approach 
presented in the previous Section. 
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Figure 3 

Control system behaviour 

 
Figure 4 

Controller regions 
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xu

.(23) 

The control law can also be plotted, as presented in Fig. 5. 

 
Figure 5 

Control signal over the regions 
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Closed loop trajectories in the state-space can be plotted as well, for all initial 
conditions that are feasible. For this problem setting (regulation towards origin) 
for several initial conditions these trajectories are depicted in Fig. 6. 

 
Figure 6 

Closed loop trajectories for different initial conditions 

Transforming the MPC problem (13) into a mp-QP one (15), the solution to the 
MPC algorithm can be calculated as piecewise affine linear functions of the state. 

Conclusions 

The paper presents aspects concerning the mp-QP problems with solutions 
implemented in state-feedback form as piecewise affine linear functions of the 
state. These solutions are subject to very convenient implementations as Takagi-
Sugeno fuzzy systems using neuro-fuzzy techniques. An example of a double 
integrator plant is presented, applying the so-called MPT toolbox. 

Future research will deal with the computer-aided solution of mp-QP and MPC 
problems. On the other hand, applications to discrete-event systems in 
manufacturing and robot control will be tackled [18, 19, 20]. 
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