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Abstract: In Minimally Invasive Surgery (MIS), surgeons need to acquire a specific set of 

skills, before carrying out a “real” operation. Training with the Laparoscopic Surgical Box-

Trainer device helps in acquiring the needed skills for surgery residents which are 

traditionally not taught to them. Video recording of residents’ performance and computer-

assisted surgical trainers for MIS provide valuable information for resident’s assessment.   

In this paper, we propose real-time detection and tracking of a multi-class of laparoscopic 

instruments for an intelligent box-trainer performance assessment system using SSD-

ResNet50 V1 FPN architecture in TensorFlow backend. The dataset has been extracted from 

various laparoscopic box training videos. Using distance measurements and evaluation 

criteria constraints, we present an evaluation of the surgeon’s performance. Based on the 

experimental result, the trained model could identify each instrument at the score of 90% 

fidelity, in each location, within a region of interest. This research is a result of a partnership 

between the Department of Electrical and Computer Engineering and the Department of 

Surgery, of the Homer Stryker M.D. School of Medicine, at Western Michigan University. 

Keywords: Intelligent Laparoscopic Surgical Box-Trainer; Laparoscopic Surgical Tool Tip 
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1 Introduction 

Minimally invasive surgery (MIS) reduces complications and health risks with 

respect to traditional (open) surgery and decreases hospital stay. However, surgeons 

must acquire many skills before carrying out a real operation, for example, 

development of excellent eye-hand coordination while operating using visual 

information from two-dimensional monitor images and having confident control of 

the graspers and other laparoscopic surgery instruments, just to mention a few [1] 

[2]. To help in acquiring these skills various Virtual Reality (VR) trainers have been 

developed which can assist surgery interns to improve their skills [3] [4]. The 

assessment of surgical skills requires a considerable amount of time and effort. In 

recent decades, various training methods have been introduced to provide valuable 

feedback, expedite the development of surgery skills and assess the trainees’ 

performance [5] [6] [7]. By monitoring a recorded video of a surgeon’s performance 

or observing it in real-time in an Operating Room (OR) during laparoscopic 

procedures, the assessment procedure can be implemented. Furthermore, object 

detection and distance estimation concerning the laparoscopic surgical instruments 

and the test platforms are two fundamental factors for creating an intelligent 

performance assessment system in MIS [8]. In this paper, we propose a multi-class, 

real-time detection and tracking system for laparoscopic instruments using SSD-

ResNet50 V1 FPN. It will enhance the capabilities of our intelligent box-trainer 

system [9] [10]. The paper is organized as follows: Section 2 reviews related work 

in this research area. Section 3 presents tools and utilities which were applied in this 

approach. Section 4 provides a detailed explanation of the methodology employed 

in this research. Sections 5 and 6 describe the tracking point location procedure and 

the model training and evaluation processes, respectively. In Section 7, the real-

time tracking and assessment procedures are outlined. Finally, in Section 8, 

conclusions and plans for further research are given. 

2 Related Works 

In this section, we focus on the most recent work of researchers regarding surgeons’ 

performance accuracy enhancement during MIS. As mentioned previously, 

laparoscopic instrument detection and tool-tip tracking contribute to the surgeon’s 

performance assessment. In what follows, we review modern methods that have 

been proposed in the areas of object detection algorithms, tooltip tracking, and 

performance assessment [6-35]. Although in the field of MIS, researchers have 

proposed to apply texture features, color detection, Haar wavelets, and gradient-

based features for both processing medical images and hardware-based simulators, 

there is an emerging trend in recent decades to utilize deep learning approaches 

[11]. For laparoscopic box-trainer systems, the approach to detect the surgical tools 

and the movements of tooltips in 3D space by using deep learning along with real-

time performance assessment is relatively new. 
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In more recent studies scholars have been predominantly working on Deep Learning 

algorithms and Computer-Aided Diagnosis (CAD) system [12]. Yamazaki et al. [6] 

applied the open-source neural network platform YOLOv3 to detect the movements 

of surgical instruments in video recordings of laparoscopic gastrectomy procedures. 

Namazi et al. [8] proposed a method to assess the surgeon’s performance using a 

Deep Learning System (SPD-DLS) to identify the surgical phases from recorded 

videos of a laparoscopic procedure. They used a deep Convolutional Neural 

Network (CNN) followed by a Long Short-Term Memory (LSTM) model to 

consider both spatial and temporal information to identify the surgical phases in the 

video. Grantner et al. in [9] proposed an Intelligent Box-Trainer System (IBTS) to 

implement tooltip tracking tasks in 3D space, measurement of the forces applied by 

the grasper’s jaws, and task execution time, and an assessment system for the 

laparoscopic surgeon’s performance using fuzzy logic. They worked with a color-

filtering algorithm for tool-tip tracking. Allen et al. [13] estimated the tooltip 

position by detecting the laparoscopic instrument’s shaft in each image.                 

They employed color space analysis to extract the instrument contours and then 

utilized line fitting to estimate the direction of movement for each laparoscopic 

instrument. In the end, to identify the position of the tool-tip of each instrument they 

employed a linear search. Perez-Escaminosa et al. [14] detected and tracked 

movements of laparoscopic instruments in a three-dimensional workspace using a 

sensor-free system based on green and blue color markers which were placed on the 

tip of the instruments [13] [15]. 

In [16], researchers developed a tracking algorithm using a sequence of image 

contrast enhancement, Sobel Filtering, and color-based segmentation.                     

This algorithm extracts information obtained from the laparoscopic instrument’s 

shaft edge to extract the motion fields of laparoscopic instruments via video 

tracking. Sun et al. [17] utilized an adaptive fusion kinematics method in an 

autonomous surgical instrument detection and tracking algorithm. They developed 

a fuzzy logic system to adjust the kinematics weights and laparoscopic information. 

Huang et. al. [18] proposed a method to estimate the position, velocity, and direction 

of laparoscopic instruments which were used in a tracking module. They utilized an 

Inertial Measurement Unit (IMU) providing direct motion information for the 

laparoscopic instrument tracking module. Moreover, an Extended Kalman Filter 

was employed to integrate the information from the different sources to compensate 

for the biases of the IMU in a unified framework. 

Zahiri et al. [19] implemented an Image-Based Tool Tracking system using two-

color markers placed on two graspers. Gautier et al. in [20] proposed a surgeon’s 

performance assessment system using colored tapes attached to the end of the 

laparoscopic instrument. By tracking the colored tapes, frequency analysis and 

linear discriminant analysis of the 3D reconstructed trajectories of the instruments 

were extracted to assess the surgeon’s skills. Partrige et al. [10] utilized a color-

thresholding motion-tracking program to track the movement of colored 

laparoscopic instrument tips, providing objective performance feedback to a 
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portable laparoscopic box simulator. Dockter et al. [21] developed a 3D tracking 

algorithm at a high rate of computational speed to validate its performance in a da 

Vinci surgical endoscope. Islam et al. [22] presented a tool-tip tracking algorithm 

based upon a fuzzy logic assessment system by utilizing a web-based video 

telemonitoring system to monitor and track movements of surgeons’ hands and the 

surgical tooltips. To assess the surgeon’s skills, they used colored tool-markers to 

extract velocity, acceleration, jerkiness, and snaps of the tools’ movements during 

laparoscopic procedures. In recent studies of laparoscopic surgical operations, 

researchers have been interested in working with Convolutional Neural Networks 

(CNN) and Recurrent Neural Networks (RNN) [23]. Using Region-Based 

Convolutional Neural Networks and a new dataset m2cai16-tool location, Jin et al. 

[24] used learning of instrument regions in cholecystectomy to detect and localize 

the region of interest of surgical tools in laparoscopic surgical videos. 

In [25], Kletz et al. worked with a Deep Learning instance segmentation approach 

in recorded videos using a region-based Fully Convolutional Network.                  

They managed to identify instruments as multi-class instance segmentation and 

determined each instrument classification. Zhang et al. [26] proposed a Modulated 

Anchoring Network for the detection of laparoscopic surgery tools based on the 

Faster R-CNN which was made up of a new anchoring scheme referred to as 

modulated anchoring and a relation module on an existing dataset (m2cai16-tool-

locations) as well as a new private one (AJU-Set). Choi et al. [27] proposed real-

time models for the detection of surgical instruments during laparoscopic surgery 

using a dataset that included information on the seven surgical tools for learning the 

CNN model. To track surgical instruments in real-time, the unified architecture of 

YOLO was applied to the models. 

Wang et al. [28] proposed a multi-label classification deep learning method that 

combined two deep neural networks, VGGNet and GoogLeNet, to detect the 

surgical tools in laparoscopic videos. Colleoni et al. [29] proposed a Fully 

Convolutional Neural Networks (FCNNs) encoder-decoder architecture for surgical 

instrument joint detection and localization using three-dimensional convolutional 

layers to exploit spatio-temporal features from laparoscopic videos. The researchers 

used the EndoVis and UCL dVRK datasets for training testing procedures. Hasan 

et al. [30] presented a U-NetPlus model for the surgical tool segmentation which is 

the modification of the U-Net architecture by introducing both VGG-11 and VGG-

16 as an encoder and redesigned the decoder part by replacing the transposed 

convolution operation with an up-sampling operation based on the nearest-neighbor 

(NN) interpolation followed by two convolution layers. 

In the paper by Kurian et al. [31], researchers used the CNN architecture ResNet50 

to recognize four surgical phases: 

1) Preparation 

2) Trocar placement 

3) Clipping and cutting 

4) Gallbladder retraction 
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They combined ResNet and temporal features in the form of I3D and LSTM. 

Kanakatte et al. [32] presented a deep architecture, in which a pixel-wise instance 

segmentation algorithm segmented and localized the surgical tool in 

cholecystectomy surgery videos. Jo et al. [33] presented a detection and 

classification surgical instruments algorithm in laparoscopic images which can 

work under real-time conditions, too. This algorithm is based on the object detection 

system YOLO9000. In the paper by Jonmohamadi et al. [34], the researcher used 

trained fully convolutional neural networks with U-net and U-net++ architectures 

to segment four key structures of the knee, such as Femur, ACL, Tibia, and 

Meniscus, in an automated fashion. Zhang et al. [35] developed a marker-free 

surgical instrument tracking framework based on object extraction using the 

LinkNet-18 network architecture which belongs to U-Net. In this work, the 

researchers used a masking method to segment each part of a laparoscopic 

instrument such as the end-effector, the shaft, and also the background. For real-

time tracking, a target trajectory has been defined for the laparoscope-holder robot 

to be tracked. Using Euclidean Distance Transformation, the binary image was 

transformed to a distance. 

Zijian et al [36] proposed an algorithm that tracks two parts of the surgical 

instrument: the end-effector and the shaft. In this approach, the shaft detection has 

been done by edge-points and line features and the trained CNN has been utilized 

to track and detect the end-effector. Zhu et al [37] proposed an end-to-end learning-

based approach to predict distances for given objects in the RGB images. Their 

method includes three components: a feature extractor, a distance regressor and a 

multiclass classifier. In this method, a base model extracts features from images, 

then uses ROI pooling to generate a fixed-size feature vector for each object, and 

finally feeds the ROI features into a distance regressor to predict the distance for 

each object. 

3 Tools and Utilities 

In our study, we propose an intelligent box-trainer performance assessment system 

based upon real-time detection and tracking of multi-class of laparoscopic 

instruments. To detect and track the laparoscopic instruments, we used a deep 

learning approach. Our network is based on an open-source Tensorflow Object 

Detection Application Programming Interface (API1), and we used SSD-ResNet-50 

[38] model Feature Pyramid Network (FPN) Architecture as a backbone of our 

network. TensorFlow is a frequently used software for Machine Learning (ML) 

applications that provides an interface to common ML algorithms and executable 

code for various models [39]. In this work, Tensorflow is the backend for object 

detection and image processing algorithm. 

                                                           
1  Application Programming Interface (API) 
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3.1 Experimental Setup 

Our Intelligent Box-trainer System (IBTS) is depicted in Figure 1. It is our 

development platform to create hardware and software architectures and algorithms 

aiming for the development of an objective laparoscopic-surgery skills assessment 

system [9]. The main components of the IBTS are as follows: an FLS box-trainer 

device, two 5-megapixel USB 2.0 cameras with variable-focus lens, a 32’ HD 

computer monitor to visualize the underlying test procedure carried out on a 

particular FLS platform, extra LED strips for better lighting conditions, a tablet 

which is used by the supervising medical personnel, a PC workstation to record the 

test videos and run the tracking and assessment programs and a router to implement 

wireless communications between the tablet and the PC workstation. One of the 

standard FLS pattern cutting tests was used in this study. In this test, the platform is 

an artificial tissue with a bold circle line on it. During the test, the surgeon holds the 

tissue in place by a grasper while using a pair of scissors to cut the tissue around the 

circle such that the cutting distance from the circle line should not exceed 5 mm, 

and cutting into the line is also considered as a failure of the test. 

 

(a) 

 

(b) 

Figure 1 

a) The IBTS System 

b) Tracking the laparoscopic instruments and generating real-time performance assessment using the 

IBTS System in the Homer Stryker M.D. School of Medicine, of WMU 

3.2 Dataset 

In this study, we used our custom dataset (IFCL.LBT100) that has been created for 

laparoscopic box trainer’s performance assessment research. For this project, we 

have created a relatively large dataset using various laparoscopic training videos. 

Our custom dataset is composed of extracted frames from these videos. The frames 

have been manually annotated using the Image Annotation Tool LabelImg2 which 

                                                           
2  http://tzutalin.github.io/labelImg/ 
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is a free and open-source software. Each labeled image has its individual .xml which 

can be converted to .csv files and .tf.record files which are used during training 

processes. Having recorded and processed more test videos we plan to post our 

dataset online for other researchers in this field. 

3.2.1 Partitioning of the Dataset 

Once the annotation of our dataset was finished, we classified all the images and 

.xml, .csv, and .tf record files for the training, testing, and evaluation tasks. 

Typically, the ratio of this arrangement is 6:2:2, i.e., 60% of the images are used for 

training, 20% for testing, and the remaining 20% is used for evaluation purposes. 

3.2.2 Creating the Label Map 

To satisfy the training algorithm, we prepared a label map that maps each of the 

classes to an integer value. This label map is used both by the training and detection 

processes. A simple example of the label map for our dataset contains three labels: 

a scissor, a grasper, and a circle pattern on an artificial tissue which are considered 

as the laparoscopic instruments in a laparoscopic box-trainer. This label map file 

(with the extension of .pbtxt) is illustrated in Figure 2. 

 

Figure 2 

Label map file example 

3.2.3 Data Augmentation 

The TensorFlow Object Detection API Image Preprocessor tool provides multiple 

data augmentation steps with variation and modification from the original data. 

Applying these augmentation steps to the dataset the neural networks can use more 

training data to achieve better performance. In our approach, to train the model 

based on SSD-ResNet50 V1 FPN, we adequately augmented the dataset using 

TensorFlow API data augmentation variables. 
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4 Methodology 

We selected a collection of detection models and pre-trained them on the COCO 

2017 dataset such as the EfficientDet D1 640x640, SSD MobileNet V1 FPN 

640x640, and SSD-ResNet50 V1 FPN from TensorFlow 2 Detection Model Zoo 

and Detecto Module in Pytorch [40]. These models are useful for initialization when 

training on our new datasets. By comparing the performance of these models, we 

have concluded that SSD-ResNet50 delivers better performance with respect to 

real-time detection. We trained our model based upon the SSD-ResNet50 V1 FPN 

Architecture. The entire workflow of the SSD-ResNet50 V1 FPN Architecture is 

illustrated in Figure 3. SSD with the ResNet50 V1 FPN feature extractor in its 

architecture is an object detection model that has been trained on the COCO 2017 

dataset. A Momentum optimizer with a learning rate of 0.04 was used for the region 

proposal and classification network, and the learning rate was reduced on the 

plateau. As shown in Figure 3, the Feature Pyramid Network (FPN) generates the 

multi-level features as inputs to the SSD-ResNet50 Architecture. The FPN is an 

extractor and provides the extracted feature maps layers to an object detector. When 

the model localizes any small object, it draws an object boundary box around it at 

each location. After training the model, the testing procedure was carried out by 

providing the surgical videos as input to the trained model. Afterward, we used 

Tensorboard which is a suitable feature of the TensorFlow Object Detection API.  

It allowed us to continuously monitor and visualize several different 

training/evaluation metrics when our model was being trained. As the final step, we 

obtained the output video containing the labeled surgical instruments and the 

assessment results along with the log file. The generated log file records the surgical 

assessment, the bounding box for each laparoscopic instrument, and the center point 

of each laparoscopic instrument. 

 

Figure 3 

SSD-ResNet50 V1 FPN Architecture 
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5 Tracking Point Location Procedure 

By providing the surgical videos as the input to the trained model, we detected and 

localized each laparoscopic instrument with high accuracy. After object extraction, 

we used Euclidean Distance Transformation3 [35] to measure the distance between 

the center of the circle pattern and the center of the scissors’ bounding box where 

the tissue is cut. To assess the surgeon’s performance, we measure the distance 

between the spot where the tissue is cut and the closest area of the circle. This 

distance should not exceed 5 mm for passing the assessment test. The measurement 

procedures and formulations are defined by Eqs. (1) thru (8). Dis stands for the 

distance of two points in each frame and Pix stands for the pixel point set which 

contained all the pixel points of an extracted object of each frame. 

𝐷[𝐴][𝐵] = min{𝐷𝑖𝑠[(𝐴𝑥 . 𝐴𝑦) . (𝐵𝑥  . 𝐵𝑦)] .  (𝐴. 𝐵) ∈ 𝑃𝑖𝑥} 

𝐷𝑖𝑠[(𝐴𝑥 . 𝐴𝑦). (𝐵𝑥  . 𝐵𝑦)] = √(𝐵𝑥 − 𝐴𝑥)2 + (𝐵𝑦 − 𝐴𝑦)2 
(1) 

Given a line y = mx+b, the slope m delineates the ratio between the change in x, 

defined by dx, and the change in y, defined by dy. Hence, the slope creates a 

relationship between a change in the y-values with respect to a change in the x-

values which is a derivative of y to x: 

𝑑𝑦 = 𝑚𝑑𝑥 (2) 

𝑑𝑦2 = (𝐵𝑦 − 𝐴𝑦)2 (3) 

𝑑𝑥2 = (𝐵𝑥 − 𝐴𝑥)2 (4) 

𝑑𝑥2 + 𝑑𝑦2 =  (𝐵𝑥 − 𝐴𝑥)2 + (𝐵𝑦 − 𝐴𝑦)2 

𝑑𝑥2 + 𝑑𝑦2 =  𝐷𝑖𝑠2 
(5) 

By substituting Eq. (2) in Eq. (5) we obtain Eq. (6) 

𝑑𝑥2 + (𝑚𝑑𝑥)2 =  𝐷𝑖𝑠2 (6) 

Using Eq. (2) and Eq. (6), we can calculate the changes in the x-values by Eq. (7) 

and the y-values by Eq. (8) to obtain the distance between each of two points in our 

approach. 

𝑑𝑥 = √
𝐷𝑖𝑠2

1 + 𝑚2
 (7) 

                                                           
3  https://github.com/alejandrods/Social-Distance-Using-TensorFlow-API-Object 
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𝑑𝑦 = 𝑚√
𝐷𝑖𝑠2

1 + 𝑚2
 (8) 

Using these equations, we measured the bounding boxes of each laparoscopic 

instrument in each frame. Based upon real measurements and the number of pixels 

in each frame, we calibrated the position of each instrument to a real value.             

The assessment measurement algorithm is illustrated in detail in Figure 4. There,    

A marks the center of the circle pattern, and B marks the center of the scissors box. 

Line d, which connects points A and B is defined as the distance of the scissors from 

the center of the circle. Using Eq. (1) to Eq. (8), we calculated the radius of the 

circle in each frame. 

By subtracting the center of the scissors bounding box from the center of the circle 

pattern, the distance between the scissors and the center of the circle is calculated 

for the assessment procedure. These calculations may lead to inaccurate 

measurements under some circumstances, e.g., when the grasper wrinkles the 

artificial tissue, or when the trained model cannot recognize the instrument. In our 

research, there were some short periods, typically lasting for a few seconds, when 

the model couldn’t find the circle which, lead to inaccurate measurement. In other 

cases, the model could detect the circle by keeping the reference center of the circle 

in its place by localizing the bounding box of the circle in each frame. 

 

Figure 4 

Illustration of the assessment measurement calculations 

6 Model Training and the Evaluation Process 

The classification loss, which is used to measure the model’s confidence by 

classifying the pixel’s region confined by the bounding box, is illustrated Figure 5. 

The localization loss that measures the geometric distance between the predicted 

bounding box and the ground truth annotation (validation bounding boxes) is 

depicted in Figure 6. The overall loss function or total loss is a weighted 
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combination of the classification loss and the localization loss [41]. It is depicted in 

Figure 7, which illustrates the performance of the model during training, i.e., what 

the network predicts for the image versus the allocated label of the image at the end 

of each epoch during the training process. The train-validation total loss, as it is 

shown Figure 7, is sometimes higher than the training loss but it decreases over time 

and, hence, it exhibits a satisfactory result. 

 

Figure 5 

The comparison of overall train-classification loss and train-validation classification loss 

 

Figure 6 

The comparison of overall train- localization loss and train-validation localization loss 
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Figure 7 

The comparison of overall train-total loss and train-validation total loss 

7 Real-time Tracking and the Assessment System 

To implement the tracking task, the tracking point has to be located frame-by-frame 

in the laparoscopic test videos. In our implementation, we analyzed tracking and 

generated the surgeons’ performance assessment along with it. 

 
Figure 8 

The real-time tracking and assessment system flowchart 
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In the tracking procedure, we expect that the network detects and localizes each 

laparoscopic instrument in real-time. However, the surgeon’s performance will be 

assessed only during the actual cutting of the tissue. To clarify the reasons for this, 

we have simplified the assessment procedure to just three parts. In each part, many 

components are taken into account for the surgeon’s performance assessment. Only 

the following processes are considered: (1) the surgeon is not cutting, (2) criteria 

evaluation and performance assessment, and (3) circle cutting warning if the 

established criteria are not met. The tracking and assessment system flowchart is 

depicted in Figure 8. In what follows, we investigate each of these processes. 

7.1 Surgeon is not Cutting and the Procedure does not 

Commence 

In this situation, either the surgeon has not started the cutting or the scissors are in 

the air, i.e., they are way above the artificial tissue. By defining different constraints 

for the distance of the center of the circle to the tips of the scissors, the network can 

recognize when the surgeon is not cutting. In Figure 9 (a to h), different conditions 

are illustrated when no cutting takes place. When the surgeon is about to start the 

cutting (a), there is no need for performance assessment. When the surgeon is in the 

middle of the cutting process but he temporarily stops doing it and releases the tissue 

to take a different approach for continuing the task, there is no cutting, either.        

The network recognizes it when a surgeon is not cutting (b, d, e, h). In two illustrated 

scenarios the surgeon intends to continue with the cutting but just a small section of 

the scissors is in the frame. In these cases, the network correctly recognizes the 

situation and decides “no cutting” is taking place (f, g). 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 9 

Surgeon is not cutting leading to no assessment 

7.2 Performance Assessment is Active 

The surgeon’s performance will be assessed based upon an error distance, de, a 

distance between the spot where the scissors made the cut and the section of the 

circle which is at the closest point to the scissors’ tips, as shown in Figure 10.         

The surgeon’s performance is not acceptable unless the error distance de<5 mm, at 
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all times. If this condition is not met, the system renders an assessment but it doesn’t 

accept the surgeon’s performance. In this case, there are three scenarios to consider. 

1)  In Figure 10 (a), the surgeon is cutting, however, he is only getting to a 

position in which he can actually begin with the task. The tips of the scissors 

are too far from the circle and the network should only deliver assessment 

during the pattern cutting task. Clearly, in this situation, we do not expect 

the network to deliver any valid assessment. 

2)  In Figure 10 (b), the tips of the scissors are close enough to the circle, so 

after this moment, the surgeon’s performance will be monitored and 

assessed. Based upon Figs. 10 (c, d, e), the surgeon’s performance is deemed 

good because the measured distance between the tips of the scissors and the 

circle line is less than 5 mm. In Figure 10 (f), the surgeon restarted cutting 

after he had changed the direction he wanted to move the scissors.                   

As expected, in the case of each start, the distance of the scissors’ tips from 

the circle line is typically larger than that when the surgeon is cutting 

continuously. 

3)  In Figs. 10 (g, h), the most challenging scenarios are illustrated: the tissue is 

wrinkled by the grasper but the reference center of the circle is still in its 

place, i.e., it is visible to the camera. 

Having enough images in a dataset has a great impact on training a model. In our 

study, because the number of images was not as large as it should be, the model 

could not recognize the circle in few instances. In particular, when the tissue is 

wrinkled by the grasper such that the circle line disappears from the sight of the 

camera. In a situation like that not only the complete circle cannot be recognized by 

the model, but even an expert cannot recognize it as a circle. Therefore, in such 

moments, we have a pass-fail assessment. To address this problem, we have to 

record more videos including many frames of such cases intentionally containing 

this scenario. Under normal conditions, this situation rarely happens. The more we 

can train a model to understand this scenario, the better the prediction analysis will 

be. In addition, installing a third camera into the system, which is positioned directly 

above the platform, will help in resolving this problem, as we continue our research. 

 

(a) 

 

(b) 
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(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 10 

Surgeon’s performance is assessed leading to performance acceptance or rejection 

7.3 Circle Cutting Warning and Criteria is not Met 

There is an additional requirement for passing the pattern cutting test. It is 

mandatory that the surgeon should not cut through the circle line. To help in meeting 

this constraint, we defined a rule in which if the tips of the scissors are too close to 

the circle line (defined as less than 0.5 mm) it will alert the surgeon about this 
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situation. This scenario is illustrated in Figure 11, when the surgeon was cutting too 

close to the circle line. 

 

(a) 

  

(b) 

Figure 11 

Surgeon is getting too close to the circle, leading to circle cutting 

Conclusions and Future Research 

In this paper, we proposed employing real-time detection and tracking of a multi-

class of laparoscopic instruments for an intelligent box-trainer performance 

assessment system. We generated the dataset using extracted frames of various 

training videos using a laparoscopic box-trainer. Moreover, we added a distance 

measurement algorithm to the object detection algorithm in the TensorFlow 

backend using ResNet-50- architecture. The algorithm continuously measures 

changes in the distance of the center of the circle from the center of the scissors’ 

tips and also the changes of the distance, where the tissue is been cut, from the circle 

line. Using distance measurements and evaluation criteria constraints, we assessed 

whether the surgeon’s performance was accepted or not. Based on the experimental 

result, the trained model could identify each instrument at the score of 90% fidelity, 

in each location within a region of interest, and determine their relative distance 

with 65% reliability, under real-time conditions. There were few instances when the 

detection failed to lead to pass-failed assessment, in particular, when the tissue was 

wrinkled by the grasper. The error rate in carrying out these tasks was less than 

20%. We assume that the performance measures of the system can be improved by 

adding an additional, top camera to the system and measure the distance from 

different perspectives. In future research, we plan to develop an automated 

performance assessment system, by tracking the laparoscopic instruments, under 

real-time conditions, measuring the test execution times and fusing the measured 

data with expert surgeon opinion, in the framework of a fuzzy logic-based 

intelligent decision support system. 
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