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Abstract: The main purpose of this study is to predict the seismic performance of liquid 
storage tanks using an Artificial Neural Network (ANN) model. In order to develop this 
model, 240 seismic data were collected from relevant literature. Fifty samples were 
randomly selected as a test set, while the remaining 190 samples were used to train the 
network. The data used in the ANN model were arranged in a format of six input 
parameters: peak ground acceleration (PGA), tank diameter (D), tank height (H), ratio of 
H/D, height of liquid during earthquake (HLIQ), and percent full (% Full). The output 
parameter, damage state (DS), was provided for measuring the seismic performance of the 
liquid storage tanks. The model outputs confirmed that an artificial neural network has 
acceptable potential for predicting the seismic performance of liquid storage tanks. The 
applicability of the developed technique was then validated by comparing the outputs to the 
actual damage states of the affected tanks according to HAZUS. 
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1 Introductions 
The performance of liquid storage tanks during past seismic events has shown that 
these structures are seismically vulnerable. Liquid storage tanks in oil refineries 
and petrochemical plants usually contain hazardous material. For this reason, 
damage to these structures may cause serious indirect impacts, such as explosions 
and environmental pollutions. Therefore predicting the seismic performance of 
existing liquid storage tanks is an important task in seismic risk analysis of 
industrial plants. The dynamic behavior of liquid storage tanks is very complex. 
The seismic performance of liquid storage tanks may be affected by several 
parameters such as H/D, % Full, etc. For this reason, it is very difficult to estimate 
the seismic performance of liquid storage tanks and to obtain a mathematical 
representation of uncertain and nonlinear dynamic processes [1]. Hence, the 
Artificial Neural Network (ANN) may be a useful tool for estimating the seismic 
performance of such a complex structure. 
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In conventional modeling methods, different statistical tools, such as regression 
analysis, are utilized for developing a model to predict the seismic performance of 
liquid storage tanks. Available fragility functions of liquid storage tanks are 
samples of conventional modeling methods. For the last two decades, various 
modeling methods based on Artificial Neural Network (ANN) have become 
popular and have been used by many researchers for a variety of engineering 
applications such as concrete engineering [2, 3], traffic engineering [4] and 
earthquake engineering [5, 6]. The ANN is able to solve very complex problems 
with the help of interconnected computing elements [3]. It is also a powerful data 
analysis tool that is able to capture and represent complex input/output 
relationships. The true power and advantage of neural networks lies in their ability 
to represent linear and non-linear relationships and in their ability to derive these 
relations directly from the data being modeled [7]. Traditional linear models are 
simply inadequate when it comes to modeling data that contains non-linear 
characteristics. 

The objective of this study is to present a methodology designed by ANN for 
predicting the seismic performance of liquid storage tanks. The model is expected 
to determine the damage state of the tanks. 

2 The Seismic Performance of Liquid Storage Tanks 

Over the past few decades, many liquid storage tanks were damaged due to 
earthquakes. During an earthquake, the upper part of the contained liquid moves in 
a long-period motion. This part of the liquid may apply upward hydrodynamic 
pressure to the tank roof or may cause overflowing of the liquid. The other part 
moves rigidly with the tank [8]. Moreover, during an earthquake large amounts of 
hydrodynamic pressure can be applied to the tank shell. The hydrodynamic 
pressure may cause damage to the tank shell. Many of the on-grade tanks, even 
anchored ones, may experience shell uplift due to the strong ground motion. The 
shell uplift may cause ruptures of the shell-to-base-plate junction, rupturing of 
pipes and/or appurtenances. Elephant-foot buckling (Elastic-Plastic failure) may 
occur by large axial compressive stresses in the tank wall. Also, distortion of the 
tank roof or rupturing of the roof-to-wall junction may occur due to the strong 
ground motion. 

There are various methods for classification of the damage states of cylindrical 
steel tanks. ATC 13 [9] and HAZUS [10] classifications are two common 
classifications of tank damage states. ATC 13 [9] considers seven different 
damage states for tanks which are: no damage, slight damage, light damage, 
moderate damage, heavy damage, major damage, and destroyed. HAZUS [10] 
considers five damage states which vary from no damage to collapsed tanks, based 
on the serviceability, loss of content, and the occurrence of shell buckling. 
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HAZUS damage states are described in Table 1. It should be mentioned that five 
of ATC13 damage states – none, light, moderate, heavy and destroyed – are 
equivalent to HAZUS DS1 to DS5 damage states respectively [11]. Herein 
HAZUS damage states are considered for classifications of damage in tanks. 

Table 1 
Description of damage states based on HAZUS 

Damage State Description 
DS1 No damage. 

   

DS2 Minor damage without loss of content or functionality. Damage to 
roof, localized wrinkles in steel. 

   

DS3 Considerable damage with minor loss of content. Elephant-foot 
buckling without loss of content. 

   

DS4 Severe damage. Tank going out of service. Elephant-foot buckling 
with loss of content. 

   
DS5 Collapse. Losing all of content. 

3 Architecture of the Artificial Neural Networks 

The neural network-based modeling process involves five main aspects: (a) data 
acquisition, analysis and problem representation; (b) architecture determination; 
(c) learning process determination; (d) training of the networks; and (e) testing of 
the trained network for generalization evaluation [12]. There are different common 
architectures for artificial neural networks. The multi layer perceptron (MLP), 
radial basis function network (RBFN), the probabilistic neural network (PNN), the 
cascade correlation neural network (Cascor), the learning vector quantization 
(LVQ), and the self-organizing feature map (SOM) are some popular neural 
network architectures [13, 14]. They differ in aspects including the type of 
learning, the node connection mechanism, the training algorithm, etc. The most 
common neural network model is the multilayer perceptron (MLP). This type of 
neural network is known as a supervised network because it requires a desired 
output in order to learn. The goal of this type of network is to create a model that 
correctly maps the input to the output using historical data so that the model can 
then be used to produce the output when the desired output is unknown. A typical 
structure of an artificial neuron is shown in Fig. 1. 
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Figure1 

A typical structure of an artificial neuron 

An error incurred during the learning process can be expressed as a mean square 
error (MSE) or a root-mean-squared (RMS) as given in the following equation: 
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In addition, the absolute fraction of variance (R2) and sum of the squares error 
(SSE) can be calculated by utilizing Eqs. 3 and 4, respectively: 
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where t is the target value, o is the output value and p is the pattern. 

In this study, the back propagation (BP) algorithm is used to train and construct 
the present ANN model and the hyperbolic tangent function transfer function is 
adopted. The tangent function is nonlinear and, therefore, the original data before 
training the network are normalized. The overall flowchart of the procedure of this 
study is given in Fig. 2. 
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Figure 2 

Flowchart of the methodology of this study 

4 Proposed Neural Network Model 

The ANN model developed in this study is used to predict the seismic 
performance of liquid storage tanks. In order to produce an effective ANN model, 
it is vital that the network be properly trained. Therefore, 240 tanks which 
experienced strong ground motion in past earthquakes were selected. The data of 
damaged tanks were adopted from [15] (see Table 2). The range of the six input 
variables, including peak ground acceleration (PGA), tank diameter (D), tank 
height (H), ration of H/D, height of liquid during earthquake (HLIQ), percent full 
(% full) and one output, damage state (DS), are given in Table 3. 

Table 2 
List of the selected triggered tanks 

Seismic event Year PGA range (g) Number of 
affected tanks Reference 

Long Beach 1933 0.17 37 15 
Kern County 1952 0.19 23 15 

Imperial Valley 1979 0.24-0.49 19 15 
Coalinga 1983 0.71 11 15 

Loma Prita 1989 0.13 86 15 
Landers 1992 0.15-0.56 26 15 

Northridge 1994 0.55-1.0 38 15 
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Table 3 
Range of input-output parameters in databases 

Input parameters Minimum Maximum 
PGA (g) 0.13 1 
D (m) 3.2 83.2 
H (m) 4.9 19 

H/D (%) 18 416 
HLIQ (m) 0 15.2 

% Full 0 100 
Output parameter 

DS 1 5 

In order to determine the best structure, five different architectures as [6-6-2-1 to 
6-6-6-1] are considered and, based on MSE and R2 criteria, the best one is 
selected. Table 4 presents the obtained results for each structure. As can be 
observed, the decrease in MSE causes the increase of R2 and is approaching to 1. 
Therefore, the best structure is [6 6 6 1] (see Table 4). The architecture of the 
proposed ANN is also illustrated in Fig. 3. 

Table 4 
Evaluation of ANN architecture 

Structure Mean Square Error Train Error Test Error R2 

[6 6 2 1] 0.170 0.681 0.313 0.5328 
[6 6 3 1] 0.147 0.586 0.223 0.6200 
[6 6 4 1] 0.147 0.588 0.238 0.6182 
[6 6 5 1] 0.242 0.967 0.345 0.4575 
[6 6 6 1] 0.101 0.416 0.154 0.7793 

To test the reliability of the proposed ANN model, 50 samples are randomly 
selected as the test set, while the remaining 190 samples were used to train the 
network. Herein, the Matlab neural network toolbox was used to construct and 
train the supervised network. In training a supervised ANN, weights between the 
neurons are adjusted to minimize the error in the output. The values of parameters 
used in this research are as follows: 

• Number of input layer units = 6 

• Number of hidden layers = 2 

• Number of output layer units = 1 

• Learning rate = 0.75 

• Learning cycle = 1000 
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Figure 3 

Proposed ANN architecture 

5 Implementation Results 

The developed ANN model in this research is utilized to predict the damage state 
for the seismic performance of liquid storage tanks. The error between the 
predicted and the target values for the damage state (DS) is plotted in Fig. 4, 
which includes row numbers up to 50. As indicated in Fig. 4, the neural network 
was capable of deriving the relationship of input variables and the output. The 
correlation factor is R2 = 0.7793, which is acceptable for liquid storage tanks [11]. 

In order to indicate the accuracy of the ANN prediction, various earthquake-
affected tanks of different H/D, %Full, and PGA were randomly selected. The 
actual damage states of the affected tanks (according to HAZUS) were compared 
to the ANN prediction. The comparison of actual performances and ANN 
predictions in different ranges of PGA are indicated in Figs. 5 to 8. 

As can be observed in these figures, the ANN prediction is acceptable for various 
models – especially for PGAs less than 0.3 g (see Figs. 5 and 6). It is worth 
mentioning that the prediction of the ANN model in this study was not accurate 
enough for the higher PGAs (See Figs. 7, 8). The main reason for such 
unacceptable prediction is the lack of enough data for training the model in higher 
PGAs. 
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Figure 4 
(a) Comparison of predicted data to test samples (b) Predicted data vs. actual damage state 
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Figure 5 

Comparison of ANN prediction to actual damage state for PGA<0.15 g 

 

 
Figure 6 

Comparison of ANN prediction to actual damage state for 0.25 g <PGA<0.3 g 
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Figure 7 

Comparison of ANN prediction to actual damage state for 0.6 g <PGA<0.7 g 

 

 
Figure 8 

Comparison of ANN prediction to actual damage state for PGA>0.7 g 

Conclusions 

This study was aimed at investigating the possibilities of adopting artificial neural 
networks to predict the seismic performance of liquid storage tanks. To this end a 
data bank of 240 earthquake-affected tanks was selected. Five back propagation 
ANN of different architectures were designed and trained with 190 data. The main 
findings of the study are outlined below: 
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1) The results of this study showed that artificial neural network has 
acceptable potential for predicting the seismic performance of liquid 
storage tanks. 

2) Based on the results given in table 4 for evaluation of ANN architecture, the 
best correlation factor (R2 =0.7793) was obtained from the [6 6 6 1] model 
with the lowest Mean Square Error (0.101). 

3) For PGAs less than 0.3 g, the ANN model accurately predicted the damage 
state and for 0.6 g <PGA<0.7 g, the ANN predictions are also acceptable, 
but for PGA>0.7 g, because of the lack of the data in this range for training 
the model, the predictions in the most cases are higher than the actual 
damage state, so they were not accurately predicted. It is worth mentioning 
that seismic events with PGAs higher than 0.7 g are very strong 
earthquakes and usually have long return periods. In other words these 
extraordinary earthquakes are rare. Hence the neural network can accurately 
predict the seismic performance of cylindrical steel tanks for a wide range 
of PGAs. 

The results of this study reveal that an artificial neural network can be used for the 
development of seismic performance relations (such as fragility curves). In other 
words, the proposed methodology is a useful tool in seismic risk analysis of tank 
farms with potential PGAs less than 0.7 g. 
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