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Abstract: The autonomous vehicle steering system, a multi-input multi-output (MIMO) 

system, is challenging to design using traditional controllers due to the interaction between 

inputs and outputs. If PID controllers are used the control loops are executed 

independently of each other as there is no interaction between the loops. Designing a 

larger system increases the controller parameters requiring tuning. Model Predictive 

Control (MPC) overcomes this problem, as it is a multi-variable control method taking into 

account the interactions of the variables in the target system. Achieving a high safety level 

is also critical for autonomous vehicle systems. This can be provided by an MPC 

controller, which can handle constraints such as maintaining a safe distance from other 

cars. Wider applicability of the Model Predictive Controller calls for more efficient 

hardware architectures for implementation. The aim of this paper is to achieve optimal 

implementation of the MPC controller by increasing the computational speed in order to 

reduce execution time for optimization. An MPC controller is used to control the steering 

system of an autonomous vehicle to keep it on the desired path. A traditional MPC 

controller is used to control the system where the plant dynamics do not change, whereas 

an Adaptive MPC controller is used when the system is nonlinear or its characteristics vary 

with time (the longitudinal velocity changes as the vehicle moves). Results are discussed in 

terms of performance, resource utilization, cost, and energy-effective implementations 

taking into consideration a reasonable size number of constraints handled by the 

controller. 

Keywords: Autonomous Vehicle; Steering System; Model Predictive Control (MPC); Field 

Programmable Gate Array (FPGA); System on Chip (SOC) 

1 Introduction 

In recent years, research in the automotive industry has been growing in order to 

address the challenges of this application domain. Automotive control applications 

require high performance and cost reduction at the same time [5]. The control 

system requirements are becoming higher, and to achieve the improvement in 

control performance, the optimization process is incorporated into the control 



A. Reda et al. Model Predictive Control for Automated Vehicle Steering 

 – 164 – 

system design. The optimization process is subject to an increased number of 

factors, such as physical, safety, and economic constraints (power consumption, 

actuator saturation, etc.). In this context, Model Predictive Control (MPC) is a 

powerful optimization strategy for feedback control based on the model of the 

system. Basically an MPC controller runs a set of forecasts forward in time on the 

system model for different actuation strategies. MPC determines the immediate 

next control action based on the optimization. Next, it reinitializes the 

optimization in order to define the next control input  [7]. The current and future 

control inputs are determined based on minimizing the difference between the 

target setpoint and the predicted output [13]. MPC features and capabilities are 

very effective in terms of meeting the requirements and achieving the optimization 

tasks. A basic MPC controller solves Linear Programming (LP) problems, which 

can be formulated as quadratic programming (QP) problem [12]. Also, the MPC 

controller has a natural capability to handle soft and hard constraints. That means, 

the requirements that are imposed by the operating conditions can be managed and 

formulated using the constraints. However, MPC controller implementation has 

several challenges such as high computational load and high power consumption, 

whereas the embedded system applications have limitations in their hardware 

resources. 

One of the most effective solutions in order to achieve MPC implementations for 

embedded system applications which have constraints related to the computational 

time, is the use of the hardware acceleration. In this context, the deployments of 

an embedded MPC controller can achieve using reconfigurable hardware such as 

Field Programmable Gate Array (FPGA) or System on Chip (SoC), which is 

popular due to its high computational capabilities, parallel processing and 

development framework  [11]. In this context, the main contributions of this paper 

are the study and the analysis of the efficiency of implementing control methods, 

in addition to the use of rapid prototyping methods (here hardware/software co-

design using Embedded Coder and HDL Coder) for the implementation of 

embedded systems dedicated for digital signal processing considering 

performance, execution time and resources consumption. The research applied 

functional on-target rapid prototyping using Embedded Coder and HDL coder. 

The suggested implementation method is based on taking the optimization 

problem of the control method through MATLAB Simulink, Fixed-Point 

Designer, Embedded Coder and HDL coder. The suggested method allows the 

authors to focus on the verification, the validation and the test of the embedded 

system rather than programming, which in turn gives the ability to refine the 

design, tune the MPC controller parameters and see the results in the real-time. 

Finally, different optimization strategies were implemented and the obtained 

results were compared in terms of reducing the execution time and hardware 

resources consumption. 

FPGA based systems have been applied for a variety of applications, such as 

image and signal processing, aerospace, energy, autonomous vehicles, 
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telecommunications (5G) and medical field. In paper  [1] an analytical study for 

Adaptive MPC controller under external disturbances signals was provided, the 

Lipschitz-based approach was used and provides satisfactory stability and 

robustness. Saragih et al. used the MPC controller for visual-based control system 

application (face tracking system) to control the motion of a robot, where the MPC 

controller was implemented to control the camera movements in order to keep the 

tracked face at the center of the camera – see [21]. Paper [4] provides an overview 

of a real-time optimization problem for automotive and aerospace applications 

with a focus on MPC controller. The optimal control problem was formulated 

based on the cost function and the system constraints, in addition, numerical 

algorithms and their implementations on an embedded computing platform were 

discussed. The improvement of fuel economy for power-split hybrid electric 

vehicles (HEV) was discussed in [2]. The energy management system was 

formulated as a nonlinear and constrained system. The MPC controller was used 

to split the power between the combustion engine and electrical machines at the 

different system operating conditions. The proposed approach provided an 

improvement compared to the controllers in commercial Powertrain System 

Toolkit (PSAT) software. The research reported in  [8], proposed a control 

approach based on combining steering and braking MPC controllers. The authors 

in the paper introduced two model predictive controllers. The first one was 

implemented on a four-wheel vehicle model which determines the steering angle 

and braking torques to track the desired trajectory . The second MPC controller 

was implemented on a simplified bicycle model with a smaller number of inputs. 

The obtained results showed that the first controller provides good performance in 

terms of tracking the reference trajectory at low and high-speed, but the 

computation was time-consuming. On the other hand, the second controller 

showed unsatisfactory performance at high speed due to the simplicity of the 

vehicle model [8]. 

Paper [24] presented research of edge cloud on the Internet of Things (IoT) where 

the Model Predictive Controller evaluates the system properties. The paper 

presented the potential of merging the IoT, 5G, and cloud computing with the 

efficiency of deploying the automatic control system for time-sensitive and 

mission-critical processes. Haidegger et al. in [20] stated that the predictive and 

model-based control gives satisfactory performances only in the case of providing 

the accurate system’s behavior and cascaded control approach. An empirical 

design with the use of Smith predictor for a telesurgical robot system was 

suggested in order to deal with the large latencies. In the same context of paper 

[20], the article [10] suggested a cascaded control structure to deal with the time 

delay in a teleoperation robot system. The suggested method used the extended 

Kessler’s method sported by a predictive control method. Fuzzy–PID controller 

was also suggested to improve the performance. Using the extended Kessler’s 

method with Smith predictor provides good control. MPC controller deals with 

linear-time-invariant (LTI) plant model, which allows predicting the future 

behavior of the system [22]. Nevertheless, paper [17] suggested a strategy to 



A. Reda et al. Model Predictive Control for Automated Vehicle Steering 

 – 166 – 

control heterogeneous traffic flow. Linear Parameter-Varying (LPV) model was 

suggested where the model deals with a non-linear traffic flow system which 

contains autonomous and human-driven vehicles with different operating 

conditions. LPV provides the ability to control the nonlinear system which uses 

different linear controllers for different operating points. LPV model uses a 

scheduling variable to enable the controller based on the current operating point of 

the system [6]. This paper discusses the use of an MPC controller for an 

autonomous vehicle steering system and its implementation using MATLAB 

Simulink and an FPGA board. The implementation on FPGA is conducted using 

HDL coder. 

This paper is organized as follows: in this first section, a review of the MPC 

formulation, previous work, and literature are presented. The second section 

describes the plant (the vehicle) for which the controller was implemented. 

Section three describes the simulation and implementations. Section four presents 

the obtained results and analyzes the implementation. Finally, the conclusions are 

provided and directions for future work are suggested. 

2  MPC and Adaptive MPC Working Principles 

In a control problem, basically, the goal of the controller is to calculate the input 

variables to the plant so the plant responds in a way that makes its output track the 

reference output. Figure 1 shows the standard control loop diagram. 

2.1 Model Predictive Controller (MPC) 

Model Predictive Control (MPC) uses a future prediction strategy in order to 

calculate the input. To ensure that the output of the plant follows the target 

reference output, the MPC controller uses what is called an optimizer. The 

prediction strategy is based on the use of a plant model (car model) by the MPC 

controller to simulate the car’s path in the next P time steps, where P is the 

prediction horizon which represents the time, the MPC controller looks forward in 

the future to make the prediction. The Model Predictive Controller simulated 

different future scenarios in a systematic way, and here the optimizer comes to the 

picture by determining the best scenario which achieves the minimum error 

between the reference and the predicted trajectory. The minimum error 

corresponds to the minimum cost function, which means the scenario of the 

predicted trajectory with the minimum cost function provides the optimal solution. 

Figure 2 shows the traditional MPC controller, and Figure 3 shows a future 

prediction strategy, where each scenario represents a series of steering wheel 

movements in order to follow the reference trajectory, and as mentioned above the 

optimal scenario is the one which achieves the minimum cost function. 
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Figure 1 

Standard Control Loop 

 

Figure 2 

Traditional MPC control diagram 

 

Figure 3 

Future Prediction Strategy for Optimization Problem 

The scenario with the minimum cost function J = 20 is the optimal solution, which 

achieves the optimal reference trajectory tracking. 

The design presented in this article proposes that the new state of the car model 

can be measured, while in the case of the state model cannot be measured. The 

MPC controller uses the so-called “state estimator” to estimate the state of the 

system and feed it back to the controller. The MPC controller uses static Kalman 

Filter (KF) in order to update the controller states (plant model states, 

measurements noise model state and disturbance model state). 

2.2 Adaptive Model Predictive Controller 

The traditional MPC controller is unable to deal with the changing dynamics 

systems effectively since it uses a constant internal plant. When the system is 

nonlinear or its conditions vary with time, the accuracy will be negatively affected 
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and the performance becomes unacceptable. To deal with these systems, an 

Adaptive MPC (AMPC) controller is used. AMPC controller handles the changes 

in operating conditions by providing a new linear model at each time step to 

achieve accurate prediction for the new conditions, as shown in Figure 4. 

 

Figure 4 

Adaptive MPC Controller [14] 

The optimization problem in the Adaptive MPC controller remains the same, 

which means the same number of states and constraints for the varied operating 

conditions. The Adaptive MPC controller requires a discrete plant model, which 

means, the continuous-time state space needs to be converted to discrete-time 

(zero-order hold method). The Adaptive MPC Controller receives the updated 

discrete-time state space containing the following: 

- A: 𝑛𝑥 by 𝑛𝑥 matrix signal, where 𝑛𝑥 the number of plant model states. 

- B:  𝑛𝑥  by 𝑛𝑢 matrix signal, where 𝑛𝑢 the total number of plant inputs. 

- DX: Vector signal of length 𝑛𝑥 

𝐷𝑋 = 𝐴𝑥𝑘 + 𝐵𝑥𝑘 − 𝑥𝑘 (1) 

where DX is computed by equation (1), which provides the updated discrete-time 

state where 𝑢𝑘 and 𝑥𝑘  are respectively the inputs and the state values for the 

current time step k. 

2.3 The optimization Problem 

The MPC controller solves an online optimization problem, which is a Quadratic 

Problem (QP) for specific at each control interval. The optimization problem 

includes the followings: 

Cost Function: also called objective function, it measures the controller 

performance, and the goal is to be minimized. 



Acta Polytechnica Hungarica Vol. 17, No. 7, 2020 

 – 169 – 

Constraints: It represents the soft and hard constraints which must satisfy the 

system conditions such as the physical bound. 

To achieve the optimization, the MPC controller needs to calculate the control 

inputs driving the output of the plant that are very close to the desired reference. 

This process is performed in a systematic way by applying different scenarios and 

minimizing the cost function of the optimization problem. The cost function J of 

the autonomous vehicle's steering system can be formulated as: 

∑ 𝑤𝑒𝑒𝑘+𝑖
2𝑃

𝑖=1  ∑ 𝑤∆𝑢
𝑃−1
𝑖=0 ∆𝑢𝑘+𝑖

2  (2) 

where we is the weight of the predicted error ek+1 and wΔu is the weight of the 

steering angle increments Δuk+1. Cost function goals are to minimize both, the 

error between the predicted trajectory and the reference and the change in the 

steering angle between the consecutive time steps. The optimal solution 

corresponds to the smallest value of the cost function. 

Decision: Modify the manipulated variables in order to achieve the minimization 

of the cost function and to satisfy the constraints. 

The MPC controller computes the manipulated variable by solving the quadratic 

problem using a custom QP solver which in turn converts the linear optimization 

problem to the general form of the QP problem. Figure 5 shows the control 

algorithm of the Model Predictive Controller. 

 

Figure 5 

MPC Control Algorithm 
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2.4 Model Predictive Controller Design Parameters 

Designing the MPC controller takes into consideration the required constraints 

such as the steering angle limits. Figure 6 presents the main parameters and terms 

of the MPC controller, where the following nomenclature applies: k is the current 

sampling step and Ts the Control Time Step. Prediction horizon (P): number of 

time steps (the time on which the MPC controller looks forward to the future to 

make the prediction). Control Horizon (M): number of the possible control moves 

to time step k+P. The design parameters of the MPC controller are very important 

as this affects the performance and the computational complexity of solving the 

optimization problem. The choice of the design parameters should achieve the 

balance between the computational load and the performance. There are general 

recommendations, which can be taken into consideration for the parameters. 

Sample time (𝑇𝑆): determines the rate that the controller executes the control 

algorithm. In the case of Control Time Step Ts interval is too long, the controller 

will not be able to respond in time to the disturbance, which means that the 

performance will be negatively affected. On the other hand, if Ts is too short, the 

controller's response will be faster, but this causes a significant increase in 

computational load. The recommendation, in this case, is to choose Ts between 10 

to 20 samples of the Rise Time Tr in an open-loop system, where Tr is the required 

time that the response takes to rise from 10 % to 90% of the steady-state as Figure 

7 shows [15]. 

Prediction horizon (P): should be chosen in a way that covers the dynamic 

changes of the system and the recommendation are to choose P to have 20 to 30 of 

samples covering the open-loop transit system response [15], [18], [26] and [29]. 

Control Horizon (M): Only the two control moves have a significant impact on 

the response behavior, choosing a large control horizon will only increase the 

computation complexity, based on that, the recommendation is to choose M to be 

10 to 20 of the prediction horizon. A small value of M provides stability while in 

contrast, large values reduce the robustness. It is recommended to choose M to be 

between 3-5 – as presented in [9], [15], [18], and [25]. 

For the model in this paper, the following strategy was used in order to choose the 

parameters which achieve satisfactory control performance: First, we initialized 

the parameters based on the recommendations above regarding the Sample Time, 

Prediction Horizon, and Control Horizon. Next step, is about tuning the 

parameters and then evaluating the MPC controller performance using the MPC 

Designer MATLAB toolbox until the optimal values provided the best control 

performance were determined. The weights of the inputs and outputs were 

determined using the MPC Designer by setting nonzero values to the inputs and 

outputs which need to track a reference value. Based on that, the weight equal is 

set to zero for the steering angle as it does not track a target. The weight of the 
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Lateral Position and Yaw angle were determined with nonzero values as the main 

objective is position tracing. 

 

Figure 6 

MPC schema for the main terms  [27] 

 

Figure 7 

Control Time Step Ts and Rise Time Tr 

3 The vehicle Model 

MATLAB MPC designer application was used to design the controller that steers 

the vehicle autonomously. Figure 8 shows the global position of the vehicle in X 

and Y axes where (X, Y) are the vehicle’s global position, vy is the lateral velocity 

and vx is the lateral longitudinal velocity. The parameters that need to be 

controlled are: Yaw angle Ψ and the front steering angle δ. The state-space of the 

model is given by the following equations: 
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𝑦̇ = 𝑣𝑥𝜓 + 𝑣𝑦 (2) 

where vx is longitudinal velocity at the center of gravity of the vehicle, m is the 

total mass of the vehicle, lz is yaw moment of inertia of the vehicle, lf and lr are the 

longitudinal distance from the center of gravity to the front tires, Caf  is cornering 

stiffness of tires and y is the lateral position. 

 

Figure 8 

The global position of the vehicle 

The MPC controller performs all the calculations using discrete-time state space. 

When a plant model is specified for the MPC controller, the following process 

needs to be performed [16]: 

Conversion to state space: the model is converted to linear time invariant (LTI) 

state space model. 

Discretization or resampling: in the case of difference sample time between the 

model and the MPC controller the following occurs: 

● In the case of a continuous model, it must be converted to a discrete–time 

dynamic system model. 

● In the case of the discrete model, the discrete-time dynamic system model 

is resampled in order to generate equivalent discrete–time model with a 

new sample Time 𝑇𝑆. 

There are different ways to discretize a continuous model, in the proposed one, the 

continuous-time dynamic system model was discretized using zero–order hold on 

the inputs and sample time of TS. This can be used also for resampling the 

discrete-time dynamic system model with new sample time TS. 

about:blank
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4 Design of the MPC Controller and HDL Code 

Generation 

Based on the MPC control diagram the Simulink model was built. First, the 

required blocks (Plant model and Reference) were added to the workspace and 

linked to the MPC controller. The first input of the controller is the measured 

output and the second one is the reference trajectory, which was created using the 

Driving Scenario Designer Toolbox in MATLAB. As mentioned before, the MPC 

controller was designed using MPC Designer, where the internal plant model and 

the scenario are defined and the designing parameters such as sample time and 

control horizon were set using the strategy defined in section (2.4). In addition, the 

hard and soft constraints and their weights for the inputs and outputs such as the 

steering angle and the rate of change were set. In the case of an unchanging 

dynamics system, the input of the vehicle model is the output of the Model 

Predictive Controller (the steering angle) and the outputs are the lateral position 

and Yaw angle. Figure 9 presents the MPC controller model for linear systems 

(unchanging dynamics system). On the other hand, in the case of changing 

dynamics system, the longitudinal velocity is a second input for the vehicle model 

and the Adaptive MPC controller will use the plant mode output (State) to perform 

the new prediction for the updated model state. Figure 10 presents the Adaptive 

MPC controller model for nonlinear systems (changing dynamics system) with the 

Update Plant Model block. 

Manual coding is time-consuming compared to the automatic code generation, 

which in turn lets the designers to focus on verification, validation and testing 

rather than programming. The model-based design generally provides an effective 

improvement in terms of system reliability and reduces the total project time up to 

33% and the cost by 20% compared to the traditional methods (hand–written 

code) [23]. 

 

Figure 9 

MPC controller model for linear system (Constant longitudinal velocity) 
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Figure 10 

Adaptive MPC controller model for nonlinear system (varied longitudinal velocity) 

The floating-point model needs to be converted to fixed point in order to reduce 

the hardware resources  [19]. The steering system was designed and simulated 

using MATLAB Simulink and implemented on SoC (System on Chip) target 

using embedded coder and HDL coder. The working methodology is presented in 

Figure 11. First, the MPC controller model was created and the parameters were 

determined in MATLAB (see Table 1), followed by the HDL coder model and 

functional verification. Intellectual Property (IP) was created by Vivado. The 

MPC controller project was created and the MPC IP was connected to the 

Processing System (PS) through AXI interface. Figure 12 shows the block design 

of the MPC system. 

 

Figure 11 

The design workflow of the proposed solution [2] 

 

 

Development of MPC 
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Table 1 

Values of the main MPC controller parameters and constraints 

MPC Parameters 

Parameter Value 

Sample Time Ts  0.1 seconds 

Prediction Horizon ( P ) 10 seconds 

Control Horizon (M)  3 seconds 

Constraints 

Steering Angle  [-0.5  -  0.5 ] rad 

Steering Angle (changing rate ) [-0.26  -  0.26 ] rad 

 

Figure 12 

Vivado Block Design 

The next step of the development (see Figure 11) was the bit-stream generation 

and export to the software development system (Xilinx SDK). The last step of the 

development was the software design and test. The generated project in Xilinx 

SDK together with the bit-stream downloaded and the target FPGA was 

programmed. In MATLAB Simulink the MPC model and MPC hardware system 

were tested and checked with Hardware In the Loop (HIL) simulation. The results 

are presented in the next section. 
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5 Simulation and Implementations Results 

5.1 MATLAB Simulink Implementations 

The steering system model was tested using MATLAB Simulink for both MPC 

and Adaptive MPC. Figure 13 shows the performance of MPC controller at a 

constant longitudinal velocity, and Figure 14 shows its performance at varied 

longitudinal velocity. The obtained results in Figure 13 and Figure 14 show that 

the MPC controller achieved satisfactory performance for the constant operating 

conditions, while it failed to handle the system with changing longitudinal 

velocity. Figure 15 shows the performance of the Adaptive MPC controller for the 

changing dynamic system (varied longitudinal velocity). Results demonstrate that 

using the Adaptive MPC controller for the changing dynamics system yields good 

performance in terms of tracking the reference (lateral position and yaw angle). 

 

Figure 13 

MPC controller performance at constant velocity 

 

Figure 14 

MPC controller performance at varied velocity 
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Figure 15 

Adaptive MPC performance at varied velocity 

5.2 FPGA Implementations 

Both models (MPC and Adaptive MPC controller) were implemented on FPGA 

and the results were compared with the results obtained using MATLAB 

Simulink. The experiments showed slight differences in terms of performance 

between the implementations (Simulink and FPGA). Figure 16 and Figure 17 

show the performance of the MPC controller at constant longitudinal velocity, and 

the performance of the Adaptive MPC controller at varied longitudinal velocity, 

respectively. Figure 18 and Figure 19 clearly show the difference in performance 

between the two controllers’ implementation. 

 

Figure 16 

MPC controller performance at constant longitudinal velocity (FPGA) 

 

Figure 17 

Adaptive MPC controller performance at varied longitudinal velocity (FPGA) 
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Figure 18 

MPC implementation using Simulink and FPGA: Performance compression 

 

Figure 19 

Adaptive MPC implementation using Simulink and FPGA: Performance compression 

The implementations of MPC and Adaptive MPC controllers on FPGA were 

analyzed also in terms of resource utilization and power consumption using three 

different strategies for implementation to achieve the optimization as Table 2 and 

Table 3 show. In general, the implementations involve Logical optimization, 

placement of logic cells, and routing the connections between cells  [28]. 

Implementation “Defaults strategy” balances runtime with trying to achieve timing 

closure. “Performance_ExplorePostRoutePhysOpt” strategy uses multiple 

algorithms for optimization, placement, and routing in order to get potentially 

better results. In “Flow_RuntimeOptimized” strategy, each implementation step 

trades design performance for a better run time  [28]. 

Table 2 

Resource utilization using different strategies 

Defaults strategy 

Resource 

Utilization Available Utilization % 

MPC 
Adaptive 

MPC 
Adaptive MPC - MPC MPC 

Adaptive 
MPC 

LUT 204 208 53200 0.38 0.39 

FF 361 361 106400 0.34 0.34 

BUFG 3 3 32 9.38 9.38 
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Performance_ExplorePostRoutePhysOpt strategy 

LUT 181 184 53200 0.34 0.35 

FF 329 329 106400 0.31 0.31 

BUFG 3 3 32 9.38 9.38 

Flow_RuntimeOptimized strategy 

LUT 177 231 53200 0.33 0.43 

FF 329 361 106400 0.31 0.34 

BUFG 3 3 32 9.38 9.38 

Table 3 

Power consumption – different implementation strategies 

Name Strategy 
Total Power (W) 

MPC Adaptive MPC 

Impl_1 Implementation Defaults 1.791 1.791 

Impl_2 
Performance_ExplorePostRoutePhys

Opt 
1.792 1.792 

Impl_3 Flow_RuntimeOptimized 1.793 1.791 

 

Table 4 

Power Consumption on chip - Summary 

 
Power 

Consumption 
Power on Chip  

Dynamic  91% 

Clocks Less than 1% 

Signals Less than 1% 

Logic Less than 1% 

MMCM 6% 

PS7 91% 

Static  9% PL Static  100% 

The results in Table 2 show that the implementation of the MPC controller on 

FPGA using the “defaults” strategy has the highest resource utilization, whereas 

the “Flow_RuntimeOptimized” strategy achieved the lowest resource utilization, 

where the utilization of LUTs (Lookup Tables) and FF (Flip-Flop) were reduced 

by 13.2% and 8.86% respectively. For BUFG (Global Buffer) there is no change. 

On the other hand. the implementation of MPC controller using 

“Performance_ExplorePostRoutePhysOpt” strategy achieved the lowest resource 

utilization. Table 3 shows that the power consumption for all applied strategies is 

almost the same. 
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Table 4 shows that 91% of the total power was used by the Processing System 

(PS), whereas only 9% was used by Programmable logic (PL) and only 6% of 

MMCM (Mixed-Mode Clock Manager) were used for both MPC and AMPC 

implementations. 

Conclusions 

This paper discussed the implementations of MPC and adaptive MPC controllers 

to control an autonomous vehicle steering system. The implementations were 

performed for both constant and changing dynamics systems. The models were 

implemented on FPGA using MATLAB HDL coder and different strategies were 

adopted to optimize resource utilization. The results showed that the MPC 

controller provides a satisfactory control for a constant dynamics system, but it 

couldn't handle operating conditions that are changing, while adaptive MPC 

provides good control for changing dynamics systems. In addition to analyzing the 

performance of the controllers, the implementations were discussed in terms of 

resource utilization and power consumption using different strategies. 

The results showed a very slight improvement regarding the total power 

consumption. Based on the findings of this study, in future work, the 

implementations of MPC and adaptive MPC controller will be performed using 

System Generator in order to improve the power consumption and results will be 

compared with the results obtained in this paper. 
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