
Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 163 –

Model Predictive Control for Automated

Vehicle Steering

Ahmad Reda, Ahmed Bouzid, József Vásárhelyi

University of Miskolc, Institute of Automation and Info-communication,

Egyetemváros, 3515 Miskolc, Hungary

{autareda, qgebouzid, vajo}@uni-miskolc.hu

Abstract: The autonomous vehicle steering system, a multi-input multi-output (MIMO)

system, is challenging to design using traditional controllers due to the interaction between

inputs and outputs. If PID controllers are used the control loops are executed

independently of each other as there is no interaction between the loops. Designing a

larger system increases the controller parameters requiring tuning. Model Predictive

Control (MPC) overcomes this problem, as it is a multi-variable control method taking into

account the interactions of the variables in the target system. Achieving a high safety level

is also critical for autonomous vehicle systems. This can be provided by an MPC

controller, which can handle constraints such as maintaining a safe distance from other

cars. Wider applicability of the Model Predictive Controller calls for more efficient

hardware architectures for implementation. The aim of this paper is to achieve optimal

implementation of the MPC controller by increasing the computational speed in order to

reduce execution time for optimization. An MPC controller is used to control the steering

system of an autonomous vehicle to keep it on the desired path. A traditional MPC

controller is used to control the system where the plant dynamics do not change, whereas

an Adaptive MPC controller is used when the system is nonlinear or its characteristics vary

with time (the longitudinal velocity changes as the vehicle moves). Results are discussed in

terms of performance, resource utilization, cost, and energy-effective implementations

taking into consideration a reasonable size number of constraints handled by the

controller.

Keywords: Autonomous Vehicle; Steering System; Model Predictive Control (MPC); Field

Programmable Gate Array (FPGA); System on Chip (SOC)

1 Introduction

In recent years, research in the automotive industry has been growing in order to

address the challenges of this application domain. Automotive control applications

require high performance and cost reduction at the same time [5]. The control

system requirements are becoming higher, and to achieve the improvement in

control performance, the optimization process is incorporated into the control

A. Reda et al. Model Predictive Control for Automated Vehicle Steering

 – 164 –

system design. The optimization process is subject to an increased number of

factors, such as physical, safety, and economic constraints (power consumption,

actuator saturation, etc.). In this context, Model Predictive Control (MPC) is a

powerful optimization strategy for feedback control based on the model of the

system. Basically an MPC controller runs a set of forecasts forward in time on the

system model for different actuation strategies. MPC determines the immediate

next control action based on the optimization. Next, it reinitializes the

optimization in order to define the next control input [7]. The current and future

control inputs are determined based on minimizing the difference between the

target setpoint and the predicted output [13]. MPC features and capabilities are

very effective in terms of meeting the requirements and achieving the optimization

tasks. A basic MPC controller solves Linear Programming (LP) problems, which

can be formulated as quadratic programming (QP) problem [12]. Also, the MPC

controller has a natural capability to handle soft and hard constraints. That means,

the requirements that are imposed by the operating conditions can be managed and

formulated using the constraints. However, MPC controller implementation has

several challenges such as high computational load and high power consumption,

whereas the embedded system applications have limitations in their hardware

resources.

One of the most effective solutions in order to achieve MPC implementations for

embedded system applications which have constraints related to the computational

time, is the use of the hardware acceleration. In this context, the deployments of

an embedded MPC controller can achieve using reconfigurable hardware such as

Field Programmable Gate Array (FPGA) or System on Chip (SoC), which is

popular due to its high computational capabilities, parallel processing and

development framework [11]. In this context, the main contributions of this paper

are the study and the analysis of the efficiency of implementing control methods,

in addition to the use of rapid prototyping methods (here hardware/software co-

design using Embedded Coder and HDL Coder) for the implementation of

embedded systems dedicated for digital signal processing considering

performance, execution time and resources consumption. The research applied

functional on-target rapid prototyping using Embedded Coder and HDL coder.

The suggested implementation method is based on taking the optimization

problem of the control method through MATLAB Simulink, Fixed-Point

Designer, Embedded Coder and HDL coder. The suggested method allows the

authors to focus on the verification, the validation and the test of the embedded

system rather than programming, which in turn gives the ability to refine the

design, tune the MPC controller parameters and see the results in the real-time.

Finally, different optimization strategies were implemented and the obtained

results were compared in terms of reducing the execution time and hardware

resources consumption.

FPGA based systems have been applied for a variety of applications, such as

image and signal processing, aerospace, energy, autonomous vehicles,

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 165 –

telecommunications (5G) and medical field. In paper [1] an analytical study for

Adaptive MPC controller under external disturbances signals was provided, the

Lipschitz-based approach was used and provides satisfactory stability and

robustness. Saragih et al. used the MPC controller for visual-based control system

application (face tracking system) to control the motion of a robot, where the MPC

controller was implemented to control the camera movements in order to keep the

tracked face at the center of the camera – see [21]. Paper [4] provides an overview

of a real-time optimization problem for automotive and aerospace applications

with a focus on MPC controller. The optimal control problem was formulated

based on the cost function and the system constraints, in addition, numerical

algorithms and their implementations on an embedded computing platform were

discussed. The improvement of fuel economy for power-split hybrid electric

vehicles (HEV) was discussed in [2]. The energy management system was

formulated as a nonlinear and constrained system. The MPC controller was used

to split the power between the combustion engine and electrical machines at the

different system operating conditions. The proposed approach provided an

improvement compared to the controllers in commercial Powertrain System

Toolkit (PSAT) software. The research reported in [8], proposed a control

approach based on combining steering and braking MPC controllers. The authors

in the paper introduced two model predictive controllers. The first one was

implemented on a four-wheel vehicle model which determines the steering angle

and braking torques to track the desired trajectory . The second MPC controller

was implemented on a simplified bicycle model with a smaller number of inputs.

The obtained results showed that the first controller provides good performance in

terms of tracking the reference trajectory at low and high-speed, but the

computation was time-consuming. On the other hand, the second controller

showed unsatisfactory performance at high speed due to the simplicity of the

vehicle model [8].

Paper [24] presented research of edge cloud on the Internet of Things (IoT) where

the Model Predictive Controller evaluates the system properties. The paper

presented the potential of merging the IoT, 5G, and cloud computing with the

efficiency of deploying the automatic control system for time-sensitive and

mission-critical processes. Haidegger et al. in [20] stated that the predictive and

model-based control gives satisfactory performances only in the case of providing

the accurate system’s behavior and cascaded control approach. An empirical

design with the use of Smith predictor for a telesurgical robot system was

suggested in order to deal with the large latencies. In the same context of paper

[20], the article [10] suggested a cascaded control structure to deal with the time

delay in a teleoperation robot system. The suggested method used the extended

Kessler’s method sported by a predictive control method. Fuzzy–PID controller

was also suggested to improve the performance. Using the extended Kessler’s

method with Smith predictor provides good control. MPC controller deals with

linear-time-invariant (LTI) plant model, which allows predicting the future

behavior of the system [22]. Nevertheless, paper [17] suggested a strategy to

A. Reda et al. Model Predictive Control for Automated Vehicle Steering

 – 166 –

control heterogeneous traffic flow. Linear Parameter-Varying (LPV) model was

suggested where the model deals with a non-linear traffic flow system which

contains autonomous and human-driven vehicles with different operating

conditions. LPV provides the ability to control the nonlinear system which uses

different linear controllers for different operating points. LPV model uses a

scheduling variable to enable the controller based on the current operating point of

the system [6]. This paper discusses the use of an MPC controller for an

autonomous vehicle steering system and its implementation using MATLAB

Simulink and an FPGA board. The implementation on FPGA is conducted using

HDL coder.

This paper is organized as follows: in this first section, a review of the MPC

formulation, previous work, and literature are presented. The second section

describes the plant (the vehicle) for which the controller was implemented.

Section three describes the simulation and implementations. Section four presents

the obtained results and analyzes the implementation. Finally, the conclusions are

provided and directions for future work are suggested.

2 MPC and Adaptive MPC Working Principles

In a control problem, basically, the goal of the controller is to calculate the input

variables to the plant so the plant responds in a way that makes its output track the

reference output. Figure 1 shows the standard control loop diagram.

2.1 Model Predictive Controller (MPC)

Model Predictive Control (MPC) uses a future prediction strategy in order to

calculate the input. To ensure that the output of the plant follows the target

reference output, the MPC controller uses what is called an optimizer. The

prediction strategy is based on the use of a plant model (car model) by the MPC

controller to simulate the car’s path in the next P time steps, where P is the

prediction horizon which represents the time, the MPC controller looks forward in

the future to make the prediction. The Model Predictive Controller simulated

different future scenarios in a systematic way, and here the optimizer comes to the

picture by determining the best scenario which achieves the minimum error

between the reference and the predicted trajectory. The minimum error

corresponds to the minimum cost function, which means the scenario of the

predicted trajectory with the minimum cost function provides the optimal solution.

Figure 2 shows the traditional MPC controller, and Figure 3 shows a future

prediction strategy, where each scenario represents a series of steering wheel

movements in order to follow the reference trajectory, and as mentioned above the

optimal scenario is the one which achieves the minimum cost function.

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 167 –

Figure 1

Standard Control Loop

Figure 2

Traditional MPC control diagram

Figure 3

Future Prediction Strategy for Optimization Problem

The scenario with the minimum cost function J = 20 is the optimal solution, which

achieves the optimal reference trajectory tracking.

The design presented in this article proposes that the new state of the car model

can be measured, while in the case of the state model cannot be measured. The

MPC controller uses the so-called “state estimator” to estimate the state of the

system and feed it back to the controller. The MPC controller uses static Kalman

Filter (KF) in order to update the controller states (plant model states,

measurements noise model state and disturbance model state).

2.2 Adaptive Model Predictive Controller

The traditional MPC controller is unable to deal with the changing dynamics

systems effectively since it uses a constant internal plant. When the system is

nonlinear or its conditions vary with time, the accuracy will be negatively affected

A. Reda et al. Model Predictive Control for Automated Vehicle Steering

 – 168 –

and the performance becomes unacceptable. To deal with these systems, an

Adaptive MPC (AMPC) controller is used. AMPC controller handles the changes

in operating conditions by providing a new linear model at each time step to

achieve accurate prediction for the new conditions, as shown in Figure 4.

Figure 4

Adaptive MPC Controller [14]

The optimization problem in the Adaptive MPC controller remains the same,

which means the same number of states and constraints for the varied operating

conditions. The Adaptive MPC controller requires a discrete plant model, which

means, the continuous-time state space needs to be converted to discrete-time

(zero-order hold method). The Adaptive MPC Controller receives the updated

discrete-time state space containing the following:

- A: 𝑛𝑥 by 𝑛𝑥 matrix signal, where 𝑛𝑥 the number of plant model states.

- B: 𝑛𝑥 by 𝑛𝑢 matrix signal, where 𝑛𝑢 the total number of plant inputs.

- DX: Vector signal of length 𝑛𝑥

𝐷𝑋 = 𝐴𝑥𝑘 + 𝐵𝑥𝑘 − 𝑥𝑘 (1)

where DX is computed by equation (1), which provides the updated discrete-time

state where 𝑢𝑘 and 𝑥𝑘 are respectively the inputs and the state values for the

current time step k.

2.3 The optimization Problem

The MPC controller solves an online optimization problem, which is a Quadratic

Problem (QP) for specific at each control interval. The optimization problem

includes the followings:

Cost Function: also called objective function, it measures the controller

performance, and the goal is to be minimized.

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 169 –

Constraints: It represents the soft and hard constraints which must satisfy the

system conditions such as the physical bound.

To achieve the optimization, the MPC controller needs to calculate the control

inputs driving the output of the plant that are very close to the desired reference.

This process is performed in a systematic way by applying different scenarios and

minimizing the cost function of the optimization problem. The cost function J of

the autonomous vehicle's steering system can be formulated as:

∑ 𝑤𝑒𝑒𝑘+𝑖
2𝑃

𝑖=1 ∑ 𝑤∆𝑢
𝑃−1
𝑖=0 ∆𝑢𝑘+𝑖

2 (2)

where we is the weight of the predicted error ek+1 and wΔu is the weight of the

steering angle increments Δuk+1. Cost function goals are to minimize both, the

error between the predicted trajectory and the reference and the change in the

steering angle between the consecutive time steps. The optimal solution

corresponds to the smallest value of the cost function.

Decision: Modify the manipulated variables in order to achieve the minimization

of the cost function and to satisfy the constraints.

The MPC controller computes the manipulated variable by solving the quadratic

problem using a custom QP solver which in turn converts the linear optimization

problem to the general form of the QP problem. Figure 5 shows the control

algorithm of the Model Predictive Controller.

Figure 5

MPC Control Algorithm

A. Reda et al. Model Predictive Control for Automated Vehicle Steering

 – 170 –

2.4 Model Predictive Controller Design Parameters

Designing the MPC controller takes into consideration the required constraints

such as the steering angle limits. Figure 6 presents the main parameters and terms

of the MPC controller, where the following nomenclature applies: k is the current

sampling step and Ts the Control Time Step. Prediction horizon (P): number of

time steps (the time on which the MPC controller looks forward to the future to

make the prediction). Control Horizon (M): number of the possible control moves

to time step k+P. The design parameters of the MPC controller are very important

as this affects the performance and the computational complexity of solving the

optimization problem. The choice of the design parameters should achieve the

balance between the computational load and the performance. There are general

recommendations, which can be taken into consideration for the parameters.

Sample time (𝑇𝑆): determines the rate that the controller executes the control

algorithm. In the case of Control Time Step Ts interval is too long, the controller

will not be able to respond in time to the disturbance, which means that the

performance will be negatively affected. On the other hand, if Ts is too short, the

controller's response will be faster, but this causes a significant increase in

computational load. The recommendation, in this case, is to choose Ts between 10

to 20 samples of the Rise Time Tr in an open-loop system, where Tr is the required

time that the response takes to rise from 10 % to 90% of the steady-state as Figure

7 shows [15].

Prediction horizon (P): should be chosen in a way that covers the dynamic

changes of the system and the recommendation are to choose P to have 20 to 30 of

samples covering the open-loop transit system response [15], [18], [26] and [29].

Control Horizon (M): Only the two control moves have a significant impact on

the response behavior, choosing a large control horizon will only increase the

computation complexity, based on that, the recommendation is to choose M to be

10 to 20 of the prediction horizon. A small value of M provides stability while in

contrast, large values reduce the robustness. It is recommended to choose M to be

between 3-5 – as presented in [9], [15], [18], and [25].

For the model in this paper, the following strategy was used in order to choose the

parameters which achieve satisfactory control performance: First, we initialized

the parameters based on the recommendations above regarding the Sample Time,

Prediction Horizon, and Control Horizon. Next step, is about tuning the

parameters and then evaluating the MPC controller performance using the MPC

Designer MATLAB toolbox until the optimal values provided the best control

performance were determined. The weights of the inputs and outputs were

determined using the MPC Designer by setting nonzero values to the inputs and

outputs which need to track a reference value. Based on that, the weight equal is

set to zero for the steering angle as it does not track a target. The weight of the

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 171 –

Lateral Position and Yaw angle were determined with nonzero values as the main

objective is position tracing.

Figure 6

MPC schema for the main terms [27]

Figure 7

Control Time Step Ts and Rise Time Tr

3 The vehicle Model

MATLAB MPC designer application was used to design the controller that steers

the vehicle autonomously. Figure 8 shows the global position of the vehicle in X

and Y axes where (X, Y) are the vehicle’s global position, vy is the lateral velocity

and vx is the lateral longitudinal velocity. The parameters that need to be

controlled are: Yaw angle Ψ and the front steering angle δ. The state-space of the

model is given by the following equations:

A. Reda et al. Model Predictive Control for Automated Vehicle Steering

 – 172 –

𝑑

𝑑𝑡
(

𝑦̇
𝜓

𝛹̇

) =

(

−2𝐶𝑎𝑓+2𝐶𝑎𝑟

𝑚𝑉𝑥
0 −𝑉𝑥 −

2𝐶𝑎𝑓𝑙𝑓−2𝐶𝑎𝑟𝑙𝑟

𝑚𝑉𝑥

0 0 1
2𝑙𝑓𝐶𝑎𝑓−2𝑙𝑟𝐶𝑎𝑟

𝐼𝑧𝑉𝑥
0

−2𝑙𝑓
2𝐶𝑎𝑓+2𝑙𝑟

2𝐶𝑎𝑟

𝐼𝑧𝑉𝑥)

(

𝑦̇
𝜓

𝜓̇

) + (

2𝐶𝑎𝑓

𝑚

0
2𝑙𝑓𝐶𝑎𝑓

𝐼𝑧

)𝛿(2) (1)

𝑦̇ = 𝑣𝑥𝜓 + 𝑣𝑦 (2)

where vx is longitudinal velocity at the center of gravity of the vehicle, m is the

total mass of the vehicle, lz is yaw moment of inertia of the vehicle, lf and lr are the

longitudinal distance from the center of gravity to the front tires, Caf is cornering

stiffness of tires and y is the lateral position.

Figure 8

The global position of the vehicle

The MPC controller performs all the calculations using discrete-time state space.

When a plant model is specified for the MPC controller, the following process

needs to be performed [16]:

Conversion to state space: the model is converted to linear time invariant (LTI)

state space model.

Discretization or resampling: in the case of difference sample time between the

model and the MPC controller the following occurs:

● In the case of a continuous model, it must be converted to a discrete–time

dynamic system model.

● In the case of the discrete model, the discrete-time dynamic system model

is resampled in order to generate equivalent discrete–time model with a

new sample Time 𝑇𝑆.

There are different ways to discretize a continuous model, in the proposed one, the

continuous-time dynamic system model was discretized using zero–order hold on

the inputs and sample time of TS. This can be used also for resampling the

discrete-time dynamic system model with new sample time TS.

about:blank

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 173 –

4 Design of the MPC Controller and HDL Code

Generation

Based on the MPC control diagram the Simulink model was built. First, the

required blocks (Plant model and Reference) were added to the workspace and

linked to the MPC controller. The first input of the controller is the measured

output and the second one is the reference trajectory, which was created using the

Driving Scenario Designer Toolbox in MATLAB. As mentioned before, the MPC

controller was designed using MPC Designer, where the internal plant model and

the scenario are defined and the designing parameters such as sample time and

control horizon were set using the strategy defined in section (2.4). In addition, the

hard and soft constraints and their weights for the inputs and outputs such as the

steering angle and the rate of change were set. In the case of an unchanging

dynamics system, the input of the vehicle model is the output of the Model

Predictive Controller (the steering angle) and the outputs are the lateral position

and Yaw angle. Figure 9 presents the MPC controller model for linear systems

(unchanging dynamics system). On the other hand, in the case of changing

dynamics system, the longitudinal velocity is a second input for the vehicle model

and the Adaptive MPC controller will use the plant mode output (State) to perform

the new prediction for the updated model state. Figure 10 presents the Adaptive

MPC controller model for nonlinear systems (changing dynamics system) with the

Update Plant Model block.

Manual coding is time-consuming compared to the automatic code generation,

which in turn lets the designers to focus on verification, validation and testing

rather than programming. The model-based design generally provides an effective

improvement in terms of system reliability and reduces the total project time up to

33% and the cost by 20% compared to the traditional methods (hand–written

code) [23].

Figure 9

MPC controller model for linear system (Constant longitudinal velocity)

A. Reda et al. Model Predictive Control for Automated Vehicle Steering

 – 174 –

Figure 10

Adaptive MPC controller model for nonlinear system (varied longitudinal velocity)

The floating-point model needs to be converted to fixed point in order to reduce

the hardware resources [19]. The steering system was designed and simulated

using MATLAB Simulink and implemented on SoC (System on Chip) target

using embedded coder and HDL coder. The working methodology is presented in

Figure 11. First, the MPC controller model was created and the parameters were

determined in MATLAB (see Table 1), followed by the HDL coder model and

functional verification. Intellectual Property (IP) was created by Vivado. The

MPC controller project was created and the MPC IP was connected to the

Processing System (PS) through AXI interface. Figure 12 shows the block design

of the MPC system.

Figure 11

The design workflow of the proposed solution [2]

Development of MPC

controller (MATLAB)

Development of HDL
Model & functional

verification

IP Integration Xilinx

Vivado

Bit-stream generation

MPC Software design
and test

Xilinx SDK

Download to

ZedBoard ZedBoard

HIL - Results to MATLAB

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 175 –

Table 1

Values of the main MPC controller parameters and constraints

MPC Parameters

Parameter Value

Sample Time Ts 0.1 seconds

Prediction Horizon (P) 10 seconds

Control Horizon (M) 3 seconds

Constraints

Steering Angle [-0.5 - 0.5] rad

Steering Angle (changing rate) [-0.26 - 0.26] rad

Figure 12

Vivado Block Design

The next step of the development (see Figure 11) was the bit-stream generation

and export to the software development system (Xilinx SDK). The last step of the

development was the software design and test. The generated project in Xilinx

SDK together with the bit-stream downloaded and the target FPGA was

programmed. In MATLAB Simulink the MPC model and MPC hardware system

were tested and checked with Hardware In the Loop (HIL) simulation. The results

are presented in the next section.

A. Reda et al. Model Predictive Control for Automated Vehicle Steering

 – 176 –

5 Simulation and Implementations Results

5.1 MATLAB Simulink Implementations

The steering system model was tested using MATLAB Simulink for both MPC

and Adaptive MPC. Figure 13 shows the performance of MPC controller at a

constant longitudinal velocity, and Figure 14 shows its performance at varied

longitudinal velocity. The obtained results in Figure 13 and Figure 14 show that

the MPC controller achieved satisfactory performance for the constant operating

conditions, while it failed to handle the system with changing longitudinal

velocity. Figure 15 shows the performance of the Adaptive MPC controller for the

changing dynamic system (varied longitudinal velocity). Results demonstrate that

using the Adaptive MPC controller for the changing dynamics system yields good

performance in terms of tracking the reference (lateral position and yaw angle).

Figure 13

MPC controller performance at constant velocity

Figure 14

MPC controller performance at varied velocity

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 177 –

Figure 15

Adaptive MPC performance at varied velocity

5.2 FPGA Implementations

Both models (MPC and Adaptive MPC controller) were implemented on FPGA

and the results were compared with the results obtained using MATLAB

Simulink. The experiments showed slight differences in terms of performance

between the implementations (Simulink and FPGA). Figure 16 and Figure 17

show the performance of the MPC controller at constant longitudinal velocity, and

the performance of the Adaptive MPC controller at varied longitudinal velocity,

respectively. Figure 18 and Figure 19 clearly show the difference in performance

between the two controllers’ implementation.

Figure 16

MPC controller performance at constant longitudinal velocity (FPGA)

Figure 17

Adaptive MPC controller performance at varied longitudinal velocity (FPGA)

A. Reda et al. Model Predictive Control for Automated Vehicle Steering

 – 178 –

Figure 18

MPC implementation using Simulink and FPGA: Performance compression

Figure 19

Adaptive MPC implementation using Simulink and FPGA: Performance compression

The implementations of MPC and Adaptive MPC controllers on FPGA were

analyzed also in terms of resource utilization and power consumption using three

different strategies for implementation to achieve the optimization as Table 2 and

Table 3 show. In general, the implementations involve Logical optimization,

placement of logic cells, and routing the connections between cells [28].

Implementation “Defaults strategy” balances runtime with trying to achieve timing

closure. “Performance_ExplorePostRoutePhysOpt” strategy uses multiple

algorithms for optimization, placement, and routing in order to get potentially

better results. In “Flow_RuntimeOptimized” strategy, each implementation step

trades design performance for a better run time [28].

Table 2

Resource utilization using different strategies

Defaults strategy

Resource

Utilization Available Utilization %

MPC
Adaptive

MPC
Adaptive MPC - MPC MPC

Adaptive
MPC

LUT 204 208 53200 0.38 0.39

FF 361 361 106400 0.34 0.34

BUFG 3 3 32 9.38 9.38

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 179 –

Performance_ExplorePostRoutePhysOpt strategy

LUT 181 184 53200 0.34 0.35

FF 329 329 106400 0.31 0.31

BUFG 3 3 32 9.38 9.38

Flow_RuntimeOptimized strategy

LUT 177 231 53200 0.33 0.43

FF 329 361 106400 0.31 0.34

BUFG 3 3 32 9.38 9.38

Table 3

Power consumption – different implementation strategies

Name Strategy
Total Power (W)

MPC Adaptive MPC

Impl_1 Implementation Defaults 1.791 1.791

Impl_2
Performance_ExplorePostRoutePhys

Opt
1.792 1.792

Impl_3 Flow_RuntimeOptimized 1.793 1.791

Table 4

Power Consumption on chip - Summary

Power

Consumption
Power on Chip

Dynamic 91%

Clocks Less than 1%

Signals Less than 1%

Logic Less than 1%

MMCM 6%

PS7 91%

Static 9% PL Static 100%

The results in Table 2 show that the implementation of the MPC controller on

FPGA using the “defaults” strategy has the highest resource utilization, whereas

the “Flow_RuntimeOptimized” strategy achieved the lowest resource utilization,

where the utilization of LUTs (Lookup Tables) and FF (Flip-Flop) were reduced

by 13.2% and 8.86% respectively. For BUFG (Global Buffer) there is no change.

On the other hand. the implementation of MPC controller using

“Performance_ExplorePostRoutePhysOpt” strategy achieved the lowest resource

utilization. Table 3 shows that the power consumption for all applied strategies is

almost the same.

A. Reda et al. Model Predictive Control for Automated Vehicle Steering

 – 180 –

Table 4 shows that 91% of the total power was used by the Processing System

(PS), whereas only 9% was used by Programmable logic (PL) and only 6% of

MMCM (Mixed-Mode Clock Manager) were used for both MPC and AMPC

implementations.

Conclusions

This paper discussed the implementations of MPC and adaptive MPC controllers

to control an autonomous vehicle steering system. The implementations were

performed for both constant and changing dynamics systems. The models were

implemented on FPGA using MATLAB HDL coder and different strategies were

adopted to optimize resource utilization. The results showed that the MPC

controller provides a satisfactory control for a constant dynamics system, but it

couldn't handle operating conditions that are changing, while adaptive MPC

provides good control for changing dynamics systems. In addition to analyzing the

performance of the controllers, the implementations were discussed in terms of

resource utilization and power consumption using different strategies.

The results showed a very slight improvement regarding the total power

consumption. Based on the findings of this study, in future work, the

implementations of MPC and adaptive MPC controller will be performed using

System Generator in order to improve the power consumption and results will be

compared with the results obtained in this paper.

Acknowledgement

This research was supported by the European Union and the Hungarian State, co-

financed by the European Regional Development Fund in the framework of

GINOP-2.3.4-15-2016-00004 project, aimed to promote the cooperation between

the higher education and the industry.

References

[1] V. Adetola, M. Guay, Robust adaptive MPC for constrained uncertain

nonlinear systems. International Journal of Adaptive Control and Signal

Processing, 2011, pp. 155-167

[2] H. Borhan, A. Vahidi, A. Phillips, M. Kuang, I. Kolmanovsky, S. Di

Cairano, MPC-Based Energy Management of a Power-Split Hybrid Electric

Vehicle. IEEE Transactions on Control Systems Technology 20, 2012, pp.

593-603

[3] L. Crockett, D. Northcote, C. Ramsay, F. Robinson, R. Stewart, Exploring

Zynq MPSoC: With PYNQ and Machine Learning Applications,

https://www.zynq-mpsoc-book.com, UK, 2019, pp.

[4] S. Di Cairano, I. Kolmanovsky, Real-time optimization and model

predictive control for aerospace and automotive applications. In: 2018

Annual American Control Conference (ACC), USA, 2018, pp. 2392-2409

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 181 –

[5] S. Di Cairano, I. Kolmanovsky, Automotive applications of model

predictive control, Handbook of Model Predictive Control. Control

Engineering, 2019, pp. 493-527

[6] Gy. Eigner, Control of physiological systems through linear parameter

varying framework. Acta Polytechnica Hungarica, Vol. 14, No. 6, 2017, pp.

185-212

[7] P. Falcone, F. Borrelli, H. Tseng, J .Asgari, D. Hrovat, A Hierarchical

Model Predictive Control Framework for Autonomous Ground Vehicles.

American Control Conference, 2008, pp. 3719-3724

[8] P. Falcone, H. Tseng, F. Borrelli, J .Asgari, D. Hrovat, MPC-based yaw and

lateral stabilization via active front steering and braking. Vehicle System

Dynamics: International Journal of Vehicle Mechanics and Mobility, 2008,

pp. 611-628

[9] J. Garriga and M. Soroush, Model predictive control tuning methods: A

review. Ind. Eng. Chem. Res., Vol. 49, No. 8, 2010, pp. 3505-3515

[10] T. Haidegger, L. Kovacs, S. Preitl, R. E. Precup, B. Benyo, Z. Benyo,

Controller Design Solutions for Long Distance Telesurgical Applications.

International Journal of Artificial Intelligence, Vol. 6, No. S11, 2011, pp.

48-71

[11] M. Lau, S. Yue, K. Ling, J. Maciejowski, A Comparison of Interior Point

and Active Set Methods for FPGA Implementation of Model Predictive

Control. Proceedings of European Control Conference, 2009. pp. 156-161

[12] K. Ling, B. Wu, J. Maciejowski, Embedded Model Predictive Control

(MPC) using a FPGA. The International Federation of Automatic Control,

2008, pp. 1930-1935

[13] K. Ling, S. Yue, J. Maciejowski, A FPGA Implementation of Model

Predictive Control. American Control Conference, 2006, pp. 15250-15255

[14] MathWorks ***, I. 2018. Linearize Nonlinear Models, URL:

https://www.mathworks.com/help/slcontrol/ug/linearizing-nonlinear-

models.html#responsive_offcanvas, Last accessed 16 March 2020

[15] MathWorks ***, I. 2018. Choose Sample Time and Horizons, URL:

https://www.mathworks.com/help/releases/R2018a/mpc/ug/choosing-

sample-time-and-horizons.html?s_eid=PSM_15028, Last accessed 16

March 2020

[16] MathWorks ***, I. 2018. MPC Modelling, URL:

https://www.mathworks.com/help/mpc/gs/mpc-modeling.html, Last

accessed 25 March 2020

[17] B. Németh, G. Péter, LPV design for the control of heterogeneous traffic

flow with autonomous vehicles. Acta Polytechnica Hungarica, Vol. 16, No.

7, 2019, pp. 233-246

about:blank

A. Reda et al. Model Predictive Control for Automated Vehicle Steering

 – 182 –

[18] Q. T. Nguyen, V. Veselý, D. Rosinová, Design of robust model predictive

controller with input constraints. International Journal of Systems Science,

Vol. 44, No. 5, 2013, pp. 896-907

[19] N. Othman, F. Mahmud, A. K. Mahamad, M. H. Jabbar, N. A Adon,

Cardiac Excitation Modeling: HDL Coder Optimization towards FPGA

stand-alone Implementation, In: 2014 IEEE International Conference on

Control System, Computing and Engineering, 28-30 November, 2014, pp.

507-511

[20] T. Haidegger, L. Kovács, R. E. Precup, S. Preitl, B. Benyó, Z. Benyó,

Cascade Control for Telerobotic Systems Serving Space Medicine. IFAC

World Congress, Vol. 44, No. 1, 2011, pp. 3759-3764

[21] C. F. D. Saragih, F. M. T. R. Kinasih, C.Machhbub, P. H. Rusmin, A. S.

Rohman, Visual Servo Application Using Model Predictive Control (MPC)

Method on Pan-tilt Camera Platform. 6
th

 International Conference on

Instrumentation, Control, and Automation (ICA), August 2019, pp. 1-7

[22] M. Schetzen, Linear Time-Invariant Systems. John Wiley & Sons, New

York, 2003

[23] Y. Siwakoti, G. Town, Design of FPGA-Controlled Power Electronics and

Drives Using MATLAB Simulink. IEEE ECCE Asia Down under

conference, 2013, pp. 571-577

[24] P. Skarin, W. Tärneberg, K. E. Årzen, M. Kihl, Towards Mission-Critical at

the Edge and Over 5G. in 2018 IEEE International Conference on Edge

Computing (EDGE), 2018, pp. 50-57

[25] S. E. Tuna, M. J. Messina and A. R. Teel, Shorter horizons for model

predictive control. Proceeding of the 2006 American Control Conference,

2006, pp. 863-868

[26] K. Worthmann, Estimates of the prediction horizon length in MPC: A

numerical case study, Proc. IFAC Conf. Nonlinear Model Predictive

Control, 2012, pp. 232-237

[27] Y. Xiaoliang, L. Guorong, L. Anping, L. Van Dai, A Predictive Power

Control Strategy for DFIGs Based on a Wind Energy Converter System,

Energies, Vol. 10, No. 8, 1098, 2017, pp. 2-24

[28] Xilinx ***, Vivado design suite user guide: Implementation. UG904,

v2016.2, 2016

[29] A. S. Yamashita, A. C. Zanin, D. Odloak, Tuning of model predictive

control with multi-objective optimization. Brazilian J. Chem. Eng., Vol. 33,

No. 2, 2016, pp. 333-346

about:blank
about:blank
about:blank
about:blank

