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Abstract: In various fields of applications as robotics, life sciences, chemistry, typical non-
linear systems are controlled for the description of which only imprecise and often partial
system models are available and the model-based approaches have to be completed by either
robust or adaptive solutions for the compensation of the effects of the models’ imperfectness
and imprecisions. An alternative approach transformed the control task into a fixed point
iteration and tried to solve it in real-time on the basis of Banach’s fixed point theorem. This
approach does not require complete state estimation. However, it needs feeding back noisy
signals that may corrupt the quality of such adaptive controllers. In the preliminary investi-
gations in [1] this multiple variable solution was utilized for the control of a single variable
1st order system so that it yielded some noise filtering possibility. In the present paper this
method is extended for the control of single input - single output 2nd order dynamical sys-
tems by applying it to shorter time series of the state variable. The operation of this method
is investigated via numerical simulations for the control of a strongly nonlinear, oscillating
dynamical system, the van der Pol oscillator that further was modified with the introduction
of time-delay effects. The simulations are promising.

Keywords: Modeling Errors; Measurement Noise; Adaptive Control; Fixed Point Iteration-
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1 Introduction
In the adaptive control of nonlinear systems the model linearization around some
“point of operation” can work well if the controlled system’s actual state dwells in
the close vicinity of this point. In more general cases, e.g. in robotics, the dynamic
properties of the system drastically vary with the state variables and such a simple
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approach is not satisfactory. In such cases the prevailing controller design method is
Lyapunov’s 2nd or “direct” method he elaborated for the investigation of the stability
of motion of nonlinear systems in his PhD Thesis [2]. In the sixties of the past
century the translation of his work (originally written in Russian) became known in
the western world (e.g. [3]), and after the nineties it became the “number 1 design
method” for adaptive controllers. Some relevant early work is for example [4]. The
main point in this ingenious design methodology is that though it is impossible to
obtain the solution of the equations of motion of the controlled system in “closed
analytical form”, various stability properties can be defined and guaranteed without
knowing all the “details” of the solution. For this purpose sophisticated estimation
techniques have been developed.

In spite of the development of the numerical techniques Lyapunov’s method is quite
relevant in our days since for the description of the behavior of the unstable systems
the “validity” of the numerical solutions is always limited in time. With regard to the
application of Lyapunov’s “estimation techniques”, for a given particular problem
a particular Lyapunov function has to be constructed, and this function has to be
kept between upper and lower limits determined by some “type κ” functions of the
norm of the trajectory tracking error. In this manner “global” or “uniformly global”
stability properties can be guaranteed. Furthermore, if it can be guaranteed that the
time-derivative of the Lyapunov function is “negative enough”, “global asymptotic”
or “uniformly global asymptotic stability” can be guaranteed. In control technology
normally quadratic Lyapunov functions are used for which the asymptotic stability
can be proved by the use of Barbalat’s lemma (e.g. [5]). In the control systems that
suffer from time-delay effects the Lyapunov-Krasovskii functional can be used in
the controller design (e.g. [6]) that mathematically corresponds to some extension
of the Lyapunov function.

In control applications the Lyapunov function-based design can be criticized from
certain practical points of view [7] as follows:

a) it works by meeting satisfactory conditions instead of necessary and satis-
factory ones, therefore “too restrictive” properties have to be proved for its
use,

b) in the Lyapunov function-based design approach the main “design intent” is
guaranteeing only stability or asymptotic stability without paying appropri-
ate attention to the initial phase of the motion; for instance, in life sciences
these “transients” may have lethal consequences, therefore they deserve more
attention than that they obtain in this “conventional” design methodology;
more precisely, in the resulting control signal some “fragments” of the Lya-
punov function normally are present; these fragments contain numerous free
parameters for which wide ranges of settings can guarantee the stability (even
asymptotic stability), while they considerably influence the initial phase of the
motion, too; to achieve appropriate operation these free parameters cannot be
“trivially tuned”, so their setting may need the application of evolutionary
methods (e.g. [8]);

c) the Lyapunov function normally uses each component of the state variable,
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so for the application of this methodology these components must be either
directly measured or at least estimated; reliable estimation is possible only
in the possession of satisfactory number of independent sensor signals; if no
such sensors are available –that is a typical situation in life sciences and other
technical fields–, such estimations can be made by the use of certain “system
models” that themselves are not very precise or reliable; with regard to this
problem it is just enough to refer to the different insulin – glucose system
models that contain various numbers of compartments (e.g. [9]) or the lat-
est modeling and measuring efforts developed for turbo jet engines (e.g. the
utilization of the near magnetic field [10], thermal imaging [11]) for the con-
trol of which rather “practical” than mathematically too sophisticated control
approaches as the “Situational Control” [12] or robust methods [13] can be
applied.

In an alternative technique suggested in [14], the control task was transformed into
iteratively finding the solution of a fixed point problem as follows. By the use a
purely kinematic design, the appropriate “Desired” time-derivative of the general-
ized coordinate of the system under control (it is referred to as the “relative order of
the control task”) is calculated by the use of lower order derivatives and the time-
integral of the tracking error. Since this derivative abruptly can vary with the control
signal, by its use a “slowly meandering” fixed point can be constructed that can be
so tracked that during each digital control cycle only one step of the adaptive itera-
tion can be completed. The method’s scheme is outlined in Fig. 1. In the box named
“Kinematic Block” an arbitrary design can be applied for the desired time-derivative
of the generalized coordinate. In the case of a first order system the system’s re-
sponse r(t)≡ q̇(t), and the desired q̇Des(t) has to guarantee that

∣∣qN(t)−q(t)
∣∣→ 0

as t → ∞, if it is realized. For instance, by using the integrated tracking error a
PI-type feedback can be constructed by using a constant Λ > 0 as

(
d
dt

+Λ

)2

eint(t)≡
(

d
dt

+Λ

)2 ∫ t

t0

[
qN(ξ )−q(ξ )

]
dξ ≡ 0 ⇒ (1a)

q̇Des(t) = Λ
2eint(t)+2Λe(t)+ q̇N(t) , (1b)

in which e(ξ )
de f
= qN(ξ )− q(ξ ) is the tracking error, and its integral from t0 (the

commencement of the control action) to the actual time t is given within (1a). It
worths noting that further integration of the integrated error in (1) in principle can be
used together with a higher power of the operator

( d
dt +Λ

)
that could lead to “more

fluctuations” in the transient part of the error. However, taking into account that the
sequence of multiple integrals can be expressed by a single formula as the Riemann-
Liouville n-fold integral (e.g. [15]), and that on this basis, by the generalization of
this formula, various fractional order integrals and derivatives can be introduced
that can produce nice monotonic error relaxation, fractional order controllers can be
constructed. (A survey on the history of fractional calculus can be found in [16].)
The fractional order controllers recently became very popular in robotics (e.g. [17]),
in the control of flexible systems (e.g. [18]), in vibration damping (e.g. [19]) and
generally in relation with feedback problems (e.g. [20]).
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Returning to the scheme depicted in Fig. 1, if the available model is not precise,
the q̇Des(t) value is deformed into q̇De f (t) 6= q̇Des(t) to achieve or at least better
approximate the q̇(t) = q̇Des(t) situation. This case corresponds to the more pre-
cise realization of the tracking strategy formulated in (1). The aim is to approach it
via iteration in which u(t) immediately generates the actual q̇(t). Normally in the
“Delay” boxes only 1 cycle time lag can be calculated that means that the system
adaptively learns by computing the deformation in control cycle n+ 1 by consid-
ering the applied deformed value and the response obtained for it in cycle n. The
iteration can be commenced with q̇De f (tini) = q̇Des(tini). If the controlled system
has well known delay effects, the appropriate delays in these boxes can be modified
accordingly, however, because in this case the controller learns from more or less
obsolete observed data, some precision degradation in the control can be expected
[21].

Mathematically the iterative deformations are calculated on the basis of Banach’s
fixed point theorem [22] according to which “in a linear, normed, complete metric
space” (i.e. Banach space B) the sequence generated by the contractive map Φ :
B 7→ B as {x0, x1 = Φ(x0), . . . , xn+1 = Φ(xn), . . .} has a unique limit point x? so
that xn → x? ∈ B. This limit point is a fixed point of Φ(x), that is Φ(x?) = x?. By
definition Φ(x) is contractive if ∃0 ≤ K < 1 so that ∀x, y ∈ B ‖Φ(x)−Φ(y)‖ ≤
K‖x− y‖. Into the block “Adaptive Deformation” an appropriate function must
be placed that realizes this contractive map. For higher order control essentially
the same structure can be used. For instance, in the case of 2nd order systems as
fully actuated robots, PD- or PID-type feedback structures suggested in Fig. 1 can
be applied in the “Kinematic Block” in the case of the Resolved Acceleration Rate
Control (e.g. [23]).

Figure 1
The structure of the “Fixed Point Transformation-based Adaptive Controller” (the adaptive deformation
can be realized by the use of various fixed point transformations, and the system’s response r can be an
arbitrary order time-derivative of the generalized coordinates of the controlled system)

However, in our case, the higher order derivative is fed back, too. Such feedback
also appears in the “Acceleration Feedback Controllers” (e.g. [24]) but in a quite
different manner. These cited examples testify that in spite of the expectation that
feeding back second time-derivatives may introduce too much noise into the control
process, these methods can work. For instance, the above structure was success-
fully applied in [25] in the realization of the adaptive control of a cheap speed-
controlled electric motor manufactured by a Chinese company without having the
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precise mathematical model of the motor. The adaptive loop was realized by a sim-
ple Arduino embedded microcontroller without using any sophisticated noise filter-
ing technique. For testing adaptivity the rotating axle of the motor was picked by the
fingers of the designer so varying the viscous damping in the system in real-time.

In the block “Adaptive Deformation” various functions can be placed. In [25] the
single variable function introduced in [14] was applied. Later multiple variable
functions were introduced by Dineva [26], and an abstract rotations-based software
block was suggested in [27] by Csanádi et al. In this approach special orthogo-
nal matrices were applied that were computed according to a generalization of the
Rodrigues formula invented in 1840 [28] in the following manner. In the case of
a vector transformation b ∈ Rn to vector a ∈ Rn (‖a‖ 6= ‖b‖), via introducing a
“buffer dimension” the vectors B ∈ Rn+1 and A ∈ Rn+1 can be introduced with
the components: for s ∈ {1, . . . ,n}, Bs = bs, As = as, and Bn+1 =

√
R2−‖b‖2,

An+1 =
√

R2−‖a‖2. Evidently, ‖A‖ = ‖B‖, therefore in the n + 1 dimensional
space these vectors can be rotated into each other. Furthermore, in the n+1 dimen-
sional space the rotation operator that rotates B into A can be easily constructed (the
details were published in [27], and a simple interpolation between the two positions
can be obtained by a factor λa ∈ [0,1] by rotating with λaϕ instead of ϕ that is the
angle between the two vectors.

The noise sensitivity of the method generally can be reduced by various noise fil-
tering techniques that can apply smoothed signals in the “Kinematic Block” for the
calculation of the “Desired” time-derivatives, and for smoothing the observed re-
sponse, too. In the present paper the idea that was investigated for a 1st order single
variable system in [1] is extended to the adaptive control of a 2nd order one with the
calculation of the “desired” 2nd order derivatives from pre-filtered terms. The paper
is structured as follows: in Section 2 the dynamic model of the controlled system
is detailed. Section 3 reveals the simulation results. The paper is closed with the
conclusions and the acknowledgement section.

2 The Dynamic Model of the van der Pol Oscillator

In 1927 van der Pol modeled the nonlinear oscillations of an externally excited tri-
ode [29]. This model later served as a popular paradigm of nonlinear systems in con-
trol technology because it had an unstable equilibrium point in the state q(0) = 0,
q̇(0) = 0. If some small external perturbation kicks the system’s state out of this
equilibrium point, it produces nonsinusoidal oscillations that have to be “curbed”
by the controller. In this paper this model is considered to be a “mathematical con-
struction” only with a nondimensional “generalized coordinate” q(t), and physical
interpretation is given only to the variable of time t measured in [s] units. In similar
manner, the control signal u(t) remains without physical interpretation. The orig-
inal van der Pol model is further modified by the introduction of some delay time
τ in the equations of motion given in (2). Certain parameters have some “physical
analogy” like the “inertia”, the “spring stiffness” and the “damping parameter”.
The “separator parameter” a determines the border between excitation and damp-
ing the strength of which is determined by parameter b1. Parameter b2 corresponds
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to the traditional viscous damping model.

q̈(t) =
−kq(t− τ)+b1

(
q(t− τ)−a2

)
q̇(t− τ)−b2q̇(t− τ)+u(t)

m
, (2)

with the parameter values given in Table 1.

Table 1
The system parameters (the “Exact” values), and the “Approximate” values utilized in the simulations

System Dynamic Parameters
Model Parameter Exact Val. Approx. Val.

k “Spring stiffness”a 150.0 100.0

m “Inertia”a 1.5 1.0

τ Delay time (s) 6×10−3 10×10−3

a Separator a 1.2 1.0

b1 Excitation/Damping parameter a 1.5 1.0

b2 “Damping parameter” a 2.5 2.0

δ t Cycle time (s) 0.001 Not applicable
aThe units are compatible with (2).

For using this model, in the simulations the exact q, q̇ values were considered by
applying Euler integration utilizing the q̈ value provided by the exact dynamic model
of the system. For the controller the noisy observed value of q(t) denoted by q̃(t)
was used as an input. It was simulated by the Julia language code as

“q_noisy_mem[i]=q[i]+NoiseAmpl*2*(0.5-rand())”

in which even noise distribution was applied. This noisy value was filtered as q̃(t)
by minimizing the following quadratic error in the digital control step i according
to a0, a1, and a2, and using the filtered values as in (3b) and (3c).

S
de f
=

L

∑
s=1

(
2

∑
`=0

a`s`− q̃(i−L+ s)

)2

(3a)

q̂(i) =
2

∑
`=0

a`L` , . . . , q̂(i−L+1) =
2

∑
`=0

a`1` (3b)

˙̂q(i)≈ q̂(i)− q̂(i−1)
δ t

. (3c)

In the possession of the filtered
{

q̂(i), . . . , q̂(i−1)
}

and the “desired” q̈Des(i) for the
desired next step qNextDes(i+1) the approximation in (4)was applied.

q̈Des(i)≈ qNextDes(i+1)−2q̂(i)+ q̂(i−1)
δ t2 leading to (4a)

qNextDes(i+1) = q̈Des(i)δ t2 +2q̂(i)− q̂(i−1) . (4b)
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From the “deformed buffer” the “deformed 2nd time-derivative” was approximated
as

q̈De f (i)≈ qDe f (L)−2qDe f (L−1)+qDe f (L−2)
δ t2 . (5)

In the sequel simulation results will be presented.

3 Simulation Results

The numerical estimations applied in Section 2 are mathematically justified if the
buffer length L is small enough in the sense that during the time interval of length
Lδ t the variation of the state in the free motion of the system to be controlled, that
of the nominal trajectory to be tracked, and the variation of the unknown external
disturbances “of no stochastic origin” are not very significant. If the controller can
work under such conditions the effects of the stochastic noises can be investigated
in a next step. Since for the calculation of the 2nd time-derivatives at least 3 mea-
sured values are necessary, the minimal reasonable buffer length that can make some
filtering is about 5.

3.1 Investigation of The Effects of The Buffer Length in Noise-
free Cases

Figures 2 and 3 reveal that the modeling errors and the external disturbances of non-
stochastic origin with the PID-type control of Λ = 2s−1 result in poor trajectory
tracking in the case of the non adaptive controller. With the adaptive parameters
R = 104 and λa = 0.9 the “adaptive counterparts” of these diagrams are given in
Figs. 4 and 5. Figure 6 reveals more finer details on the operation of the adaptive
controller: the adaptive deformation is considerable and almost perfectly guaran-
tees the realization of q̈DesFilt . The L = 5 buffer length evidently does not cause
considerable obsolescence in the calculation of the adaptive deformation.
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The trajectory and phase trajectory tracking of the non adaptive controller for a PID control with Λ =

2s−1 with the buffer length L = 5
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Figure 3
The 2nd time-derivatives and the control forces of the non adaptive controller for a PID control with
Λ = 2s−1 with the buffer length L = 5
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Figure 4
The trajectory and phase trajectory tracking of the adaptive controller for a PID control with Λ = 2s−1

with the buffer length L = 5
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The 2nd time-derivatives and the control forces of the adaptive controller for a PID control with Λ = 2s−1

with the buffer length L = 5
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The angle of the abstract rotation and the trajectory tracking error of the adaptive controller for a PID
control with Λ = 2s−1 with the buffer length L = 5

If the buffer length is increased to L = 25, according to Fig. 7 the behavior of the
nonadaptive controller shows drastic modification. The same can be stated for the
adaptive controller according to the Fig. 8. So the buffer length L = 25 is evidently
too large for these dynamical signals.
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Figure 7
The trajectory and phase trajectory tracking of the non adaptive controller for a PID control with Λ =

2s−1 with the buffer length L = 25
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Figure 8
The trajectory and phase trajectory tracking of the adaptive controller for a PID control with Λ = 2s−1

with the buffer length L = 25
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Decreasing the buffer length to L = 10 provides rather acceptable result for the
adaptive controller as it is revealed by Fig. 9, while according to Fig. 10 the non
adaptive controller remains quite inappropriate.
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Figure 9
The trajectory and phase trajectory tracking of the adaptive controller for a PID control with Λ = 2s−1

with the buffer length L = 10
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Figure 10
The trajectory and phase trajectory tracking of the non adaptive controller for a PID control with Λ =
2s−1 with the buffer length L = 10

Following these preparations it seems to be expedient for considering the additional
effects of measurement noises for the buffer lengths L = 5 and L = 10.

3.2 Investigation of The Effects of Measurement Noises

In these investigations the noise amplitude was selected to be 0.02. Figure 11 reveals
that the non-adaptive controller is quite inappropriate, while according to Fig. 12 the
adaptive solution behaves quite well.
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Figure 11
The trajectory and phase trajectory tracking of the non adaptive controller for a PID control with Λ =

2s−1 with the buffer length L = 5 in the case of measurement noises
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Figure 12
The trajectory and phase trajectory tracking of the adaptive controller for a PID control with Λ = 2s−1

with the buffer length L = 5 in the case of measurement noises

To the buffer length L = 10 Figs. 13, 14, and 15 belong. The adaptive controller
evidently was found to be more precise than the non adaptive one, in spite of the
noisy feedback.

0 2 4 6 8 10
Time [s]

−3

−2

−1

0

1

2

3

[1
]

Nominal and Realized Trajectory, L= 10
qN

q

−3 −2 −1 0 1 2 3
q [1]

−30

−20

−10

0

10

20

30

q̇
[s

−1
]

The Phase Space, L= 10
q̇N vs. qN
q̇ vs. q

Figure 13
The trajectory and phase trajectory tracking of the non adaptive controller for a PID control with Λ =

2s−1 with the buffer length L = 10 in the case of measurement noises
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Figure 14
The trajectory and phase trajectory tracking of the adaptive controller for a PID control with Λ = 2s−1

with the buffer length L = 10 in the case of measurement noises
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The angle of the abstract rotation and the trajectory tracking error of the adaptive controller for a PID
control with Λ = 2s−1 with the buffer length L = 10 in the case of measurement noises

For a better comparison it makes sense to consider the 2nd time-derivatives and the
control signals. Figures 16 and 17 reveal that both the 2nd time-derivatives and the
control signals varied in the same order of magnitude.
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The 2nd time-derivatives and the control forces of the non adaptive controller for a PID control with
Λ = 2s−1 with the buffer length L = 10 in the case of measurement noises (zoomed in excerpts)

– 80 –



Acta Polytechnica Hungarica Vol. 18, No. 9, 2021

4.18 4.20 4.22 4.24 4.26
Time [s]

−4000

−2000

0

2000

4000
[s

−2
]

Nominal, Desired, Deformed and Realized q̈, L= 10
q̈N

q̈DesFilt

q̈Def

q̈

0.92 0.94 0.96 0.98 1.00 1.02 1.04
Time [s]

−3000

−2000

−1000

0

1000

2000

3000

4000

u(
t)

The Control Signal and The Disturbance Force,L= 10
u
uDist

Figure 17
The 2nd time-derivatives and the control forces of the adaptive controller for a PID control with Λ = 2s−1

with the buffer length L = 10 in the case of measurement noises (zoomed in excerpts)

It can be guessed that the division by δ t2 in the estimation of the 2nd time-derivatives
may cause huge values, and consequently, huge control signal values. It was inter-
esting to see what happens if the time-resolution is reduced by using δ t = 10−2 s
and simultaneously the buffer length is reduced to L = 5. According to Figs. 18,
19, and 20 the rougher time-resolution made the adaptive controller better because
considerably smaller control signal were applied in the calculations. Figures 21, and
22 testify that the non adaptive controller provides less precise tracking though the
control signals and the 2nd time-derivatives are of the same order of magnitude in
the adaptive and the nonadaptive cases.
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Figure 18
The trajectory and phase trajectory tracking of the adaptive controller for a PID control with Λ = 2s−1

with the buffer length L = 5 in the case of measurement noises using δ t = 10−2 s
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Figure 19
The 2nd time-derivatives and the control forces of the adaptive controller for a PID control with Λ = 2s−1

with the buffer length L = 5 in the case of measurement noises using δ t = 10−2 s
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Figure 20
The angle of the abstract rotation and the trajectory tracking error of the adaptive controller for a PID
control with Λ = 2s−1 with the buffer length L = 5 in the case of measurement noises using δ t = 10−2 s
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Figure 21
The trajectory and phase trajectory tracking of the non adaptive controller for a PID control with Λ =

2s−1 with the buffer length L = 5 in the case of measurement noises using δ t = 10−2 s
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Figure 22
The 2nd time-derivatives and the control forces of the non adaptive controller for a PID control with
Λ = 2s−1 with the buffer length L = 5 in the case of measurement noises using δ t = 10−2 s

3.2.1 Conclusions

In this paper, following the the preliminary investigations in [1] that considered the
possible use of multivariable fixed point transformations in the adaptive control of
single variable 1st order dynamical systems with some special noise filtering tech-
nique, the investigations were extended to 2nd order dynamical systems. For this
purpose the van der Pol oscillator model was modified with the inclusion of time-
delay effects.

As a conclusion it can be stated that in spite of the fact that the fixed point iteration-
based method feeds back the noisy 22nd derivatives that are estimated by the con-
troller in a finite element approximation, the operation of the adaptive solution is
superior to the nonadaptive one that feeds back only lower order, therefore less
noisy numerically estimated time-derivatives.

It can be concluded, too, that it is expedient tho choose the possible roughest dis-
crete time resolution that can be allowed by the dynamics of the nominal motion to
be tracked, and by the kinematically calculated PID-type error feedback correction
terms to keep the occurring control signals at some low, realistic level. Any refine-
ment in the time resolution increases the amplitude of the fluctuating control signal
that is similar to the chattering effect occurring in the Robust Variable Structure /
Sliding Mode Controllers.
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Schreiner, Intelligent thermal imaging-based diagnostics of turbojet engines.
Applied Sciences, 2019, Vol.9, No. 2253, pp. 1-22 9(2253):1–22
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