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Abstract: The purpose of this article is to introduce a refinement of DeVos-Mohar 
conjecture in which the number of vertices of polyhedral graphs with positive 
combinatorial curvature, which are neither prisms, nor antiprisms, (PCC graphs) plays a 
significant role. According to the conjecture proposed by DeVos and Mohar, for the 
maximal vertex number Vmax of a PCC graph, the inequality VLB=120 ≤ Vmax ≤ 
VUB=3444 is fulfilled. In this paper we show that the lower bound VLB can be improved. 
The improved lower bound is VLB =138. It is also verified that there are no regular, 
vertex-homogenous PCC graphs with vertex number greater than 120. We conjecture that 
for PCC graphs the minimum value of combinatorial curvatures is not less than 1/380. If 
the conjecture is true this implies that the upper bound VUB is not greater than 760. 
Moreover, it is also conjectured that there are no PCC graphs having faces with side-
number greater than 19, except two trivalent polyhedral graphs containing 20- and 22-
sided faces, respectively. 
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1 Introduction 
If all of the vertices of a polyhedral graph GP have positive combinatorial 
curvatures only, then GP is said to be a graph with positive combinatorial 
curvature [1,2,3]. Let ℜ be the set of polyhedral graphs with positive 
combinatorial curvature, which does not contain the graphs of prisms and 
antiprisms. A graph included in ℜ is called a PCC graph. DeVos and Mohar 
proposed the following conjecture, which is still open: For the maximal vertex 
number Vmax of PCC graphs in ℜ, the inequality 120 ≤ Vmax ≤ 3444 is fulfilled [1]. 
In this paper we show that the conjectured lower bound (VLB=120) can be 
improved. It will be verified that for any PCC graph, the maximum number of 
vertices is not less than 138. 
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2 Background: Definitions and Notation 
Consider a polyhedral graph with vertex number V. The combinatorial curvature 
Φ(Xj) of an r-valent vertex Xj (j=1,2,…V) is defined as 
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where nj,1, nj,2,…nj,r(j) are the side-numbers of r polygons incident with vertex Xj. It 
is known that for an arbitrary polyhedral graph the sum of combinatorial 
curvatures satisfies the relation [1,2,3] 
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In Eq.(2) χ is the Euler-characteristic, which equals 2 for polyhedral graphs. The 
fundamental properties of PCC graphs can be summarized as follows: 

i The set of PCC graphs (ℜ) is finite [1]. All prisms and antiprisms are 
represented by polyhedral graphs with positive combinatorial curvature, but 
their number is infinite. 

ii The number of vertices is not greater than 3444 [1]. 

iii The maximal number of edges incident to a vertex is less than 6. This implies 
that if a PCC graph has a vertex of valency 5, it contains at least four triangles, 
if it has a vertex of valency 4, then it contains at least one triangle. 

iv The graph of the snub icosidodecahedron with 60 vertices is the largest PCC 
graph which has vertices of valency 5, only. 

From Eq.(2) it follows that the number of vertices V of a PCC graph can be easily 
estimated if we know the minimum value Φmin of the possible combinatorial 
curvatures. In this case we have V≤ 2/Φmin. It is obvious that the maximum value 
of Φ(Xj) is 1/2, this value is valid for the tetrahedron. A polyhedral graph is called 
a vertex homogenous graph (VH-graph), if its combinatorial curvatures are equal 
in each vertex (i.e. Φ(Xj)= 2/V is fulfilled for j=1,2,…V). For example, Platonic 
and Archimedean polyhedra, prisms and antiprisms are represented by VH graphs. 
It is obvious that every VH-graph which is neither a prism nor an antiprism is a 
PCC graph. 

A polyhedral graph GP is called a regular (ρ-regular) graph if all vertices of GP 
have the same valency ρ, where ρ= 3,4 or 5. It is worth noting that among PCC 
graphs there can exist vertices with identical (equal) positive combinatorial 
curvatures, but with different numbers of valency. It is conjectured that every 
vertex homogenous graph is regular. 
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Consider a subset ℜS=ℜS(n1, n2,…nk,…nK) of ℜ where nk stands for the side 
number of faces, for which 3≤n1< n2 <…nk, …< nK, k=1,2,…K, and K≥1 is a 
positive integer. This means that the number of possible face types is equal to K 
for any graphs in subset ℜS. (In other words, all polyhedral graphs in ℜS have 
faces with K different side-numbers, exactly). In certain cases, ℜS is identical to 
the empty set, i.e. ℜS = ∅. In case K=1, we have ℜS(n1) = ∅ if n1=4 or n1 ≥ 6. The 
graph of dodecahedron is the unique PCC graph which is composed of pentagons 
only. For example, it is easy to see that ℜS(5,10)= ∅, because there are no PCC 
graphs composed of 5- and 10-gons. 

For set ℜS(n1, n2,…nk,…nK) we define the upper bound VUS on the maximum 
vertex number as follows 

{ }SSSUS G)G(VmaxV ℜ∈=
 (3) 

In Eq.(3) V(GS) denotes the number of vertices of an arbitrary graph GS∈ ℜS. If 
ℜS is identical to the empty set, then VUS= 0, by definition. It is obvious that 
inequality VUS ≤ 3444 holds for any subset ℜS. In other words, for an arbitrary 
PCC graph in ℜS, the corresponding vertex number is not greater than 3444 [1]. 

Graphs GS,1, GS,2,…GS,z,..,GS,Z∈ℜS(n1, n2,…nk,…nK) are called maximal (more 
exactly maximal with respect to ℜS) if equality VUS=V(GS,1)= V(GS,1),…= V(GS,Z) 
is fullfilled for z=1,2,…Z, where Z is a positive integer. Considering the 
polyhedral graphs consisting of triangles, there are only three vertex homogenous 
graphs in ℜS(3). Among these polyhedra only the tetrahedron and the icosahedron 
are represented by PCC graphs, the octahedron is a triangular antiprism. The graph 
of icosahedron with vertex number of 12 is the unique maximal PCC graph in 
ℜS(3). It is worth noting that in ℜS(3,4) there exist four distinct polyhedra 
represented by VH-graphs with vertex number of 24. All of them are characterized 
by maximal PCC graphs (the snub cube which has two different chiralities, the 
rhombicuboctahedron and the Miller polyhedron (called pseudo- 
rhombicuboctahedron) which is not Archimedean). In ℜS(5,6) there is only one 
VH-graph, this maximal PCC graph corresponds to the truncated icosahedron (the 
so-called Buckminster fullerene). 

In Fig. 1 the great rhombicosidodecahedron (truncated icosidodecahedron) is 
shown. It has 120 vertices, 180 edges and 62 faces of regular polygons: 30 
squares, 20 hexagons and 12 decagons. The graph of the great 
rhombicosidodecahedron is a VH-graph, since values of combinatorial curvatures 
are equal for all vertices, (1-3/2 +(1/4+1/6+1/10)= 1/60). 
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Figure 1 

The great rhombicosidodecahedron 

As far as the lower bound of maximum vertex number is concerned, the 
conjectured number of vertices for PCC graphs is equal to 120 [1]. This is 
identical to the vertex number of the great rhombicosidodecahedron [1]. The 
theoretical upper bound of maximum vertex number (VUB= 3444) found by DeVos 
and Mohar corresponds to a vertex number of a “hypothetic” trivalent VH-graph 
composed only of 3-, 7- and 41-gons. We will show that there exist no trivalent 
PCC graphs composed of 3-, 7- and 41-gons for which the vertex numbers are 
equal to 3444. Moreover, it will be verified that there exist PCC graphs with 
vertex numbers greater than 120. 

3 Results 
The main results are represented by the following six theorems. 

Theorem 1 There is no trivalent PCC graph in ℜS(3,7,b) if b > 11 positive integer. 

Proof. The proof is based on computational results obtained by checking the 
fulfillment of necessary conditions given in the form of various equations and 
inequalities. We used the following three lemmas: 

Lemma 1 Consider a trivalent polyhedral graph composed of α-, β- and γ-sided 
polygons. Let us denote by Nα , Nβ and Nγ the corresponding number of faces. The 
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following well-known necessary conditions for the existence of such a graph 
(polyhedron) are easily derivable from Euler’s formula: 
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where PNNNN =++ γβα  

Lemma 2 There are no edge-neighbor triangles in a trivalent polyhedral graph 
with vertex number greater than 4. (The exceptional case of V=4 corresponds to 
the graph representing a tetrahedron). 

To prove this, let us suppose that there are two edge-neighbor triangles (i.e. two 
triangles with a common edge) in a trivalent polyhedral graph GT. By deleting 
vertices XA and XC of the neighbor triangles we have separated graph components. 
(See Fig. 2) 

 
Figure 2 

A 2-connected, trivalent, planar graph including edge-neighbor triangles 
(a) The original graph. (b) The graph obtained by deleting vertices XA and XC. 

It follows that GT must be only 2-connected; consequently it is a non-polyhedral 
graph. This implies that all triangles are isolated in a trivalent polyhedral graph. 
As an example, the smallest 2-connected, planar, non-polyhedral, trivalent graph 
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is illustrated in Fig. 3a. It is worth noting that this graph can be represented by a 
non-convex polyhedron. (See. Fig. 3b.) (From the previous considerations it 
follows that there are no trivalent PCC graphs composed of 3- and 7-gons only.) 

 
Figure 3 

The smallest 2-connected, trivalent planar graph (a) and its 3-dimensional representation (b) 

Lemma 3 Consider a trivalent polyhedral graph composed of α-, β- and γ-sided 
polygons. As it is illustrated in Fig. 4, by taking into consideration the types of 
vertex coronas, each vertex can be classified into 10 distinct classes denoted by 
Cα,α,α, Cα,α,β,…,Cγ,γ,γ, respectively. Let V1, V2,…,V10 be the corresponding 
numbers of vertices belonging to different vertex configurations. It can be proved 
that [4] 
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In Eq.(4) V=V1 +V2 +…+V10, quantities M1, M2, …,M10 are the corresponding 
vertex coordination numbers shown in Fig. 4, and 
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is the kth moment of the side numbers of polygons [4]. It should be noted that an 
extended version of Eq.(6) is valid for 4- and 5-regular polyhedral graphs [4]. 
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Figure 4 

The ten possible vertex arrangements (vertex coronas) in a trivalent polyhedral graph 

By using the three lemmas outlined above, the main steps of the proof are as 
follows: 

1 Consider a subset ℜSG(3,a,b) of ℜS(3,a,b). We assume that ℜSG(3,a,b) contains 
trivalent PCC graphs consisting of 3-gons, a-gons and b-gons only, and for any 
graph of ℜSG(3,a,b) the following inequalities are fulfilled: 
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In the equations above, Φ(3,a,a), Φ(3,a,b), Φ(3,b,b) and Φ(a,a,a) denote the 
corresponding combinatorial curvatures. Every graph included in ℜSG has a 
positive combinatorial curvature in vertices of type of V(3,a,a,) and V(3,a,b), 
for which Φ(3,a,a) > Φ(3,a,b)>0 is fulfilled. 

It is easily seen that only the following PCC graphs satisfy the conditions 
formulated by Eqs.(8a-8d): all trivalent polyhedral graphs in ℜS(3,6,b) if b≥12, 
in ℜS(3,7,b) if 12≤b≤41, in ℜS(3,8,b) if 12≤ b≤ 23, in ℜS(3,9,b) if 12≤b≤ 17, in 
ℜS(3,10,b) if 12≤ b ≤ 14 and ℜS(3,11,12). 
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2 Let N3, Na and Nb be the number of 3-, a- and b-sided faces, respectively. 
Since ℜSG is a subset of trivalent polyhedral graphs, according to Lemma 1 we 
have 

N6)bNaNN3( ba3 <++  (9) 

12N)b6(N)a6(N3 ba3 =−+−+  (10) 

where ba3 NNNN ++= . 

3 From Eqs.(8a-8d) it follows that not only the triangles are isolated but all b-
sided faces as well. (See Fig. 5) 

 
Figure 5 

Isolated triangles in a trivalent PCC graph of ℜSG composed only of 3-,a- and b-sided polygons 

Moreover, we can conclude that each vertex is incident with a vertex of an 
isolated triangle. Hence, for any graph of ℜSG we obtain 

VN3 3 =  (11) 

Since each vertex is incident with a vertex of an a-sided polygon as well, 
inequality 

aaNV ≤  (12) 

yields. (See Fig. 5). 

4 From Eqs.(11-12) we have 

0N3aNVaN 3aa ≥−=−  (13) 
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Consequently, 

3
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5 Since all triangles and all b-sided polygons are isolated, this implies that there 
is no polyhedral graph in ℜSG for which b is an odd integer. This can be easily 
verified on the basis of Fig. 6. 

 
Figure 6 

The neighborhood of b-sided faces in a PCC graph of ℜSG composed only of 3-,a- and b-sided 
polygons (for case: a=7 and b=41) 

As we can conclude, the edge neighbors of b-sided polygons are or triangles 
either a-sided polygons, only. The sum of triangles and a-sided polygons 
should be equal to b, but two a-sided polygons having common edges with a b-
sided one, cannot be edge-neighbors. Moreover, as it is demonstrated in Fig. 6, 
if b is an even number, then inequality 

b3 N
2
bN ≥
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should be fulfilled. From Eqs.(11-15) we obtain 
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Inequality (16) gives a necessary condition for the existence of a graph in ℜSG. 

6 Because all triangles and b-sided polygons are isolated, and inequalities (12-
16) are valid, this implies that there exist only two types of vertices (vertex 
coronas) which should be taken into account for graphs in ℜSG. These are 
denoted by C3,a,a and C3,a,b. In this case, α=3, β=a and γ=b are the 
corresponding side-numbers of polygons incident with a common vertex. (See 
Fig. 4.) 

7 According to Lemmas 2 and 3, as a particular case, from Eq.(6) it follows: 
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where V(3,a,a) and V(3,b,b) are the numbers of vertices belonging to the 
vertex coronas C3,a,a and C3,a,b and M(3,a,a)=(3+a+a)/3 and 
M(3,a,b)=(3+a+b)/3 are the corresponding vertex coordination numbers. It is 
obvious that Eq.(17) represents a useful necessary condition for checking the 
existence of PCC graphs. 

8 Equations (4-17) can be efficiently used to predict whether a particular subset 
of trivalent PCC graphs exists or not. More exactly, if there is no solution to 
Eqs. (4-17) for positive integers a, b, N3, Na and Nb we can conclude that this 
subset of PCC graphs is empty. Based on the concept outlined above, we 
checked by computer all possible cases concerning the existence of trivalent 
PCC graphs in ℜSG. By performing computations, we verified, that there do 
not exist trivalent PCC graphs in ℜS(3,7,b) if b > 11. Consequently, there are 
no trivalent PCC graphs composed of 3-, 7- and 41-gons, only. 

Theorem 2 There is no trivalent PCC graph in ℜS(3,8,b) if b > 22 positive integer. 
Moreover, if b=22 there exists a trivalent PCC graph Gx in ℜS(3,8,22) composed 
of 3-, 8- and 22-gons, for which V(Gx) = 66. 

Proof. In this case, there are two types of vertex corona with positive 
combinatorial curvature (denoted by C3,8,8 and C3,8,b) which should be taken into 
account. The proof performed by computer was based on the same concept that 
was used in Theorem 1. We found that in a particular case when b=22, there exists 
a trivalent PCC graph composed of 3-, 8- and 22-gons for which N3=22, N8=11 
and N22=2. This graph denoted by G22 corresponds to a truncated 11-gonal prism. 
In Fig. 7 the corresponding Schlegel diagram is shown. 
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Figure 7 

The Schlegel diagram of the PCC graph G22 (truncated 11-gonal prism) 

We conjecture that the trivalent graph G22 is maximal with respect to set 
ℜS(3,8,22) where VUS = 66. It is supposed that G22 is the unique PCC graph 
containing 22-sided faces. Moreover, we assume that there exists only one PCC 
graph with 20-sided faces. This graph denoted by G20 which is composed of 20 
triangles, 10 octagons and two 20-sided polygons, corresponds to a truncated 10-
gonal prism. Based on previous considerations, the following conjecture can be 
formulated: There are no PCC graphs having faces with side-number greater than 
19, except the two trivalent polyhedral graphs G20 and G22 containing 20- and 22-
sided faces, respectively. 

Theorem 3 There exists a trivalent PCC graph Gy in ℜS(4,6,11) for which V(Gy) = 
132. 

Proof. For trivalent graphs included in ℜS(4,6,11), we have from Euler’s formula 
that 2N4–5N11=12. Additionally, there are 5 types of vertex coronas with positive 
combinatorial curvature (denoted by C4,4,4, C4,4,6, C4,4,11, C4,6,,6 and C4,6,11) which 
should be taken into consideration when using Eq.(6) for computational purposes. 
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In this case, α=4, β=6 and γ=11 are the side-numbers of polygons which are 
incident with a common vertex. (See Fig. 4 ) For graphs in ℜS(4,6,11), the 
minimal value of combinatorial curvature is Φmin = 1- 3/2 + 
(1/4+1/6+1/11)=1/132. Theoretically, this implies that the possible maximum 
vertex number is not greater than 264. A computer search gave that the maximum 
vertex number of PCC graphs in ℜS(4,6,11) is less than 198. 

In order to find the largest PCC graphs included in ℜS(4,6,11), we preselected 
seven “possible” subclasses of polyhedral graphs (candidates) whose existence 
could be expected. For the 7 subclasses denoted by GA, GB,….and GG, the 
computed topological parameters (N4, N6, N11, V(4,4,11), V(4,6,6), V(4,6,11) and 
V) are summarized in Table 1. Quantities V(4,4,11), V(4,6,6) and V(4,6,11) are 
the numbers of vertices belonging to the three vertex coronas denoted by C4,4,11, 
C4,6,6 and C4,6,11, respectively. (A common feature of graphs included in the seven 
subclasses is that they do not contain vertex coronas of type C4,4,4, and C4,4,6, 
which implies that V(4,4,4)=V(4,4,6)=0.) 

Table 1 
Computed topological quantities for 7 subclasses of possible PCC graphs 

From the computed results given in Table 1, it is clear that there do not exist 
trivalent PCC graphs in ℜS(4,6,11) with vertex number greater than 198. By 
analyzing the local structure of vertex coronas of graphs in Table 1, two cases 
should be taken into consideration. 

CASE 1 concerns the subsets GB, GD and GF in Table 1. Graphs in GB, GD and GF 
have vertex coronas of type C4,6,6 and C4,6,11 with positive vertex numbers. It is 
easy to show that subsets GB, GD and GF do not contain PCC graphs. The proof is 
based on the following observations. Each 11-gon is isolated, and each of them is 
surrounded by six 4-gons and five 6-gons, exactly. (There are no edge-neighbor 
hexagons since V(6,6,11)=0.) Consequently, among 6+5 neighbors of an arbitrary 
11-gon there must exist two edge-neighbor squares. But, this is impossible 
because V(4,4,4)=V(4,4,6)=V(4,4,11) =0 is fulfilled. 

CASE 2 concerns the subsets GA, GC, GE and GG in Table 1. Graphs in GA, GC, 
GE and GG have vertex coronas of type C4,4,11 and C4,6,11 with positive vertex 

Topological parameters Subset of 
graphs N4 N6 N11 V(4,4,11) V(4,6,6) V(4,6,11) V 

GA 36 20 12 12 0 120 132 
GB 36 26 12 0 12 132 144 
GC 41 24 14 10 0 144 154 
GD 41 29 14 0 10 154 164 
GE 46 28 16 8 0 168 176 
GF 46 32 16 0 8 176 184 
GG 51 32 18 6 0 192 198 



Acta Polytechnica Hungarica Vol. 2, No. 2, 2005 

 – 31 – 

numbers. In this case, the following conclusions can be drawn: It is easily seen 
that every 11-gon and every hexagon are isolated. Additionally, each vertex is 
incident with a vertex of an 11-gon, this implies that 11N11=V. 

In the following we suppose that all neighborhoods of every 11-gon are identical, 
that is, each 11-gon is surrounded by H hexagons and (11-H) squares exactly, 
where H is a positive integer not greater than five. 

Figure 8 shows the four possible neighborhoods of an isolated hexagon in a 
hypothetical PCC graph. From this figure, we can conclude that among the edge-
neighbors of a 6-sided polygon there exist always three squares and three 11-sided 
polygons, exactly (See Fig. 8a.) 

 
Figure 8 

The possible edge-neighbor arrangements of a 6-sided polygon 

The previous considerations imply that for the number of common edges, the 
following equalities should be fulfilled: 3N6=HN11 and 2N11 = (11-H)N4.  Since 
N4 = (12-5N11)/2, we obtain that H = 11 – 2N4/N11 = 6 – 12/N11. From this latter 
equation we can determine the possible solutions for H. It can be stated that the 
proper solutions are: H=3 if N11=4, H=4 if N11=6 and H=5 if N11=12. 

From this it follows that in subset GC, GE and GG there do not exist PCC graphs 
having identical neighborhoods for any 11-gons. It should be emphasized that the 
results obtained above are only valid, when it is supposed that each isolated 11-
gon has identical neighborhood, that is, each 11-sided polygon is surrounded by H 
hexagons and (11-H) squares, exactly. 

After analyzing the topological structure of vertex coronas, it was conjectured that 
only the existence of PCC graphs belonging to GA could be expected (case H=5, 
N11=12). It is easy to show that there exists a simple polyhedron which 
corresponds to a trivalent graph GAR in subclass GA. By transforming the great 
rhombicosidodecahedron we can generate a new polyhedron, which has the same 
topological parameters as graphs in GA. This simple topological transformation of 
the great rhombicosidodecahedron can be performed by dividing six squares into 
two parts. As a result of this operation, we obtain 6*2+24=36 squares, 20 
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hexagons and 12 eleven-sided polygons. (See Fig. 1.) Consequently, the number 
of new vertices, faces and edges will be 132, 68 and 198, respectively. (As can be 
stated, each 11-gon is surrounded by H=5 hexagons and (11- H) =6 squares.) 

The trivalent polyhedron contains two different types of vertices. The 
corresponding combinatorial curvatures are as follows: 1-3/2+(1/4+1/4+1/11) = 
1/11 and 1- 3/2+(1/4+1/6+1/11)=1/132. It is conjectured that graph GAR of this 
new polyhedron is maximal, that is GAR with vertex number of 132 is the “largest 
trivalent PCC graph” in ℜS(4,6,11). 

Theorem 4 There exists a non-cubic (non-trivalent) PCC graph which contains 
138 vertices. 

 
Figure 9 

A non-cubic PCC graph with vertex number of 138 

Proof. In Fig. 9 the Schlegel diagram of this polyhedron is shown. It has 138 
vertices, 219 edges and 83 faces (8 triangles, 45 squares, 24 pentagons and six 19-
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gons). As can be seen, there are 114 trivalent and 24 four-valent vertices. The 
minimum value of combinatorial curvatures is 1-3/2+ (1/4+1/5+1/19) = 1/380. 
Based on this observation, it is conjectured that for PCC graphs, the minimum 
value of combinatorial curvatures is not less than 1/380. If the conjecture is true, a 
simple consequence is that the upper bound VUB of vertices is 760. 

Theorem 5 There is no 3-regular, vertex homogenous PCC graph with vertex 
number greater than 120. 

Proof. It is important to note that a number 0<ΦC ≤1/4 cannot be the constant 
positive combinatorial curvature of a VH graph, if 2/ΦC is not a positive integer. A 
consequence of this observation is that there are no 3-regular, vertex homogenous 
PCC graphs composed of 5- and 7-gons only, because ΦC=Φ(5,5,7)=1-
3/2+(1/5+1/5+1/7)=3/70, consequently 2/ΦC=140/3=46,667. 

Starting with the concept outlined in Ref.[1], consider a list of positive integers 
with a1 ≤….≤ aL. We say that a vertex X has a vertex pattern V(a1,…ai…., aL) if 
the faces incident with X may be ordered f1,…fi…fL so that fi has size ai for 1≤ i 
≤L. The complete list of the possible vertex patterns (V-patterns) is given in 
Ref.[1]. We define a vertex pattern V(a1,…ai…., aL) to be “bed” if there is no 
regular VH graphs which contain V(a1,…ai…., aL). By definition, a V-pattern 
which is not bed, is called “good”. For example, considering 5-regular PCC 
graphs, V(3,3,3,3,5) is a good V-pattern. This belongs to the graph of the snub 
icosidodecahedron with 60 vertices which is the “largest” graph among 5-regular 
PCC graphs. 

The candidates of 3-regular vertex-homogenous graphs can be classified into 5 
groups which are denoted by ∏0, ∏1, ∏2, ∏3 and ∏4, respectively. ∏0 contains the 
monofaced, ∏1, ∏2, ∏3 contains the bifaced, and ∏4 includes the possible trifaced 
graphs, respectively. 

Group ∏0 includes only the tetrahedron and the dodecahedron, since the cube is a 
4-sided prism. The graph of the dodecahedron is the largest PCC graph in Group 
∏0. 

Group ∏1 contains the following V-patterns: V(3,5,5), V(3,6,6), V(3,7,7), (3,8,8), 
V(3,9,9), V(3,10,10) and V(3,11,11). It is easy to show that V(3,11,11) is a bed V-
pattern. It follows that the graph belonging to V(3,10,10) is considered as the 
largest 3-regular, vertex-homogenous graph in Group ∏1. This graph represents 
the truncated dodecahedron with 60 vertices. 

Group ∏2 includes only three V-patterns: V(4,5,5), V(4,6,6) and V(4,7,7). It can 
be verified that V(4,5,5) and V(4,7,7) are bed V-patterns. The only good V-pattern 
is V(4,6,6) which corresponds to the truncated octahedron with 24 vertices. 

Group ∏3 contains five V-patterns: V(5,5,6), V(5,5,7), V(5,5,8), (5,5,9) and 
V(5,6,6). It is easy to see that the graph belonging to V(5,6,6) is considered as the 
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largest 3-regular, vertex-homogenous PCC graph in Group ∏3. This is equivalent 
to the Buckminster fullerene with 60 vertices. 

Group ∏4 includes V-patterns represented by V(c1,c2,c3) where inequality 3≤ 
c1<c2<c3 holds. It is clear that V(c1,c2,c3) are good V-patterns only if c1,c2,c3 are 
even integers. This condition is satisfied only for two particular cases: V(4,6,8) 
and V(4,6,10). The first one corresponds to the truncated cuboctahedron 
(rhombicuboctahedron) with 48 vertices, while the second one belongs to the great 
rhombicosidodecahedron with 120 vertices. We can conclude that the largest 3-
regular, vertex homogenous PCC graph is represented by the great 
rhombicosidodecahedron. 

Theorem 6 There is no 4-regular, vertex homogenous PCC graph with vertex 
number greater than 60. 

Proof. For 4-regular PCC graphs the possible V-patterns are as follows: V(3,3,3,c) 
if 3≤c, V(3,3,4,c) if 4≤c≤11, V(3,3,5,c) if 5≤c≤7 and V(3,4,4,c) if 4≤c≤5. The 
graph of the small rhombicosidodecahedron composed of 20 triangles, 30 squares 
and 12 pentagons is a 4-regular VH graph with 60 vertices. This means that 
V(3,3,4,5) is a good V-pattern. For 4-regular, vertex homogenous PCC graphs the 
following relationships are valid: 

2V P =Φ  (18a) 
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where ΦP is the positive combinatorial curvature, E is the number of edges, and Nk 
is the number of k-sided faces for k ≥3. 

Among the possible vertex patterns there are only 4 types for which the vertex 
numbers of the corresponding 4-regular, VH graphs are greater than 60. These are: 
V(3,3,4,11), V(3,3,4,10), V(3,3,4,9) and V(3,3,5,7). We will verify that all of them 
are bed V-patterns. The proof is based on the following considerations. By 
definition, a k-sided face fk is called an isolated face, if fk has no k-sided edge-
neighbor faces. It is easy to see that 4-regular, VH graphs characterized by vertex-
patterns V(3,3,4,11), V(3,3,4,10), V(3,3,4,9) and V(3,3,5,7) cannot exist if all 
faces are isolated. We only need to prove that for graphs belonging to patterns 
V(3,3,4,11), V(3,3,4,10), V(3,3,4,9), V(3,3,5,7) the equality E=3N3 holds. This 
implies that all faces are isolated. We suppose (for a contradiction) that 
V(3,3,4,11), V(3,3,4,10), V(3,3,4,9) and V(3,3,5,7) are good V-patterns. Using an 
extended version of Eq.(6) given in Ref.[4], we can conclude that the 
corresponding numbers of vertices are: 264, 120, 72 and 210, while the 
corresponding face numbers are: (N3=176, N4=66, N11=24); (N3=80, N4=30, 
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N10=12); (N3=48, N4=18, N9=8) and (N3=140, N5=42, N7=30), respectively. 
Consequently, we obtain 3N3=528=E, 4N4=11N11=264=V for case V(3,3,4,11); 
3N3=240=E, 4N4=10N10=120=V for case V(3,3,4,10); 3N3=144=E, 
4N4=9N9=72=V for case V(3,3,4,9) and 3N3=420=E, 5N5=7N7=210=V for case 
V(3,3,5,7). For all cases we have that E=3N3 is fulfilled. We obtain a contradiction 
to the assumption that V(3,3,4,11), V(3,3,4,10), V(3,3,4,9) and V(3,3,5,7) are 
good V-patterns. 

4 Final Remarks 
The classification of polyhedral PCC graphs cannot be regarded complete as yet. 
In fact, work is in progress in this direction, and we hope that in subsequent 
publications an account on that will be given. To characterize quantitatively the 
geometric structure of PCC graphs, we introduced two topological shape factors Λ 
and Ω defined as 

)G(/)G()G( minmax ΦΦ=Λ  (19) 

and 
)G()G(V

39
380)G( minΦ=Ω

 (20) 

In Eqs.(19-20), for an arbitrary graph G∈ ℜ, V(G), Φmax(G) and Φmin(G) stand for 
the corresponding vertex number, the maximal and minimal combinatorial 
curvatures, respectively. 

Figure 10 
Non vertex-homogenous PCC graphs: a cubic graph with vertex number of 40 (a) and a non-cubic 

graph with vertex number of 39 (b) 
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Shape factors Λ(G) and Ω(G) are finite positive numbers, for which relationships 
Λ≥1 and Ω≤2*380/39= 19.487 are fulfilled. Since V(G)Φmax(G)≥2≥V(G)Φmin(G) 
we have 

)G(
)G(

39
760)G()G(

Λ
Ω

≥≥ΩΛ
 (21) 

It follows that Λ=1 and Ω=760/39=19.487 if the graph G is vertex-homogenous. 
We conjecture that for any non vertex-homogeneous PCC graph, the following 
inequalities are valid: 

765/380)G(1 =≤Λ<  (22) 

and 

0513.17
4*39
7*380)G(1 =≤Ω≤

 (23) 

If the conjecture represented by Eq.(22) is true, then the upper bound of Λ is 
sharp. It is reasonable to suppose that the upper bound (i.e. Λ=76) is valid only for 
the trivalent PCC graph shown in Fig. 10a. Moreover, it is conjectured that the 
lower and upper bounds of Ω are sharp. We suppose that equality Ω=1 is fulfilled 
only for the non-cubic PCC graph depicted in Fig. 10b. For example, equality Ω = 
17.0513 holds for a 7-sided polyhedron where the minimum value of 
combinatorial curvatures is equal to 1-4/2+(1/3+1/3+1/3+1/4)=1/4. This 
heptahedron has 7 vertices, 12 edges, its faces consist of 4 triangles and 3 
quadrilaterals [5]. A common feature of PCC graphs shown in Fig. 9 and Fig. 10 
is that the minimum values of combinatorial curvatures are identical: 1– 3/2 
+1/4+1/5+1/19= 1/380. 

Conclusions 

According to the conjecture proposed by DeVos and Mohar, for the maximal 
vertex number Vmax of a PCC graph (a polyhedral graph with positive 
combinatorial curvature, which is neither a prism, nor an antiprism), the inequality 
120 ≤ Vmax ≤ 3444 is fulfilled. In this paper we verified that the lower bound (120) 
is not sharp, consequently, it can be improved. Based on theoretical investigations 
and numerical computations we obtained the following results: 

i For any PCC graph the maximum number of vertices is not less than 138. 

ii There is no trivalent PCC graph in ℜS(3,7,b) if b > 11 positive integer. 

iii There is no trivalent PCC graph in ℜS(3,8,b) if b > 22 positive integer. 
Moreover, if b=22 there exists a trivalent PCC graph Gx in ℜS(3,8,22) 
composed of 3-, 8- and 22-gons, for which V(Gx)= 66. 

iv There exists a trivalent PCC graph Gy in ℜS(4,6,11) for which V(Gy)=132. 
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v There exists a non-cubic PCC graph which contains 138 vertices. 

vi There are no regular, vertex homogenous PCC graphs with vertex number 
greater than 120. The graph of the great rhombicosidodecahedron with 120 
vertices is the largest regular, vertex homogenous PCC graph. 

vii It is conjectured that there are no PCC graphs having faces with side-
number greater than 19, except the two trivalent polyhedral graphs G20 and 
G22 containing 20- and 22-sided faces, respectively. 

viii Moreover it is also conjectured that for PCC graphs the minimum value of 
positive combinatorial curvatures is not less than 1/380. 
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