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Abstract: A connected non-regular graph G with n vertices and m edges is called a mean 

graph, if there exists a p ≥ 2 integer for which p=[G]=2 m/n holds. The topological index 

p=p(G) is called the centrality parameter of graph G. It is obvious that, if G is a mean 

graph, then its centrality parameter p(G) is a uniquely defined positive integer. Mean 

graphs represent a particular subset of connected non-regular graphs. In this note, by 

presenting relevant examples, some structural irregularity properties of mean graphs are 

studied and characterized. Comparing the degree deviations S(G) and S(H) of mean graphs 

G and H having equal centrality parameter p(G)=p(H) it is proved that if the only 

difference in the corresponding degree sequences of G and H is that the number of vertices 

of degree p is different, then S(G)=S(H). The smallest mean graph is the 4-vertex unicyclic 

graph having a degree sequence (3, 2, 2, 1). This graph is isomorphic to the 4-vertex 

antiregular graph A4, for which S(A4)=2 holds. Using comparative tests on preselected 

connected graphs it has been shown that the degree deviation S(G) is poorly suited for 

discriminating among non-regular graphs. 

Keywords: non-regular graphs; irregularity indices; antiregular graphs; complete split 
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1 Preliminary 

Let G=(V, E) be a finite, simple connected graph with n vertices and m edges.    

For connected graph G, denote by d(v) the degree of a vertex v and by e=uv the 

edge connecting vertices u and v. 

Let Δ=Δ(G) and δ=δ(G) be the maximum and minimum degrees, respectively, of 

vertices of G, where NΔ and Nδ stand for the number of of vertices of degree 

Δ=Δ(G) and δ=δ(G), respectively. The average degree of a graph G denoted by 

[G], it is equal to [G ]=2 m/n. 

Using the standard terminology [1], a graph G is called R-regular if all its vertices 

have the same degree R. A connected graph is called non-regular if it contains at 
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least two vertices with different degrees. A non-regular graph G is said to be       

k-degreed, if its degree set contains exactly k different degrees. Consequently, a 

bidegreed graph G(Δ,δ) is a non-regular graph whose vertices have exactly two 

different degrees. An n ≥4 vertex bidegreed graph G(Δ,δ) is called a balanced 

graph if n is an even integer for which NΔ = Nδ =n/2 holds. Among n-vertex 

connected bidegreed graphs, path P4 with degree sequence (2,2,1,1) and the so-

called diamond graph GD with degree sequence (3,3,2,2) represent the smallest 

balanced bidegreed graphs. 

As usual, the cyclomatic number of a connected graph with n vertices and m edges 

is defined as Q=Q(G)= m – n +1. A connected graph G having Q(G)=k ≥1 cycles 

is said to be a k-cyclic graph. As a particular case, if Q(G)=0 holds the 

corresponding acyclic graph is called a tree graph. A tree with n vertices has 

exactly n-1 edges. 

For a connected graph G with n vertices and m edges, the mean degree of G 

denoted by [G] is defined as [G]=2 m/n. A non-regular graph G is called a mean 

graph if there exists a positive integer p for which p=[G] holds. This positive 

integer p is a uniquely defined graph invariant, it is said to be the centrality 

parameter of graph G. From the definition of mean graphs it follows that the 

centrality parameter is determined by the degree sequence of graphs, the value of 

p(G) does not depend on the distances between vertices in a graph. Consequently, 

the definition  of mean graphs is independent of the distance-based centrality 

concept known from classical graph theory. 

A connected graph G is called a really mean graph if it is a mean graph and the 

degree set of G contains at least one vertex of degree p. In a really mean graph a 

vertex of degree p is called a  mean vertex. 

The number of mean vertices in a mean graph G is denoted by Np(G). A mean 

graph G is said to be a minimal graph if it has no mean vertices. An edge uv in a 

really mean graph G is called a mean edge if d(u)=d(v)=p holds. The number of 

mean edges of G is denoted by Mp(G). 

By definition, a topological invariant IT(G) of a graph G is called an irregularity 

index if IT(G) ≥ 0 and IT(G)=0 if and only if graph G is a regular graph.            

The degree deviation S(G) of a graph G belongs to the family of most popular 

graph irregularity indices. This graph invariant was introduced by Nikiforov [2], 

and for a connected non-regular graph G with n vertices and m edges it is defined 

as 

𝑆(𝐺) =   𝑑𝑖 −
2𝑚

𝑛
 =   𝑑𝑖 − [𝐺] .

𝑛

𝑖=1

𝑛

𝑖=1

                                                                       (1) 
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2 Some Fundamental Properties of Mean Graphs 

It is obvious that every non-regular unicyclic graph G is a really mean graph with 

identical centrality parameter p(G)=2. The smallest mean graph is the 4-vertex 

unicyclic graph with a degree sequence (3, 2, 2, 1). It is isomorphic to the 4-vertex 

antiregular graph A4, for which S(A4)=2 holds. 

Proposition 1 Let G be a non-regular unicyclic graph and denote by H the 

unicyclic graph generated by inserting into G some vertices of degree 2.           

Then S(G)=S(H). 

Proof.  Because the average degree [G ]=2 m/n of a unicyclic graph G is equal to 

2, it follows that S(G) and S(H) are independent of the number of vertices with 

degree 2, consequently S(G)=S(H) holds. This observation for 8 and 12 vertex 

unicyclic graphs U8 and U12 is demonstrated in Fig. 1. 

 

Figure 1 

Four-degreed unicyclic graphs U8 and U12 with centrality parameter of p=2 

Graph U8 with 8 vertices has a degree sequence DDs(U8)= (41 , 32 , 21, 14) and 

graph U12 with 12 vertices has a degree sequence DDs(U12)= (41, 32 , 25, 14). 

Because the difference between degree sequences of two graphs is represented 

only in the different numbers of vertices of degree 2, this implies that U8 and U12 

have identical degree deviation S(U8)=S(U12)=8. 

Based on the above considerations the following proposition can be obtained. 

Proposition 2 Let G be a mean graph having n vertices and m edges and a 

centrality parameter p=p(G). Denote by H the graph constructed from G by 

inserting into G finite number vertices of degree p. Then H will be a really mean 

graph, consequently p(G)=p(H) and S(G)=S(H) hold. It follows that the number 

Np(H) of mean vertices of degree p in H can be arbitrarily large. 

Example 1 One bidegreed and two tridegreed mean graphs are depicted in Fig. 2. 

These graphs have different degree sequences DDs(Y6) = (53, 33), DDs(TY7) = 

(53, 41, 33), DDs(TY9) = (53, 43, 33) but identical degree deviation S(Y6) = S(TY7) 

= S(TY9) = 6. 
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Figure 2 

Graphs with identical centrality parameter p=4 

Remark 1 For an n-vertex mean graph G consider the topological invariant 

defined by n/p(G). It is conjectured that for a mean graph G the sharp inequality 

n/p(G) ≥ 3/2 holds. For example, n/p(Y6)=3/2 for graph Y6 depicted in Fig. 2. 

Proposition 3 There are no mean graphs with cyclomatic number Q = 0, 2 and 3. 

Proof.  For an n-vertex connected graph G 

𝑝(𝐺) =
2(𝑄(G) + 𝑛 − 1)

𝑛
=

2𝑄(G)

𝑛
+ 2 −

2

𝑛
                                                       (2)

 
 

It follows that if Q(G) = 0, 2 or 3, then G cannot be a mean graph. 

Proposition 4 For the centrality parameter p of a mean graph the inequality 2 ≤ p 

≤ Δ-1 holds. 

Proof. As an example, consider the unicyclic graphs depicted in Fig. 3. For these 

mean graphs Δ = 3, δ = 1 and 2= p= Δ – 1=2 holds. 

 

Figure 3 

Tridegreed graphs UB and UC constructed from bidegreed unicyclic graph UA 

As can be seen, the number of mean vertices can be an arbitrary non-negative 

integer (i.e. N2 = 0, 1, 2, 3, …). 

Proposition 5 Let j≥3 be an arbitrary integer. Then there exists a bidegreed 

balanced mean graph Fn with n=2j vertices for which p(Fn)=3 and Q(Fn)=1 + n/2 

and S(Fn)=n hold. 
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Proof. Consider the infinite sequence of n-vertex balanced bidegreed  mean graphs 

Fn depicted in Fig. 4. 

 

 F6 F8 F12 

Figure 4 

Bidegreed balanced mean graphs Fn having degree deviation of S(Fn)=n 

The fundamental property of graphs Fn with n≥6 vertices is that p(Fn)=3, Q(Fn)=1 

+ n/2 and S(Fn)=n hold for them. From bidegreed graphs Fn tridegreed really mean 

graphs of various type can be constructed by inserting vertices of degree 3 into Fn. 

Proposition 6 Let j≥3 be an arbitrary integer. Then there exists an infinite 

sequence of tridegreed really mean graphs Hn with n=2j vertices for which 

p(Hn)=3, Q(Hn)=1 + n/2 and S(Hn)=4 hold. 

Proof. Consider the tridegreed mean graphs depicted in Fig. 5. 

 

Figure 5 

Tridegreed mean graphs Hn having identical degree deviation, S=4 

Graphs H6, H8, H10 and H12 contain 3, 5, 7 and 9 mean vertices, respectively. It is 

easy to check that for all tridegreed graphs p(Hn)=3, Q(Hn)=1 + n/2 and S(Hn)=4 

hold. 

There exist infinitely many complete bipartite graphs belonging to the family of 

mean graphs. It is easy to prove the following proposition. 

Proposition 7 Let KΔ,δ be a complete bipartite graph with n= Δ+δ vertices and m= 

Δδ edges where δ≥2 even integer and Δ=3δ. Then KΔ,δ is a mean graph with a 

centrality parameter p(KΔ,δ)= Δ/2 = 3δ/2 and S(KΔ,δ) = p(KΔ,δ)(Δ-δ) = m. 

Remark 2 The smallest complete bipartite mean graph is the graph K2,6 with 8 

vertices and 12 edges, for which p(K2,6)=3 and S(K2,6)= m = 12. 
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3 Pseudo-Antiregular Mean Graphs 

A connected n-vertex graph An whose degree set consists of n-1 elements is called 

an antiregular graph [3, 4, 5]. It follows that a connected antiregular graph has 

exactly two vertices of the same degree. These two vertices with same degree are 

called exceptional vertices [5]. 

Lemma 1 [6]: Let G be an n-vertex connected triangle-free graph. Then for every 

edge uv in G the inequality d(u) + d(v) ≤ n holds. 

Lemma 2 [4, 5]: Two vertices u and v of a connected n-vertex antiregular graph 

An are adjacent if and only if d(u) + d(v) ≥ n. 

Remark 3 There exists n-vertex connected graph G for which d(u) + d(v) ≥ n 

holds for every edge uv of G, but G does not belong to the family of antiregular 

graphs. For example, such graphs where d(u) + d(v) = n holds for every edge uv 

are the n-vertex stars Sn. 

Proposition 8 Let An be an n ≥ 4 vertex antiregular graph where n is an even 

integer. Then graph An is a mean graph and for its average degree p=[An]=n/2 

holds. It follows that An has exactly two mean vertices (exceptional vertices) with 

degree p=n/2. 

Proof. It is known that the edge number m(An) of an n-vertex antiregular graph is 

. It follows that if n is even integer then p=[An]=n/2 and the 

corresponding edge number is m(An)=n2/4. 

Remark 4 One can easily determine the degree deviation of antiregular graphs An 

with n≥4 even vertex number. It is 

𝑆(𝐴𝑛) = 2  𝑖 = 2  𝑖                                                                                      (3)

𝑛/2−1

𝑖=1

𝑝(𝐴𝑛 )−1

𝑖=1

 

 

where p(An)=n/2. 

Let uv be an edge of a connected n-vertex graph G. Edge uv is called a strong 

edge of G, if d(u) + d(v) ≥ n, and edge uv is called a weak edge of G, if d(u) + d(v) 

< n holds. It is easy to check that in a connected antiregular graph An every edge is 

strong. 

The construction of pseudo-antiregular mean graphs is based on the following 

concept. Let An be a traditional n-vertex connected antiregular graph with n 

vertices where n≥4 is an arbitrary even integer and p(An)=n/2. Now, by inserting k 

novel vertices of degree n/2 into An as a result of this operation one obtains an    

N-vertex pseudo-antiregular mean graph PAN(n,k) with centrality parameter 

p(PAN(n,k))=n/2 and with vertex number N=n+k. As can be observed, the vertex 



Acta Polytechnica Hungarica Vol. 18, No. 5, 2021 

 – 213 – 

sequences of graphs An and PAN(n,k) are different, but the degree sets of both 

graphs are identical. 

In Fig. 6 six really mean graphs with equal centrality parameter p=3 are depicted. 

Graph J1 is isomorphic to the traditional connected 6-vertex antiregular graph A6. 

Graphs J2, J3, JA4, JB4 and JC4 are pseudo-antiregular mean graphs. 

Their common properties are as follows: all of them have mean vertices and mean 

edges, they have identical degree sets (1, 2, 3, 4, 5), and for them the 

corresponding degree deviation is equal, namely S=6. 

 

Figure 6 

Non-regular graphs with the same degree set (1, 2, 3, 4, 5) and the same degree deviation S=6 

Every edge of antiregular graph J1 is a strong edge. Graphs J2, J3, JA4 and JB4 are 

8-vertex graphs, they have 3 strong edges and 9 weak edges. Graphs J2 and J3 have 

exactly 2 and 3 mean edges, respectively. Graphs JA4 and JB4 are non-isomorphic 

graphs including 4 mean edges. Graph JC4 with 10 vertices has also 4 mean edges, 

among its 15 edges every edge is a weak edge. 

From the previous considerations the following proposition yields. 

Proposition 9 Let n and k be integer numbers where n ≥ 4 is even, and k ≥ 0. 

Then, for appropriately selected n and k parameters there exist (n-1) degreed 

really mean graphs with centrality parameter p=n/2. Such graphs are the 

traditional antiregular graphs An with even n ≥ 4 vertex number and k=0, 

moreover the corresponding pseudo-antiregular mean graphs PAN(n,k) with vertex 

number N=n+k where k ≥ 1. 
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4 Two Conjectures 

Additionally, for the structural characterization of connected mean graphs we 

introduce two novel graph irregularity indices formulated as 

𝐼𝑅𝐷(𝐺) =
2𝑁𝛥𝑁𝛿

𝑁𝛥 + 𝑁𝛿
(𝛥 − 𝛿) 

 
 (4) 

𝐼𝑅𝑅(𝐺) =
𝑛

2
(𝛥 − 𝛿) 

 (5) 

where NΔ is the number of vertices of degree Δ and Nδ is the number of vertices of 

degree δ, respectively. 

Let G be an arbitrary non-regular connected n-vertex and m-edge graph with 

maximum degree Δ and minimum degree δ ≥ 1. For graph G, the following 

conjectures are established. 

Conjecture 1 It is conjectured that 

𝑆(𝐺) =   𝑑𝑖 −
2𝑚

𝑛
 

𝑛

𝑖=1

≥
2𝑁Δ𝑁𝛿

𝑁Δ + 𝑁𝛿
(Δ− 𝛿) = 𝐼𝑅𝐷(𝐺)                                             (6) 

 

Conjecture 2 It is conjectured that 

𝑆(𝐺) =   𝑑𝑖 −
2𝑚

𝑛
 

𝑛

𝑖=1

≤
𝑛

2
(Δ − 𝛿) = 𝐼𝑅𝑅(𝐺)                                                           (7) 

 

Proposition 10 [7]: For connected bidegreed graphs G(Δ,δ) with n vertices and m 

edges it has been proved that 

𝑆(𝐺(𝛥, 𝛿)) =   𝑑𝑖 −
2𝑚

𝑛
 

𝑛

𝑖=1

=
2𝑁𝛥𝑁𝛿

𝑁𝛥 + 𝑁𝛿
(𝛥 − 𝛿)                                                       (8) 

 

where n= NΔ + Nδ. 

Proposition 11 Let G be a connected bidegreed graph G(Δ,δ) with n-vertices and 

m-edges. Then 

𝑆 𝐺 𝛥, 𝛿  =   𝑑𝑖 −
2𝑚

𝑛
 

𝑛

𝑖=1

=
2𝑁𝛥𝑁𝛿

𝑁𝛥 + 𝑁𝛿

 𝛥 − 𝛿 = 

 

= 𝐼𝑅𝐷(𝐺(Δ, 𝛿)) ≤
𝑛

2
(𝛥 − 𝛿) = 𝐼𝑅𝑅(𝐺(Δ, 𝛿))                                                         (9) 
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where equality holds if G is a balanced bidegreed graph, (where n ≥ 4 is an even 

integer, and NΔ = Nδ =n/2 holds.) 

Proof.  Because G is a bidegreed graph where n= NΔ + Nδ, one obtains that 

𝑆(𝐺(𝛥, 𝛿)) =
2𝑁𝛥𝑁𝛿

𝑁𝛥 + 𝑁𝛿
(𝛥 − 𝛿) =

2𝑁𝛥(𝑛 − 𝑁𝛥)

𝑛
(𝛥 − 𝛿)                                      (10) 

 

Consider the monotonically increasing function defined by 

𝑔(𝑁𝛥) =
2

𝑛
𝑁𝛥(𝑛 − 𝑁𝛥)                                                                                                  (11) 

 

Its maximum value with respect to NΔ can be computed from 

𝜕𝑔(𝑁𝛥)

𝜕𝑁𝛥
=

2

𝑛
(𝑛 − 2𝑁𝛥) = 2 −

4

𝑛
𝑁𝛥 = 0                                                                   (12) 

 

As can be observed, function g(NΔ) has a maximum value if  NΔ = Nδ =n/2 is 

fulfilled. 

Consequently, for n-vertex connected bidegreed graphs 

𝑆 𝐺 𝛥, 𝛿  ≤
𝑛

2
 𝛥 − 𝛿 = 𝐼𝑅𝑅 𝐺 𝛥, 𝛿  ,                                                                 13  

 

and equality holds if n ≥ 4 is an even integer and NΔ = Nδ =n/2. 

Remark 5 If n is an odd integer, then for any n-vertex bidegreed graph S(G) < 

IRR(G) holds. Moreover, if n is even integer, but NΔ ≠ Nδ for a bidegreed graph 

G, then IRR(G) will always be larger than S(G). For example, if G is the 4-vertex 

star K1,3 then S(K1,3)=3 < 4 = IRR(K1,3). 

Concerning the validity of Conjecture 1 and Conjecture 2, it can be shown that 

equality in formulas (6) and (7) is satisfied for a broad class of tridegreed mean 

graphs. 

Proposition 12 There exist infinitely many n-vertex really mean tridegreed graphs 

Hn for which S(Hn) = IRD(Hn) = 4 holds. 

Proof. The result follows from the properties of mean graphs Hn depicted in Fig. 5. 

Proposition 13 As it is demonstrated in Fig. 4, if n ≥ 4 is an even integer, then 

there exist infinitely many n-vertex balanced bidegreed mean graphs Fn for which 

S(Fn) = IRD(Fn) = IRR(Fn) = n holds. 

Proof. Because bidegreed graphs Fn are balanced mean graphs the result follows 

from Proposition 11. 

Remark 6 Consider a connected graph G with n vertices and m edges. Let A(G) 

and L(G) be the corresponding adjacency and Laplacian matrices of graph G, 
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respectively. Denote by λk (1 ≤ k ≤ n) and μk (1 ≤ k ≤ n) the eigenvalues of 

matrices A(G) and L(G). 

Because for an n-vertex and m-edge connected graph G 

 𝜆𝑘
2

𝑛

𝑘=1

=  𝜇𝑘

𝑛−1

𝑘=1

= 2𝑚                                                                                                    (14) 

 

holds, it follows that if G is a mean graph with centrality parameter p(G), then 

𝑝(𝐺) =
1

𝑛
 𝜆𝑘

2

𝑛

𝑘=1

=
1

𝑛
 𝜇𝑘                                                                                           (15)

𝑛

𝑘=1

 

 

In Ref. [8] several non-isomorphic 10-vertex graphs with their Laplacian 

eigenvalues are presented. All of them are really mean and Laplacian 

equienergetic graphs having identical centrality parameter p=5. For these mean 

graphs the corresponding edge number is equal to m=n2/4=25. 

5 Additional Considerations 

The discriminating power of various graph irregularity indices have been tested 

and compared in several publications [9-21]. We have seen that the degree 

deviation S(G) is poorly suited for discriminating among mean graphs. Its low-

level discriminating performance was demonstrated primarily on unicyclic graphs 

having identical centrality parameter p=2. This means that degree deviation 

measure S(G) is unable to classify (order) mean graphs according to their 

structural irregularity. 

In what follows it will be shown that the discriminatory power of S(G) is poor not 

only for mean graphs but for balanced bidegreed graphs as well. Starting with 

Proposition 11, balanced bidegreed graphs are characterized by the following 

property: 

Proposition 14 Let G(Δ,δ) be an n-vertex and m-edge balanced bidegreed graph 

where n ≥ 4 is an even integer and the equality NΔ = Nδ =n/2 holds. Then 

𝑆(𝐺(𝛥, 𝛿)) =   𝑑𝑖 −
2𝑚

𝑛
 

𝑛

𝑖=1

=
𝑛

2
(𝛥 − 𝛿) = 𝐼𝑅𝑅(𝐺(𝛥, 𝛿))                                  (16) 

 

Proof. Since NΔ = Nδ =n/2, this implies that 

2𝑚 = 𝛥𝑁𝛥 + 𝛿𝑁𝛿 =
𝛥𝑛

2
+

𝛿𝑛

2
=

𝑛

2
(𝛥 + 𝛿)                                                              (17) 
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Consequently, one obtains 

𝑆 𝐺 𝛥, 𝛿  =   𝑑𝑖 −
2𝑚

𝑛
 

𝑛

𝑖=1

= 𝑁Δ  Δ −
Δ + 𝛿

2
 + 𝑁δ  δ −

Δ + 𝛿

2
 

=
𝑛

2
 Δ − 𝛿                                                                                       (18) 

 

There are infinitely many balanced bidegreed graphs characterized with the above 

property. Such graphs can be generated by the so-called partial edge-subdivision 

operation (PES transformation) performed on R≥ 3 regular graphs. By using PES 

transformation on the R≥3 regular graph GR with nR-vertices we can insert n/2 

new vertices of degree δ=2 into the parent graph GR. As a result of this 

transformation, one obtains a balanced bidegreed graph G(R,2) with vertex 

number n(G(R,2))=2nR and edge number m(G(R,2))=nR(R+2)/2. 

Example 2 The concept of PES transformation is illustrated by graphs depicted in 

Fig. 7. The 3-regular graph GT is the graph of the 6-vertex trigonal prism. 

Balanced bidegreed graphs Gj (j = 1, 2, 3) constructed from GT are 12-vertex non-

isomorphic graphs containing 6 vertices of degree 3 and 6 vertices of degree 2. 

 

Figure 7 

Balanced bidegreed graphs constructed from the 3-regular graph GT 

Non-isomorphic balanced bidegreed graphs Gj (j = 1, 2, 3) do not belong to the 

family of mean graphs, however, they have identical degree deviation given by 

𝑆(𝐺𝑗 ) =   𝑑𝑖 −
5

2
 

12

𝑖=1

= 𝐼𝑅𝐷(𝐺𝑗 ) = 𝐼𝑅𝑅(𝐺𝑗 ) = 6                                                    (19) 
 

As can be observed, balanced bidegreed graphs depicted in Fig. 7 cannot be 

discriminated by irregularity indices S(G), IRD(G) and IRR(G). 

It is interesting to note that the so-called Albertson irregularity index [9] defined 

by 
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𝐴𝐿(𝐺) =   𝑑(𝑢) − 𝑑(𝑣) 

𝑢𝑣∈𝐸

                                                                                        (20) 
 

seems to be more efficient for graph irregularity characterization, i.e. it possesses 

a better discriminatory performance. Computing the Albertson indices for graphs 

Gj (j = 1, 2, 3), we have AL(G1)=2, AL(G2)=6 and AL(G3)=12. 

Pokoradi demonstrated in [23] that the comparative evaluation of the 

discriminating power of irregularity indices is problematic in many cases. 

For example, consider balanced graphs J1, JA4 and JB4 depicted in Fig. 6. For their 

irregularity indices one obtains: S(J1)=S(JA4)=S(JB4)=6, and AL(J1) = AL(JA4) = 

AL(JB4) =16. 

Denote by M1 the first Zagreb index of a connected graph with n vertices and m 

edges [17, 19]. It is interesting to note that the irregularity index defined by 

𝐼𝑅𝑀1(𝐺) = 𝑀1(𝐺) −
4𝑚2

𝑛
=   𝑑𝑖 −

2𝑚

𝑛
 

2𝑛

𝑖=1

                                                        (21) 

 

has an equivalent discriminating performance with degree deviation S(G) if G is a 

mean graph. This observation is based on the following considerations: If 

connected graphs G and H are mean graphs with identical centrality parameter p, 

and the only difference between the degree sequences of G and H is that number 

Np of vertices of degree p is different, then IRM1(G)= IRM1(H) holds. 

We end our study by pointing out a recently published paper [22] containing new 

results on extremal graphs having maximal degree deviation. Ghalavand and 

Ashrafi proved [22] that among all n-vertex connected graphs the maximal degree 

deviation is attained for a particular set of complete split graphs. An n-vertex 

complete split graph denoted by Cs(n,k) is a connected bidegreed graph consisting 

of an independent set of n-k vertices and a clique of k vertices, such that each 

vertex of the independent set is adjacent to each vertex of the clique [24]. 

According to Ref. [22] the corresponding degree deviation can be calculated as 

𝑆(𝐶𝑠(𝑛, 𝑘)) =
2𝑘

𝑛
(𝑛 − 𝑘)(𝑛 − 𝑘 − 1).                                                                      (22) 

 

Among n-vertex connected graphs the maximal degree deviation belongs to the 

complete split graphs Cs(n,k) listed below, where k is defined as follows 

- k=n/3, if n is divisible by 3, 

- k=(n-1)/3, if n-1 is divisible by 3, 

- k=(n-2)/3 if n-2 is divisible by 3 or 

- k=(n+1)/3 if n+1 is divisible by 3. 
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From the previous considerations, we can conclude that among 12-vertex 

connected graphs the maximal degree deviation belongs to the complete split 

graph Cs(n=12, k=4). In this case, the corresponding degree deviation is 

𝑆(𝐶𝑠(12,4)) =
2 ∙ 4

12
(12 − 4)(12 − 4 − 1) =

112

3
= 37.333                             (23) 

 

As can be observed, this degree deviation is considerably larger than that of 

balanced bidegreed graphs depicted in Fig. 7. 
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