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Abstract: Traditional edge-detection algorithms in image processing typically convolute a 
filter operator and the input image, and then map overlapping input image regions to 
output signals. Convolution also serves as a basis in biologically inspired (Sobel, Laplace, 
Canny) algorithms. Recent results in cognitive retinal research have shown that ganglion 
cell receptive fields cover the mammalian retina in a mosaic arrangement, with 
insignificant amounts of overlap in the central fovea. This means that the biological 
relevance of traditional and widely adapted edge-detection algorithms with convolution-
based overlapping operator architectures has been disproved. However, using traditional 
filters with non-overlapping operator architectures leads to considerable losses in contour 
information. This paper introduces a novel, tremor-based retina model and edge-detection 
algorithm that reconciles these differences between the physiology of the retina and the 
overlapping architectures used by today's widely adapted algorithms. The algorithm takes 
into consideration data convergence, as well as the dynamic properties of the retina, by 
incorporating a model of involuntary eye tremors and the impulse responses of ganglion 
cells. Based on the evaluation of the model, two hypotheses are formulated on the highly 
debated role of involuntary eye tremors: 1) The role of involuntary eye tremors has 
information theoretical implications 2) From an information processing point of view, the 
functional role of involuntary eye-movements extends to more than just the maintenance of 
action potentials. Involuntary eye-movements may be responsible for the compensation of 
information losses caused by a non-overlapping receptive field architecture. In support of 
these hypotheses, the article provides a detailed analysis of the model's biological 
relevance, along with numerical simulations and a hardware implementation. 

Keywords: Image contour detection, Non-Overlapping receptive field, Artificial 
involuntary eye-movements 
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1 Introduction 

The subjects of artificial vision and image processing are two of the most 
important areas in the development of robot technologies. Due to the overall 
failure of classical computational methods to provide general purpose applications 
in these areas, soft computing techniques and biologically inspired approaches to 
computation have become more and more popular in the last decade. The aim of 
these novel paradigms is to provide digital implementation of a variety of 
operations ranging from edge detection to more complex visual tasks, while 
guaranteeing the efficiency of biological visual systems [9,15]. In this paper we 
propose a novel edge-filtering method, in accordance with the latest findings in 
cognitive research. The paper is structured as follows: in a preliminary section we 
briefly present the goals of the edge-detection model. This will be followed by an 
overview of its biological background. Further sections treat the details of the 
model and discuss the hypotheses postulated based on its evaluation. Finally, test 
results and a hardware implementation are also presented. 

2 Motivation 

One thing in common between the majority of classical and biologically inspired 
edge detection methods used in image processing is that the output image is 
computed as the convolution of the input image and a filtering operator [9,7]. This 
has two important implications as regards the output image: 

• Input and output images have the same spatial resolution. 

• A given pixel value on the input image influences several pixel values on 
the output image. 

According to findings in retinal research, the convolution-based computational 
philosophy is biologically inadequate. This is well demonstrated by the fact that 
the number of retinal cones (photoreceptors sensitive to color) is about 6 million 
and the number of rods (photoreceptors sensitive to light regardless of its color) is 
about 125 million, while at the same time the number of ganglion cells sending the 
visual information to the brain is only about 1.2 million. This suggests that image 
processing as well as massive image compression (also referred to as 
convergence) takes place in the retina [1,12]. In terms of image processing, the 
above facts also imply the following: 

• Input and output images do not have the same resolution. 

• The influence of a given pixel value in the input image on a given pixel 
value on the output image is described by a complex temporal and spatial 
relationship. 
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In this paper we propose an edge detection method that implements data 
convergence and several dynamic properties of ganglion cells.  At the same time, 
the proposed algorithm is characterized by low complexity and is therefore easily 
implementable on hardware. 

3 Biological Overview 

3.1 Structure of the Retina 

The retina is the first stage in the visual processing hierarchy. Besides being 
responsible for the detection of light intensities, the retina also carries out 
preprocessing tasks and filters visual information that is important in later stages 
of feature extraction. 

The retina is composed of several types of cells: cones, rods, bipolar cells, 
horizontal cells, amacrine cells, and ganglion cells. All of these cells can be 
categorized into numerous subtypes based on their structure and functionality 
[5,11]. 

Information processing in the retina ends with a layer of ganglion cells. The axons 
of ganglion cells constitute the optic nerve which leads to the LGN and visual 
cortex, where higher-level visual processing takes place. Scientists distinguish 
between at least 11 kinds of ganglion cells based on the types of information they 
provide, as well as the way they react to stimuli (impulse response) [7]. 

Before providing a further description of the functionality of the retina, it is 
important to define the term receptive field. The state of a nerve cell is affected by 
every photoreceptor cell that provides it with input (either directly or indirectly). 
This set of cells providing input is referred to as the receptive field of the nerve 
cell. The structure of receptive fields can be observed from the firing patterns of 
cells when they are stimulated in an artificial environment. 

The key information processing activity of the retina deals with the detection of 
light, a task which is carried out by rods and cones. These photoreceptor cells 
reflect the intensity of incoming light through their membrane potentials [17]. The 
information provided by photoreceptor cells is primarily processed by the 
complex structure of horizontal and bipolar cells. The co-operation of these two 
cell types creates the well-known center-surround receptive fields of ganglion 
cells [2,3,4]. The structure of center-surround receptive fields comes in two types: 
on-centered off-surround and off-centered on-surround receptive fields. On-
centered off-surround cells are depolarized when there is light at the center of their 
receptive fields and less light at the periphery, while off-centered and on-surround 
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cells prefer more light at the periphery of their receptive field, and less at the 
center. 

From an engineering point of view, the center-surround receptive field structure is 
sensitive to changes of light intensity, a property crucial for contour detection. On-
centered off-surround cells are sensitive to the ‘light edge’ of a light-to-dark 
transition, while off-centered off-surround cells are sensitive to the ‘dark edge’ of 
the same transition [2,3,4]. 

3.2 Non-Overlapping Receptive Fields 

For a long time, experiments have shown extensive overlaps between receptive 
fields on the retina. However, when comparing the number of axons of 
photoreceptor cells to the number of axons in the optic nerve, it was discovered 
that the 130 million axons of rods and cones are condensed into 1.2 million axons 
in the optic nerve. Because of this fact, it was assumed that the retina performs 
some kind of information compression [14]. 

With the evolution of experimental methods, it was possible to make a distinction 
between many kinds of ganglion cells. Devries and Baylor [6] were able to 
distinguish between 11 kinds of ganglion cells, based on their receptive fields and 
response characteristics. Different kinds of ganglion cells provide different kinds 
of information, such as contour information, intensity information, motion 
information, as well as information on uniformly lighted image segments. It was 
also shown that receptive fields of ganglion cells of the same type do not overlap 
in the central fovea; the center of these receptive fields are located at a distance of 
one diameter (Figure 1). These measurements were confirmed by Packer and 
Dacey [16]. 

 
Figure 1 

Contrary to the previous theory, it was shown that receptive fields of ganglion cells of the same type do 
not overlap in the mammalian central fovea 

The scientific literature contains much contradicting data as regards the size and 
spatial organization of receptive fields, because the retina shows significant 
differences in various animal species. The model we propose takes into 
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consideration only the foveal areas of the mammalian retina, where the size of 
receptive fields is relatively small and uniform. Because of the lack of overlaps 
between receptive fields in the fovea, only intensity transitions that fall in the 
center of the receptive fields can be detected. Applying a non-overlapping 
architecture in today's well-known edge-detection methods leads to considerable 
losses in contour information. The proposed model provides a possible solution to 
the conflict between the continuous perception of contours and the non-
overlapping receptive field architecture in the central fovea. 

3.3 Involuntary Eye-Movements 

The three major kinds of involuntary eye movements that occur during fixation 
are microsaccades, drifts and tremors (also sometimes referred to as nystagmuses) 
[13,10]. 

Of the three eye movements, later sections of this paper concentrate on tremors. 
Tremors are involuntary, rhythmic oscillations of the eye that have frequencies of 
about 90 Hz and amplitudes of roughly the diameter of a cone on the fovea 
(therefore the diameter of the smallest of photoreceptor cells). There is currently 
no conclusive evidence on the functional role of tremors, however, artificially 
eliminating tremors, researchers have found that vision faded away. 

The model for edge-detection proposed in this paper uses non-overlapping 
receptive fields, but also incorporates tremors in order to achieve the effects of 
overlapping receptive fields through time. It will be shown that besides following 
the structure of human visual perception, the model accounts for the 130:1 
information reduction ratio characteristic to the pathway between photoreceptor 
cells of the retina and ganglion cells [18]. 

4 The Proposed Retina-Inspired Model for Edge 
Detection 

4.1 Filters Used for Edge Detection 

The model proposed in this paper performs edge detection based on the center-
surround structure of receptive fields. Despite the fact that in the retina, the size of 
these receptive fields increases from the fovea towards the peripheral areas, the 
model we propose considers only the foveal areas of the retina, where the size of 
receptive fields is relatively small and uniform. In the fovea, receptive fields are 
so small that the central area of the receptive fields consist of only one cone 
[16,8]. Taking into account the diameter of the photoreceptors and receptive fields 
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in the mammalian retina, receptive fields are represented by a 3-by-3, two-
dimensional filter matrix F , which resembles the Laplace-operator (Figure 2). 
Each matrix value represents an input weight with which the corresponding 
stimulus is multiplied. 
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Figure 2 

Receptive fields in mammalian fovea small enough to be represented by 3-by-3 pixel filter operators, 
as was done in many previous models 

The configuration of weights depends on the concrete type of receptive field being 
modeled; on-centered fields have positive values in the central area, surrounded 
by all negative weights, while off-centered fields contain a central negative value, 
surrounded by all positive weights. 

4.2 Non-overlapped Edge Filtering Model 

If we are to accept the fact that receptive fields do not overlap in the fovea, we 
have to consider its implications. 

The proposed model uses no overlaps between filter matrices (Figure 3). The input 
image is tiled using a mosaic arrangement of the filter matrix F  in a non-
overlapped manner. The center of each F  filter is at a distance of three pixels 
from each of the four closest filter matrix centers. The image pixel values are 
multiplied by the corresponding F  values and a weighted sum is calculated for 
each filter matrix center. The matrix composed of the filter centers provides the 
output matrix of the non-overlapped filtering operation. Figure 4 shows this 
processing structure. 

 
Figure 3 

Overlapping and non-overlapping filtering architecture 
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In the model with no overlaps, it can easily occur that a change in contrast falls 
precisely in between two filter matrices, thus remaining undetected. Figure 5 
shows an example of such information loss. Note that the output of this processing 
structure is identical to the 3-by-3 subsampling of the convolution of the input 
image with the same filter matrix F , and therefore the spatial resolution of the 
output is th9/1  the spatial resolution of the output obtained using convolution. In 
order to make the two results comparable, the size of the input image used in 
convolution-based filtering is also reduced by a factor of 3/1  along each 
dimension. 

 
Figure 4 

Non-overlapping processing structure. The input image is tiled using a mosaic arrangement of the filter 
matrix F in a non-overlapped manner. 

The non-overlapped image filtering method can be formalized as follows. Let I  
denote the input image, F  the filter mask, J  and K  the output images obtained 
using the classical convolution-based method and the non-overlapping filtering 
method, respectively. In classical convolution-based filtering, the output can be 
expressed as the convolution of I  and F  over a discrete 2D space: 

∑ ∑
+∞
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+∞

−∞=

−−⋅=⊗=
j k

kyjxIkjFIFyxJ ),(),(),(  (1) 

The result of the non-overlapped filtering K  can be obtained from the result of 
the overlapped filtering J , as follows: 

jnimji JK ⋅⋅= ,,  (2) 

where n and m indicate the size of matrix F  (in the current implementation, n = 
m = 3). It can be seen from equation 2 that the number of elements in K  is m x n 
times smaller than the number of elements in J . The model presented above 
takes into account the convergence between photoreceptor cells and ganglion 
cells, but does not incorporate temporal properties of ganglion cells, and 
involuntary eye-movements are also disregarded. Receptive fields were modeled 
using 3-by-3 matrices. It is clear that the lack of overlaps result in a deteriorated 
image; certain sections of line segments are blurred, or are missing altogether. 
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Figure 5 

In the model with no overlaps in case of a change in contrast falls in between two filter matrices, thus 
remaining undetected, information loss occurs 

4.3 Virtual Receptive Fields 

The non-overlapping retina model used to generate the above images performs too 
poorly to be considered biologically valid. The literature does not explain how the 
quality of images can be guaranteed by the retina, even with the difficulties caused 
by this non-overlapping architecture. This section provides a possible solution to 
the problem. 

The starting point of the model is that high-quality edge detection can be achieved 
only when assuming that receptive fields overlap. Taking into consideration the 
fact that ganglion cells of the same type do not physically overlap on the fovea, 
but also considering that such overlaps would otherwise be required, it is plausible 
to assume that the necessary overlaps are achieved through time. The large-
frequency and small-amplitude involuntary eye-movements known as tremors (see 
section 4.5) could be capable of causing the necessary overlaps through time. 
Such small tremors with frequencies of 90 Hz and amplitudes of 2-3 cones are 
sufficient for the correction of the minor gaps between non-overlapping receptive 
fields, and could reveal the presence of the previously unperceived line segments. 
Due to tremors, the image that is projected onto the retina suffers random 
displacements with an amplitude of 2-3 cones. This extension of non-overlapping 
receptive fields covers larger parts of the scene than the receptive fields did in the 
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previous model, and virtual receptive fields are created through time. Such virtual 
fields are larger in size compared to the original receptive fields, and also show 
considerable overlaps. For instance, assuming a physical receptive field with a 
diameter of 6 cones, and tremors with an amplitude of 3 cones, the emergent 
virtual receptive fields will have a diameter of 12 cones and the produced overlap 
will be enough to perform edge filtering without any information loss. 

 
Figure 6 

Due to the involuntary tremors and the impulse response of ganglion cells, virtual receptive fields are 
created. Virtual fields greater than real ones, and show notable overlap. 

The formation of such virtual receptive fields would be impossible without taking 
into account the impulse responses of ganglion cells. 

4.4 Temporal Model of Ganglion Cells 

It is generally a common property of ganglion cells that they produce increased 
activity when stimulated, and that their activity decreases only gradually when the 
stimulus either disappears or remains stagnant. However, if stimulating effects 
increase, the output of ganglion cells increases even more, and finally declines to 
0 (Figure 7). 
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Figure 7 

The general impulse response of a ganglion cell. 

In the proposed model, the stochastic response properties of ganglion cells are 
approximated using a window function (Figure 8). This simplification is justified 
because it conserves the essence of the ganglion cell's functionality (in terms of its 
‘temporal memory’ or ‘time constant’), and it is also convenient because it ensures 
that unnecessarily complex computations are not brought into the model. 
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Figure 8 

Modeled response of ganglion cells in time. 

The proposed model calculates the sum of the inputs of ganglion cells, and holds 
their output for T time frames. If, during this time, their inputs are stimulated even 
more, then their output will increase. Otherwise, the output level will return to 0 
after T time frames. 

4.5 Artificial Tremors 

As described above, tremors could be capable of causing the necessary overlaps 
between receptive fields through time. This is the reason why artificial tremors 
were introduced to the proposed model. Artificial tremors can be simulated by 
software, and can also be implemented by adding mechanical vibrations to the 
image sensor equipment (camera). In order to create an artificial tremor that is as 
similar as possible to its biological counterpart, the physical properties of tremors 
have to be considered. 

Eye tremors have frequencies of about 90Hz, and amplitudes of about the 
diameter one cone. Based on this measurement data, the parameters of the 
artificial tremors incorporated in the non-overlapped filtering model were chosen 
such that: 

• Amplitude: A = 2 pixels 

• Frequency: f = 90 frame-1 

• Direction: Random 

The simulation of tremors is done by shifting the input image I  in a random 
direction by a maximum of 2 pixels. Mechanical implementations of artificial 
tremors can be realized by computing the summation of the effect of two 
perpendicular mechanical vibrations of different frequencies. 

4.6 Proposed Tremor-based Dynamic Retina Model 

As described in section 4.2, the input image is tiled using a mosaic arrangement of 
the filter matrix F  in a non-overlapped manner. This means that the sets of pixels 
seen by each receptive field are disjoint, and that their union covers the whole 
image. Each ganglion cell computes the sum of its inputs to produces its output. 



Acta Polytechnica Hungarica Vol. 4, No. 1, 2007 

 – 41 – 

 
Figure 9 

The obtained image using T = 1, 5, 10, 30, 
100, from top to bottom 

The difference between the non-
overlapping edge filtering method 
(Section 4.2) and the proposed 
model lies in the use of artifical 
tremors as well as the temporal 
model of ganglion cells in the latter 
model. In the non-overlapping 
method, the output is a static 
function of the input, while in the 
tremor-based model, ganglion cells 
produce their output according to 
the window function described in 
section 4.4. Virtual receptive fields 
can therefore be developed thorough 
time, based on the artificial tremors. 
The notion of virtual receptive fields 
does not appear directly in the 
mathematical formulation of the 
model, but is useful in its 
interpretation. 

At any given moment, the output of 
each modeled ganglion cell is 
determined as the maximum of the 
sum of its inputs within the last T  
time frames. From a biological point 
of view, the value of T  is between 
15 and 30 Ttr, where Ttr denotes the 
period time of artificial tremors. 
Based on simulation results, it is 
clear that the growth in image 
quality slows down as T  increases. 
Figure 9 demonstrates the 
relationship between image quality 
and the value of T . In mathematical 
terms, the proposed model can be 
formulated as follows: Let 1Is  be 
the tremor-based shifted image, and 
F  be the filter matrix. The shifted 
image, 1Is , is then filtered in a non-
overlapped manner using filter F , 
yielding 1Ks . This process is done 
as many times as defined by the T  
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time constant parameter, resulting in images Ksi , where fi ..1=  and 

trTTf /= . The f  images are then integrated into one image K . The 
integration is computed using a pixel-wise maximization: 

),(max),(:, yxKyxKyx Sii
=∀  (3) 

The resulting image K is one output frame of the non-overlapped filtering system. 
Using this approach, each output pixel aggregates edge information from its 
neighborhood as defined by the properties of the artificial tremor. Unlike the static 
(tremorless) non-overlapped case, contour information contained in the input 
image will not be lost, but aggregated into the output pixel. The authors were not 
able to find any existing theory that described such a close link between tremors 
and the non-overlapping receptive field architecture on the retina. According to 
the theory proposed here, the retina does not perform data compression (as 
suggested by others in the past) in order to achieve the convergence between 
photoreceptor cells and ganglion cells, but uses the mechanism described above. 
Such a mechanism allows only the most important features to be considered in 
each disjoint subset of the visual field. 

4.7 Advantageous Properties of the Proposed Model 

In the proposed model, simple implementation is coupled with fine output image 
quality. Through its data convergence, output images are 9 times smaller than 
input images (in the case of using 3-by-3 pixel filter matrices – Figure 10. For 
instance, a 800-by-600 input image would result in an output image with the same 
resolution using classical edge-detection methods 480 Kbytes). However, the 
tremor-based method would generate an output of only 266-by-200 pixels in the 
same case (53 Kbytes), and the output image still contains the necessary contour 
information for further image processing tasks. 

In hardware implementation, from the point of view of speed rate and edge board 
complexity, it is important to use built-in memory if possible. The convergence of 
the proposed model provides an appreciable reduction of almost one order of 
magnitude. The output image of 53 Kbytes can easily be stored in either a PIC 
microcontroller, while 480 Kbytes of data generally require external memory. 

5 Hardware Implementation 

The tremor-based non-overlapping retina model was implemented on a Virtex II. 
FPGA (Figure 11). An important goal was to make the implementation 
independent of the type of camera used. 



Acta Polytechnica Hungarica Vol. 4, No. 1, 2007 

 – 43 – 

 
Figure 10 

Some advantages of the proposed model are its simple implementation, fine output image quality, and 
its convergence of almost one order of magnitude 

For this reason, the FPGA implementation receives its input from a desktop 
monitor, through a VGA interface. In this way, the implementation can be used 
both to evaluate real-time performance through a camera connected to the 
computer, as well as to obtain results from pre-existing video files. 

 
Figure 11 

An image of the camera, equipped with two, asymmetrically weighted vibrating motors 

The camera used for the recording of input has two vibrating motors attached to it, 
in order to simulate tremors. In industrial applications, artifical tremors would be 
implemented in the reading-in method of the FPGA, but in this case mechanical 
vibrations were applied for the purposes of illustration. The two motors induce 
vibrations in a horizontal and vertical direction. Because the tremors need to be as 
delicate as possible, the authors decided to use a PWM remote controller to 
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control the motors. In this way, direct contact with the camera can be avoided, and 
the frequency and amplitude of tremors can be adjusted without interfering with 
the system's functionality. 

The implementation uses the 3-by-3 F  matrices presented above. This means 
that information can only be processed when three pixel rows are received. The 
first two rows modulo 3 are stored in a 2 Kbyte dual-port memory, and processing 
is pipelined with the reading of the third row. Although the responses of ganglion 
cells are calculated serially, one after the other, the final output is calculated using 
a pipelined arithmetic unit. The correctness of the input, as well as the 
commencement of calculations, is guaranteed by a control unit. The calculated 
output values are also stored in an internal, 53 Kbyte dual-port memory. A 
separate unit is used to calculate the dynamical functions of ganglion-cells based 
on these values. As a trade-off between biological relevance and low-complexity 
implementation, a moving-maximum procedure is used for these purposes. 
Because of the non-overlapping architecture, output images are smaller than input 
images. For this reason, output images are rendered to the center of the display, 
with a black background. 

Results obtained using the hardware implementation are very similar to the 
software-based results seen in figure 9.  The difference between the two is that the 
current FPGA implementation provides lower resolution, but real-time results. 

6 Hypotheses 

Based on recent findings in biology and the experimental results presented in this 
paper, the following hypotheses are postulated: 

Hypothesis 1: The role of involuntary eye tremors has information theoretical 
implications. This hypothesis is supported by recent findings in biology, which 
claim that receptive fields cover the surface of the fovea in a mosaic arrangement 
with minimal overlaps, and also by the fact that the output of retinal edge filtering 
on the axons of the ganglion cell layer has a much lower resolution than the input 
resolution on the photoreceptor cells. 

Hypothesis 2: From an information processing point of view, the functional role of 
involuntary eye-movements extends to more than just the maintenance of action 
potentials. Involuntary eye-movements may be responsible for the compensation 
of informationlosses caused by a non-overlapping receptive field architecture. 
This hypothesis is supported by the experimental results presented in section 4.6, 
which show the difference between the edge-detected images obtained by using 
non-overlapped filtering with and without artificial tremors. The experiments 
show that the application of tremors considerably enhances image quality. This 
can be explained by the integrative and compressive effects of tremors within a 
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certain locality, in contrast with the compression principle of the tremorless, non-
overlapped filtering method, which completely disregards certain aspects of 
locality. 

Conclusions 

A novel, biologically inspired image filtering method was proposed. The method 
implements the non-overlapping mosaic arrangement of retinal receptive fields, as 
well as a certain kind of non-voluntary eye-motions, called tremors. The 
characteristics of the proposed method are different from those of convolution-
based image filtering methods. In a way similar to the retina, the non-overlapped 
filtering implements image information compression, as a direct result of the use 
of non-overlapping receptive fields and artificial tremors. This has advantageous 
effects on the temporal and spatial requirements (execution time and memory) of a 
hardware implementation that needs to satisfy real-time constraints. 

Based on the model, two hypotheses were formulated about the role of involuntary 
tremors. The first hypothesis states that convolution-based edge-detection 
algorithms are inadequate if our goal is to provide a biologically valid model. It is 
interesting to note that for the human observer, the edge-detected image using the 
proposed method looks more expressive than convolution-based results, which 
might indicate that the human vision system prefers the biologically more relevant 
way of producing contour images. Experimental results show that small vibrations 
dramatically improve the quality of edge detected images. This is generalized in 
the second hypothesis, which claims that a similar phenomenon may exist in the 
eye-retina system, which would explain the heretofore unknown role of eye 
tremors. The two hypotheses proposed in this paper need further support, from 
both biology and computational experiments. 
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