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Abstract: The paper is concerned with the generalization of the synthetic theory to the 
modeling of both plastic and creep deformation. Non-classical problems such as creep 
delay, the Bauschinger negative effect and reverse creep have been analytically described; 
the calculated results show satisfactory agreement with experiments. These problems 
cannot be modeled in terms of classical creep/plasticity theories. The main peculiarity of 
the generalized synthetic theory consists in the fact that the macro-deformation is highly 
associated with processes occurring on the micro-level of material. 
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1 Introduction 

The work presented herein regards the generalization of the synthetic theory of 
plastic deformation [18] to the modeling of not only plastic, but also creep (both 
primary and steady-state) deformation. This theory, which is concerned with small 
strains of work-hardening metals, incorporates (synthesizes) the Budiansky slip 
concept and the plastic flow theory developed by Sanders. 

The key points of the generalized synthetic theory are: 

I It is of both mathematical and physical nature. As a mathematical (formal) 
theory, the synthetic theory is in full agreement with the basic laws and principles 
of plasticity, such as Drucker’s postulate, the law of the deviator proportionality, 
the isotropy postulate, etc. [18]. As a physical model, the synthetic theory allows 
for real processes occurring at the micro-level of material during loading, and the 
macro-behavior of material is fully governed by these processes. Therefore, the 
synthetic theory is a two-level theory. 

II Independently of the type of deformation (creep or plastic) to be modeled, a 
single notion, irreversible (permanent) deformation is introduced, i.e. the 
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deformation is not split into “instantaneous” plastic and viscous parts [17]. The 
manifestation of the plastic or viscous component and their interrelations depend 
on the concrete loading/temperature-regime. The correctness to use the notion of 
irreversible deformation follows from the similarity of the mechanism of time-
dependent and plastic deformation. Indeed, this mechanism is slips of the parts of 
crystal grains relative to each other. These slips are induced mainly by the motions 
of dislocations which, in turn, are induced/accompanied by other micro-structural 
imperfections (defects) of the crystalline lattice (vacancies, interstitial atoms, etc.). 
Undoubtedly, the driving forces and concrete configurations of the defects are 
different under different conditions. Nevertheless, despite the variety of processes 
occurring in a body subjected to different loading regimes, numerous experiments 
systematically record the arising of dislocation gliding for any type of inelastic 
straining. Other facts justifying the similarity of the nature of plastic and time-
dependent deformation are (i) hydrostatic stress does not affect creep deformation; 
(ii) the axes of principal stress and creep strain rate coincide; (iii) no volume 
change occurs during creep [3]. These observations are the same as those for 
plastic deformation [6, 7]. 

III Following the tendency of unified approaches to the determination of 
irreversible deformation [4, 5], the system of constitutive equations that governs 
the whole spectrum of inelastic deformation has been worked out. In terms of 
generalized synthetic theory, the universality of this system is based on: 

(i) a single equation provides the relation between a) micro-irreversible 
deformation, b) defects of crystalline structure inducing this deformation and c) 
time. Further, the procedure of the transition from micro- to macro-level is also 
uniformed: the sum of irreversible micro-strains determines the magnitude of 
macro-strain. 

ii) the hardening rule is set in such a way that the transformation of loading 
surface obeys a unique rule. In addition, the kinetics of the loading surface 
transformation is not set a priori but is fully determined by the loading regime. 

The objectives of this papers are to demonstrate how, by utilizing the uniformed 
method, the generalized synthetic theory is capable of embracing both plastic and 
creep deformation. In addition, some non-classical problems such as creep delay, 
the Bauschinger negative effect and reverse creep [12] are considered. The 
investigation of reverse creep is of great importance due to the fact that this 
phenomenon contradicts the hypothesis of creep potential [3, 13]. The advantages 
of synthetic theories above classical theories of creep and plasticity are 
considered. 
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2 Fundamentals of the Synthetic Theory of Plastic 
Deformation 

The synthetic theory is based on the Budiansky slip concept [2] and the plastic 
flow theory developed by Sanders [19]. Below, the basic principles of the 
synthetic theory [18] are briefly reviewed. 

A) The establishment of strain-stress relationships takes place in the Ilyushin 
stress deviatoric space, S5, [8]. A load is presented by stress-deviator vector, S

G
, 

whose components are defined as 

xxSS 231 = , yyxx SSS 222 += , xzSS 23 = , 

xySS 24 = , yzSS 25 = , (2.1) 

where ijS  (i, j = x, y, z) are the stress-deviator tensor components; 223 J=S
G

, 

where J2 is the second invariant of stress deviator tensor [7]. Further throughout 
we will consider the cases when 3SS∈

G
 ( 054 == SS ). 

B) Yield criterion and yield surface. One of the key points consists in the 
construction of planes tangential to the yield surface in S5 instead of the yield 
surface itself. The inner-envelope of tangent planes constitutes the yield surface. 
By making use of this method, a new yield criterion is introduced, which 
coincides with neither the Tresca nor the von-Mises yield criterion in 5S . At the 
same time, the new criterion is reduced to the von-Mises yield criterion in 3S  
meaning that the trace of the five-dimensional yield surface takes the form of a 
sphere in 3S  ( 054 == SS ): 

22
3

2
2

2
1 2 SSSS τ=++ , (2.2) 

where Sτ  is the yield limit of a material in pure shear. 

C) Loading surface. Following Sanders [19], the stress deviator vector shifts 
planes tangential to the yield surface on its endpoint during loading. The 
movements of the planes located on the endpoint of stress deviator vector are 
translational, i.e. without a change in their orientations. Those planes which are 
not on the endpoint of the stress deviator vector remain unmovable. Despite the 
fact the 3SS∈

G
, the displacements of planes tangential to the five-dimensional 

yield surface must be considered. On the other hand, the positions of these planes 
can be set by their traces in 3S . As a result, any plane in 3S  (either tangential to 
the sphere (2.2) or locating beyond this sphere) is the trace of the plane tangential 
to the five-dimensional yield surface [18]. 
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Figure 1 
Yield and loading surface in terms of synthetic theory 

The loading surface constructed as the inner-envelope of the tangent planes takes 
the shape fully determined by the current positions of the planes. Therefore, the 
behavior of the loading surface is not prescribed a priori, but is fully determined 
by the hodograph of the stress deviator vector. 

For simplicity, let S1-S2 coordinate-plane play the role of 3S . Then, Fig. 1a 
illustrates the yield surface (2.2) (circle) in the virgin state of the material. The 
planes (lines) tangential both to the five-dimensional yield surface and to its trace 
in 3S  are shown as solid lines. The lines filling up the S1-S3 plane beyond the 
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circle (the traces of the planes tangential to only the five-dimensional yield 
surface) are shown as dotted lines. 

Fig. 1b shows loading surface due to the action of vector 3SS∈
G

 which shifts a set 
of planes. It is easy to see that the corner point arises on the loading surface at the 
endpoint of S

G
 (loading point). This fact is of great importance for the description 

of the peculiarities of plastic straining at non-smooth (orthogonal) loading 
trajectories [18] where any theory with regular loading surface has proved to be 
unsuitable. 

The condition that the tangent plane is located on the end-point of the stress 
deviator vector can be expressed as 

NS
GG

⋅=NH , (2.3) 

where NH  is the distance between the origin of coordinates and the tangent plane 

in 5S ; N
G

 is the unit vector normal to the tangent plane, which defines the 
orientation of the plane. If the plane is not reached by S

G
, NS

GG
⋅>NH . The 

distance to plane in 5S  can be expressed through that to its trace in 3S , mh , as 

λ= cosmN hH , (2.4) 

where index m indicates the unit vector, m
G

, normal to the tangent plane in 3S : 

( )ββαβα sin,cossin,coscosm
G

, (2.5) 

In expression (2.4), λ is the angle between the vectors m
G

 and N
G

. The angles α  
and β  are shown in Fig. 2. 

 

 

 

 

 

 

Figure 2 
Orientation of normal vector mG  

In addition, the N
G

 and m
G

 vector components are related to each other as [18] 

λ= coskk mN ,   3,2,1=k  
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λβα= coscoscos1N ,   λβα= coscossin2N ,   λβ= cossin3N ., (2.6) 

Therefore, expressions (2.3) and (2.6) give that 

( ) λ++=λ⋅= coscos 332211 mSmSmSH N mS
GG

,   3SS∈
G

. (2.7) 

As follows from formulae (2.4) and (2.6), if 0=λ , then mN hH =  and kk mN =  
( 3,2,1=k ). This holds true only for the planes which are tangential both to the 

five-dimensional yield surface and to its trace in 3S . It is these planes with 0=λ  
that govern the transformation of the loading surface in 3S  [18]. 

D) Plastic strain vector components. Similarly to the Batdorf-Budiansky slip 
concept, the synthetic theory is of a two-level nature. Each tangent plane 
represents an appropriate slip system at a point in a body (microlevel, see Fig. 3), 
and the plane motion symbolizes an elementary process of plastic deformation 
within this slip system. 
 

 

 

 

 

 

 

 

Figure 3 
Two levels of the determination of deformation 

To define an average, continuous measure of plastic slip within one slip system, 
we introduce a scalar magnitude, plastic strain intensity ( Nϕ ), is proposed as 

SSNN Hr τ−⋅=τ−=ϕ 22 NS
GG

. (2.8) 

Formula (2.8) holds true for the planes displaced by the stress deviator vector, i.e. 
if NS

GG
⋅=NH . If NS

GG
⋅>NH , Nϕ  is set to be zero. An incremental plastic 

strain-vector, Sde
G

, (micro plastic deformation on the lower(micro)-level) is 
assumed to be in the direction of the outer normal to the plane and determined as 

dVd N
S Ne

GG
ϕ= . (2.9) 

Macrolevel  
(a point in a body) 

Microlevel (slip system) 
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In expression (2.9), dV  is an elementary volume constituted of the elementary set 
of planes in S3 that covered an elementary distance due to an infinitesimal increase 
in the stress vector [1]: 

λβαβ= ddddV cos . (2.10) 

The total (macro) plastic strain-vector at a point in a body, Se
G

, is determined as 
the sum (three-folded integral) of the micro plastic strains ‘produced’ by movable 
planes: 

∫ϕ=
V

N
S dVNe

GG
   or   ∫ϕ=

V
N

S dVNe
G

��G  (2.11) 

The strain vector components relate to the strain-deviator tensor components ije  

(i, j = x, y, z) as [8] 

xxee 231 = ,   yyxx eee 222 += ,   xzee 23 = , 

xyee 24 = ,   yzee 25 = . (2.12) 

By using equations (2.6) and (2.10), equation (2.11) becomes 

∫ ∫ ∫
α β λ

λβαβλϕ= dddme kN
S
k coscos  or 

∫ ∫ ∫
α β λ

λβαβλϕ= dddme kN
S
k coscos�� ,    3,2,1=k  (2.13) 

The integration in (2.13) must be taken over planes shifted by the stress deviator 
vector. 

3 The Generalization of the Synthetic Theory 

To extend the boundaries of the applicability of the synthetic theory, the following 
is proposed. 

I) To reflect the well-known fact that the defects of the crystal structure of metals 
are the carriers of irreversible deformation, a new notion, defect intensity ( Nψ ), 
is introduced. Nψ  represents an average continuous measure of the defects 
(dislocations, vacancies, etc.) generated by irreversible deformation within one 
slip system. 
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II) To model the influence of loading rate upon irreversible straining, a new 
function of time and loading rate, the so called integral of non-homogeneity ( NI ), 
is introduced. By considering the physical nature of irreversible deforming, the 
formula for NI  will be strictly derived in 3.1.2. 

III) Instead of (2.8), the defect intensity is related to NH  and NI : 

PNPNNN IIH τ−−⋅=τ−−=ψ 22 NS
GG

, (3.1) 

where Pτ  is the creep limit of material in pure shear. In terms of the generalized 
synthetic theory, the yield and creep limits are related to each other by equation 
derived further (see 4.1)). The establishment of a relationship between Nψ  and 

NH  is fully logical, because the distance NH  characterizes the degree of work-
hardening. Indeed, the greater the plane distance, the greater a stress deviator 
vector is needed to reach the plane, i.e. to induce irreversible strain. 

IV) To establish a relationship between irreversible deformation, defects and time 
(t), the following equation is proposed 

dtKrdd NNN ψ−ϕ=ψ , (3.2) 

where, r  is the model constants and K  is a function of homological temperature, 
Θ , and S

G
 (see 5). The units of quantities in (3.2) are [ ] Pa=ψN , [ ] 1=ϕN , 

[ ] Pa=r  and [ ] 1sec−=K . 

In what follows, the parameter of non-homogeneity and the detailed analysis of 
the proposed generalizations are considered. 

3.1 The Integral of Non-Homogeneity 

3.1.1 Local Micro-Stresses and the Physics of Primary Creep 

As is well known, plastic deformation is accompanied by the formation of 
dislocation pile-ups, tangles of dislocations, unmovable jogs, grains boundaries, 
etc (the nucleation of dislocations is also observed at elastic deformation). These 
defect-formations, being of strongly local character, raise an uneven stress/strain 
distribution through the microstructure of metal that, in turn, leads to considerable 
distortions of the crystal lattice where the strain energy is mainly stored. 

The considerable non-homogeneity and concentration of micro-strains/stresses of 
the second and third kind were observed in experiments performed on specimens 
of pure copper, iron and titanium [9]. The experiments show that both stresses and 
strains are distributed non-homogeneously within grains (under both elastic and 
plastic loading). In addition, if the strain is greater than its average value through 
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the grain, then the stress inducing this strain is smaller than average stress and vise 
verse. At the same time, the total over- and under-loading is equal to zero. 

The non-homogeneous stress distribution makes the metal structure more unstable 
than in an annealed state. Once favorable conditions arise (for example, if the 
stress stops increasing), the relaxation of crystal lattice distortions is observed. It is 
the difference between the local and average stresses that is the driving force for 
the relaxation that occurs mainly due to spontaneous slips in grains induced by the 
movements of dislocation. Indeed, under thermal fluctuations, locked and tangled 
dislocations and the obstructions in their way themselves become progressively 
movable, thereby promoting the development of deformation. Therefore, the time 
dependent relaxation of the crystal lattice distortions governs the progress of the 
primary creep deformation. 

The local stresses arising around the lattice distortions we will call local 
microstresses. These stresses display the following properties: 1) they, being 
directly correlated with dislocation density, make the material stronger; 2) the 
greater the loading rate, the greater the local stresses; 3) they are unstable: as soon 
as favorable conditions arise, they decrease with time. It must be noted that the 
local microstress relaxation is also observed during slow loading. 

Therefore, on the one hand, the local microstresses cause the “rate-hardening” of 
the material during active loading but, on the other hand, they can relax resulting 
in the softening of the material. Time-dependent macro-deformation is the result 
of the concurring processes of the hardening and softening. 

3.1.2 The Integral of Non-Homogeneity as the Mathematical Measure of 
Local Stresses 

To establish a relation between the microstress non-homogeneity and elastic strain 
energy, consider an elementary volume of body (treated as point) consisting of a 
large number of microparticles. Let 0

kqσ  denote the average stress deviator tensor 

components (macrostress) acting at the given point. The microstress non-
homogeneity can be expressed through the stress deviator tensor components 
acting in each microparticle, kqσ , as 

'0
kqkqkq σ+σ=σ , (3.3) 

where 'kqσ  are random quantities expressing the over/under-loading in each 

particle. We set the reaction of 'kqσ  on the change in the average stress as 

0' ijijkqkq dCd σ=σ , (3.4) 
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where ijklC  are random numbers that vary from particle to particle, which are 

assumed to be independent from 0
ijσ . Let us suppose that all random numbers 

ijklC  have an identical distribution function, F, and are independent of each other. 

Since 0
ijdσ  are macroscopic (average) stress components, the mathematical 

expectation of parameters ijklC  is 

( ) 0=∫
∞

∞−
ijklijklijkl dCCFC    Σ (3.5) 

Formula (3.5) means that the total over/under-loading with respect to the average 
stress is equal to zero. In addition, 

( ) 1=∫
∞

∞−
ijklijkl dCCF    Σ, (3.6) 

As was pointed out earlier, the local stresses are unstable and can relax with time. 
The equation governing their time-dependent behavior is proposed as 

dtpdCd ijpqijpqij '' 0 σ−σ=σ . (3.7) 

The first item on the right side in the above formula characterizes the rise of 'ijσ  

given by (3.4); term dtp ij 'σ−  gives the time-dependent decrease of 

microstresses, which is taken to be proportional to 'ijσ . The solution of the 

differential equation (3.7) for 'ijσ  is 

( )tIC kqijkqij =σ ' ,    ( ) ( )( )∫ −−
σ

=
t

kq
kq dsstp

ds

d
tI

0

0

exp . (3.8) 

Now, expression (3.3) becomes 

( )tIC kqijkqijij +σ=σ 0 . (3.9) 

As is well known, elastic strain energy can be expressed as 

( ) ( ) ( ) ( )[ ]222222 6
12

1
zxyzxyxxzzzzyyyyxzG

U τ+τ+τ+σ−σ+σ−σ+σ−σ= , (3.10) 

where G is the elastic shear modulus. By substituting stresses ijσ  from (3.9) into 

(3.10), we obtain 
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( ) ( )
( )
( ) ( ) ( )

⎭
⎬
⎫
⎥⎦
⎤

⎢⎣
⎡ +τ++τ++τ+

+−σ−+σ+

+−σ−+σ
⎩
⎨
⎧ +−σ−+σ=

202020

200

200200

6

12
1

kqxzkqxzkqyzkqyzkqxykqxy

kqxxkqxxkqzzkqzz

kqzzkqzzkqyykqyykqyykqyykqxxkqxx

ICICIC

ICIC

ICICICIC
G

U

 (3.11) 

The mean value of U is determined by the following relation 

( ) ( ) xzxzxxxxxzxzxxxx dCdCCFCUFU ……

�
�	�

…

36

∫∫
∞

∞−

∞

∞−

= . (3.12) 

U  can be decomposed in two parts: 

21 JJU += , (3.13) 

( ) ( ) 00

36

1 UdCdCCFCFUJ xzxzxxxxxzxzxxxx == ∫∫
∞

∞−

∞

∞−

……

�
�	�

… , (3.14) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ………
�
�	�

…

……
�
�	�

…

………
�
�	�

…

+⋅σ+

+⋅=

=+σ+=

∫∫∫

∫∫∫

∫∫

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

xzxzxxxyxzxzxxxyxxxxxxxxxxxxxxxx

xzxzxxxyxzxzxxxyxxxxxxxxxxxxxx

xzxzxxxxxzxzxxxxxxxxxxxxxxxxxx

dCdCCFCFdCCFCI
G

dCdCCFCFdCCFCI
G

dCdCCFCFICIC
G

J

35

0

35

22

022

36

2

6
1

12
1

2
12

1

 (3.15) 

where 0U  is the strain energy for the case of homogeneous stress distribution 

determined by formula (3.10) at 0
ijij σ=σ . In arriving at the result (3.14), 

expression (3.6) has been taken into account. In order to evaluate integral 2J , it is 
enough to investigate its first two terms. Indeed, formula (3.5) implies that all the 
integrals in (3.15) containing ijklC  are equal to zero. The integrals containing 

2
ijklC  give the variance of random numbers ijklC , 1B : 
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( ) 1
2 BdCCFC ijklijklijkl =∫

∞

∞−

     Σ. (3.16) 

As a consequence, 

( )2222221
2 2222

zxyzxyzzyyxx IIIIII
G
BJ +++++= .  

Finally, expression (3.13) is 

( )2222221
0 2222

zxyzxyzzyyxx IIIIII
G
BUU ++++++= . (3.17) 

By subtracting from the right-hand side in (3.17) the expression 
( )21 32 zzyyxx IIIGB ++ , which is equal to zero due to 0000 =σ+σ+σ zyx , we 

obtain 

( ) ( ) ( ) ( )[ ]2222221

0

6
3
2

zxyzxyxxzzzzyyyyxx IIIIIIIII
G
B

UU

+++−+−+−+

+=
. (3.18) 

Substituting ijI  from (3.8) into (3.18) and converting the variables ijσ  to the 

stress vector components nS  by formula (2.1), the expression for the 
mathematical expectation of elastic strain energy is obtained as 

( )( )
2

5

1 0

1
0 exp

3
2 ∑ ∫

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−−+=

n

t
n dsstp

ds
dS

G
B

UU  (3.19) 

The value of U  is seen to consist of two parts; the term 0U  corresponds to 
homogeneous stress distribution and the second term characterizes the time-
dependent deviation of stresses from their average value. If a body is ideally 
homogeneous, the distribution functions of random numbers ijklC  degenerate in 

the Dirac delta-function and, according to (3.16), we obtain 01 =B . As seen from 

formula (3.19), U  depends not only on the rate of stress vector components nS�  
at a given instant, but on its values for the all history of loading as well. For the 
case constSn =� , 

( )( )
2

0

1
0 exp

3
2

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−−+= ∫

t

nn dsstpSS
G
B

UU �� . (3.20) 
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Since 2SSS nn
��� =  (S denotes the length of stress vector), 

( )( )
2

0

1
0 exp

3
2

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−−+= ∫

t

dsstp
ds
dS

G
B

UU . (3.21) 

In the case that the stress deviator vector has only one non-zero component, 
expressions (3.19) and (3.21) are identical. We take the square root in the right-
hand side in relation (3.21) to be the scalar measure of micro-non-homogeneity: 

( )( )∫ −−=
t

dsstp
ds
dSBI

0

exp ,   const
G
B

B ==
3
2 1 . (3.22) 

We will term I as the integral (parameter) of non-homogeneity. To work with the 
integral of non-homogeneity on the microlevel of material, we replace S  in (3.22) 
by scalar product NS

GG
⋅ . This replacement reflects the fact that the driving force of 

plastic flow within a slip system is not the whole macro-stress vector S
G

 but only 
its projection NS

GG
⋅  (resolved stress). Thus, finally, the characteristic of local 

micro-stresses has the form 

( )( )∫ −−⋅=
t

N dsstp
ds
dBI

0

expNS GG
. (3.23) 

In contrast to (3.22), the adopted integral (3.23) depends on angles α, β, and λ 
thereby allowing for the orientation of tangent planes in the Ilyushin subspace 3S . 

Let us analyze the integral of non-homogeneity for the loading regime shown in 
Fig. 4 ( constdtd == Sv

GG
). On the first portion of the loading, formula (3.23) 

gives 

( ) ( ) ( )( ) ( ) ( )[ ]pt
p

BdsstpBtI
t

N −−
⋅

=−−⋅= ∫ exp1exp
0

NvNv
GGGG

,   [ ]1,0 tt ∈ . (3.24) 

As seen from (3.24), ( )tI N  grows from the very beginning of loading. If we take 
the loading rate tSv /=  to be infinitely large, we can approximate the function 

( )vpS−exp  in (3.24) by the Tailor series, which results in the following relation 

( )NS
GG

⋅= BI N   as  ∞→v . (3.25) 

For the range 1tt >  when 0=v
G

, let us split the range of integration in formula 
(3.23) into two parts, [ ]1,0 t  and [ )tt ,1 : 
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( ) ( ) ( )( ) ( ) ( )[ ] ( )ptpt
p

BdsstpBtI
t

N −−
⋅

=−−⋅= ∫ exp1expexp 1

1

0

NvNv
GGGG ,   1tt ≥ . (3.26) 

From (3.24) and (3.26) the following properties of the integral of non-
homogeneity can be indicated: (i) during loading, it grows proportionally to the 
loading rate; (ii) it decreases under constant loading. Therefore, the time-
dependent behavior of the integral of non-homogeneity correlates with that of 
local microstresses. 

The condition 0=NI  symbolizes the end of transformations occurring in the 
crystal lattice under primer creep and transition to the steady-state stage of creep. 

 

 

 

 

 

 

 

 

Figure 4 
IN-t diagram 

Intermediate discussion. The sum of the two quantities in equation (3.1), 

PNN I τ−⋅=+ψ 2NS
GG

, characterizes the straining state of the material and 
determines the stress to induce irreversible deformation. The parameters Nψ  and 

NI  have a common trait; they can relax in time (see (3.2), and (3.26)). On the 
other hand, there is an essential difference between these quantities: Nψ  
expresses the number of defects that produce irreversible deformation, whereas 

NI  characterizes the loading-rate-dependent development of these defects. The 
integral NI  behaves in a different way depending on loading regime: a) under 
loading, NI  symbolizes the load-rate strengthening of material; b) under constant 
stress, NI  drops expressing the lattice distortion relaxation that results in time-
dependent, progressive deformation. The behavior of Nψ  and NI  is governed by 
different equations; NI  depends on loading-rate-history, formula (3.23), whereas 

Nψ  is related to irreversible deformation by (3.2). 

t 

t 
IN 

t1 

a) 

b) 

S 
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3.2 System of Constitutive Equations 

Formulae (3.1), (3.23), (3.2) and (2.13) constitute the base of the generalized 
synthetic theory: 

PNNN IH τ−−=ψ 2 , (A) 

( )( )∫ −−⋅=
t

N dsstp
ds
dBI

0

expNS GG
, (B) 

dtKrdd NNN ψ−ϕ=ψ , (C) 

∫ ∫ ∫
α β λ

λβαβλϕ= dddme kN
i
k coscos      or      

∫ ∫ ∫
α β λ

λβαβλϕ= dddme kN
i
k coscos�� ,   3,2,1=k  

(D) 

The procedure of the calculation of irreversible strain vector components ( i
ke ) 

is the following, (i) at a given stress deviator vector and loading rate, the defect 
intensity is determined by (A) and (B), (ii) the strain intensity can be found by 
(C) and, finally, (iii) formula (D) gives the values of strain(rate) vector 
components. 

Expression (C) is one of the most important in terms of the generalized synthetic 
theory. It reflects the well-known fact that the defect intensity Ndψ  grows with 
the increase in deformation ( Nrd ϕ ) and simultaneously decreases (relaxes) 
with time ( dtK Nψ− ). Owing to (C), one does not need to split a deformation 
into its “instantaneous” (plastic) and viscous parts; both of them develop 
simultaneously. The degree of this development depends on concrete loading- 
and temperature-regimes. That is why, further throughout, we will use a single 
notion, irreversible deformation, by which we mean the deformation progressing 
with time (independently of whether we consider very short-termed loadings at 
plastic deformations or loadings lasting several hours or days as in creep tests). 

The (A)-(D) system governs all types of irreversible deformation for any state of 
stresses and loading regimes. 

Regard must be paid to the integration limits in formula (D). When founding the 
boundary values of angles α, β  and λ, one must follow a single rule – only 
tangent planes which are on the endpoint of the stress deviator tensor produce 
irreversible strains. Since the plane distances are related to Nψ , the limits of 
integration in (D) are determined from the conditions 0=ψ N , 
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10 λ≤λ≤ ,    ( ) ( ) N

P

I−⋅

τ
=βαλ

mS
GG
2

,cos 1 . (3.27) 

The condition 01 =λ  gives the equation for the boundary values of angles α  and 
β : 

PNI τ=−⋅ 2mS
GG

. (3.28) 

4 Irreversible Deformation in Terms of the 
Generalized Synthetic Theory 

4.1 Creep-Yield Limit Relation 

Consider the case of arbitrary stress state, and assume that the loading rate is 
infinitely small so that the parameter of non-homogeneity tends to zero. If an 
irreversible deformation does not occur, 0=ψN , formula (A) gives that the 
tangential planes in S3 ( 0=λ ) are equidistant from the origin of coordinates: 

( ) ( ) PNm Hh τ==λβα=βα 20,,, . (4.1) 

The above formula implies that the creep surface (creep locus in S3 setting the 
condition for the onset of first plastic flow at infinitesimal loading rate), being 
constructed as the inner-envelope of tangential planes, takes the form of the sphere 
of radius Pτ2 : 

22
3

2
2

2
1 PSSSS =++ ,   PPS τ= 2 . (4.2) 

For the case of pure shear, expression (2.1) gives xzS τ= 23  and 021 == SS  

meaning that the stress vector ( )3,0,0 SS
G

 acts along S3-axis. Let Pτ  denote the 

value of shear stress when vector ( )Pτ2,0,0S
G

 reaches the first tangential plane 
on the sphere (4.2). Since this plane is perpendicular to S3-axis ( 2π=β  and 

0=λ ), formulae (2.5) and (2.7) give PNH τ= 2 . Therefore, Pτ  expresses the 
creep limit of metal in pure shear. 

Now, our goal is to establish the relation between Sτ  and Pτ . It is worth starting 
with the case of pure shear. Let the loading be of constant rate, 

constSSv === ��
3 , S

G
=S . Then expression (3.23) becomes 
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( )( )∫ −−λβ=
t

N dsstpBvI
0

expcossin . (4.3) 

Until the stress vector reaches the tangential planes, 0=ψN , formula (A) takes 
the form 

PNN SIH += . (4.4) 

By integrating in (4.3) and inserting the result of the integration in (4.4), we obtain 

( )[ ] PN Spt
p

BvH +λβ−−= cossinexp1 ,   [ ]1,0 tt∈  in Fig. 4a. (4.5) 

As seen from (4.5), the plane distances grow due to the increase in NI . This 
means that formula (4.5) describes the movements of planes in the direction away 
from the origin of coordinate. Since these movements are not caused by the 
“pushing” action of stress deviator vector, they do not cause irreversible strain. 
The inner envelope of the planes with distances from (4.5) is shown in Fig. 5a 
(only tangent planes with 0=λ  are shown). As seen, the action of the integral of 
non-homogeneity does not result in the formation of a corner point. 
 
 

 

 

 

 

 

 

 

 

Figure 5 
The transformation of yield (a and b) and loading (c) surface 

Let SS  denote the length of the stress deviator vector which at time St  
( [ ]1,0 ttS ∈ ) reaches the first plane ( 2π=β  and 0=λ ), i.e. the plastic flow 
starts developing (Fig. 5b). For this plane, formula (2.7) gives SN SH = . The 
replacement of NH  by SS  in (4.5) leads to the equation for SS : 

( )( ) PSS Spt
p

BvS +−−= exp1 ,    SS vtS =  (4.6) 

S1 S1 

S3 S3 

Pτ2  

SS=S
G

 

β1 β1 

( )Stt ,0∈ Stt = 1tt =  
c) a) b) 

SS<S
G  

N
G

 N
G

 

S1 

S3 

SS>S
G  
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The plot of SS  as the function of v  constructed on the base of (4.6) is shown in 
Fig. 6. As follows from Eq. (4.6), curve ( )PSS SSS =  has a horizontal asymptote, 
which is at a distance of ( )BSP −1  from the abscissa that corresponds to the case 
of an infinitely large loading rate. 

For SSS > , the stress deviator vector translates some set of plane (Fig. 5c), and 

angle 1β  gives the boundary planes on the endpoint of S
G

. 

Further, let us find the yield limit for an arbitrary proportional loading with a 
constant loading rate. Now, expression (3.23) is 

( )[ ]∫ −−⎟
⎠

⎞
⎜
⎝

⎛
β+βα+βα×

×λ=
t

N

dsstp
ds

dS
ds

dS
ds

dS

BI

0

321 expsincossincoscos

cos

. (4.7) 

 

 

 

 

 

Figure 6 
Yield limit vs loading rate plot 

In the direction of the action of the stress deviator vector whose orientation is 

given by angles α0 and β0, relations ( ) 212
2

2
110cos

−
+⋅=α SSS  and 

1
0sin −

3 ⋅=β SS  hold true and formula (4.7) yields the form 

( )[ ]∫ −−λ=
t

ii
N dsstp

ds
dS

S
S

BI
0

0 expcos . (4.8) 

Since S�  can be expressed as 
dt

dS
S
S

dt
dSS ii==� , Eq. (4.8) gives 

( )[ ]∫ −−λ=
t

N dsstp
ds
dSBI

0
0 expcos . (4.9) 

The integral 0NI  is identical to that from (4.3) at 2π=β  meaning that formula 

(4.6) is applicable to the determination of yield limit via the creep limit for an 
arbitrary state of stress. 

v 

SS 

SP

B
SP
−1
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Summarizing, formula (4.6) is of great importance due to the fact that it allows 
working with only one material constant, creep limit. In contrast to classical 
theories of plastic/creep deformation that use separately yield limit or creep limit 
depending on the problem to be solved, the generalized synthetic model is 
constructed in such a way that the creep limit plays the role of the material 
constant, while the yield limit is a function of loading rate. 

4.2 The Modeling of Irreversible Deformation 

Consider the case of proportional loading when the loading trajectory is a straight 
line in S3. Further, let the plot of ( )tS  have the form as in Fig. 4. Since the 
synthetic theory provides the fulfillment of the law of the deviator proportionality 
[14-16, 18], the formulae obtained for the case of, e.g., pure shear are fully 
applicable (up to constants) to arbitrary rectilinear loading path in S3. 

For the case of pure shear, expressions (A), (2.5) and (2.7) give the defect 
intensity as 

[ ] PPN S
a

SIS ⎟
⎠
⎞

⎜
⎝
⎛ −
Ω

=−λβ−=ψ 1cossin3 ,   SSS >3 , (4.10) 

λβ=λ=Ω cossincos3m , (4.11) 

IS
S

a P
−

=
3

. (4.12) 

In formulae (4.10) and (4.12) 

( )[ ]dsstp
ds

dS
BI

t

−−= ∫ exp
0

3 , (4.13) 

( )[ ]111
exp1 pt

p
BvII tt −−=≡= ,    constSSv === ��

3 , (4.13a) 

( )[ ] ( )ptpt
p

BvII tt −−=≡> exp1exp 121
. (4.13b) 

According to (3.27) and (3.28), the defect intensity in expression (4.10) is positive 
for 

π≤α≤ 20 ,  21 π≤β≤β ,  10 λ≤λ≤ ,  
β
β

=λ
sin
sincos 1

1 ,  a=β1sin  (4.14) 

The loading surface at 1tt =  is shown in Fig. 5c or 7a. 
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The defect intensity increment is expressed from (4.10) as 

( )Ω−=ψ dIdSd N 3 . (4.15) 

Beyond the angles-diapason given by (4.14), we have 0=ψ=ψ NN d  and 
0=ϕ=ϕ NN d . 

 

 

 

 

 

 

 

 

 

Figure 7 
Kinetics of loading surface at creep 

Consider the transformation of the loading surface for 1tt >  when 03 =S� . For the 
tangent planes that are beyond the diapason (4.14), formula (A) at 0=ψN  gives 

λβ+= cossin2ISH PN . (4.16) 

Because of the descending character of 2I , we infer that NH  decreases for 1tt >  
meaning that planes that are not on the endpoint of the stress deviator vector at 

1tt =  start to move towards the origin of the coordinates. These movements result 
in the greater number of planes becoming located at the endpoint of the stress 
deviator vector. This situation is illustrated by Fig. 7b from which it is seen that 
the boundary angle 1β  determined by (4.14) and (4.13b) decreases with time. As 
integral 2I  tends to zero, formula (4.16) gives PN SH =  meaning that the planes 
stop moving and the boundary angle 1β  takes its minimal value (Fig. 7c). 

Further, formula (B) gives the strain intensity as 

( ) dt
a

KSdIdSdtKdrd PNNN ⎟
⎠
⎞

⎜
⎝
⎛ −
Ω

+Ω−=ψ+ψ=ϕ 13 . (4.17) 

Finally, formulae (C) gives the increment in irreversible-strain-vector-component, 
ie3Δ , as 

S3 

S1 

S3 

N
G

 

N
G

 N
G

 N
G

 
β1 β1 β1 β1 β1 β1 

N
G

 

N
G

 

1tt >  
0>NI  0=NI  0>NI  

a) b)  c)  

1tt =  
1tt >  

S3 

Pτ2
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∫∫∫
λπ

β

π

λλϕΔββα=Δ
1

0

2

1

2

0
3 cos2sin

2
1 ddd
r

e N
i , (4.18) 

where NϕΔ  is given by (4.17). In formula (4.18), the symbol Δ stands for the 

time-dependent increment of ie3Δ  and NϕΔ . By integrating over α, β and λ in 
(4.18), we obtain 

( ) ( )[ ]taKaaei ΔΦ+ΔΦ=Δ 03 , (4.19) 

where 

const
r

a p =
πτ

=
3

2
0 , ( )

a
aaa

a
aa

2
22 11ln12arccos −+

+−−=Φ , ( ) 01 =Φ . (4.20) 

The analysis of (4.20) shows that the function Φ is in inverse proportion with its 
argument a, Fig. 8. 

 

 

 

 
 

Figure 8 
Φ(a) function 

By integrating over time in (4.19), we obtain the formula for the irreversible strain 
component in pure shear as: 

( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Φ+Φ= ∫

t

St

i dtaKaae 03 . (4.21) 

To evaluate the integral (4.21), one needs to know the function ( )( )Θ,3 tSK . This 
question will be considered in detail in 5. 

Following the law of deviator proportionality [14], formula (4.21) can be rewritten 
for the case of an arbitrary stress state as 

( ) ( )
S

S
dtaKaae k

t

St

i
k

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Φ+Φ= ∫0     3,2,1=k  (4.22) 

where, instead of (4.12), 

Φ 

1 a 
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IS
S

a P
−

= , (4.23) 

and I is calculated by (4.13a) and (4.13b) where constSv == � . 

Formula (4.22) is of a general character; it is applicable to the modeling of any 
type of deformation, both plastic and unsteady/steady-state creep. At 1tt = , we 
obtain the plastic strain vector components; at 1tt >  we get the total, plastic and 
creep, strain components. 

4.3 The Analysis of the System of Constitutive Equations. 
Partial Cases 

1) Consider the case of steady-state creep when 0=dS  and 0=NI . It is clear 
that expression (4.15) gives 0=ψNd , i.e. the defect intensity (density) does not 
change during the steady state creep, reflecting the well-known fact that the 
steady-state creep deformation develops under the equilibrium between the 
processes of hardening and softening. Therefore, formula (C) gives the constant 
strain intensity rate: 

constKr NN =ψ=ϕ� ,   ( ) constSK =Θ, . (4.24) 

Another consequence from conditions 0=dS  and 0=NI  is constSSa P ==  
and ( ) consta =Φ  (see (4.20) and (4.23)). According to (4.22), the steady-state 

creep strain(rate) components, P
ke , can be written as 

( ) ( ) t
S

S
aKa

S
S

aae kkP
k Φ+Φ= 00     or     ( ) const

S
S

aKae kP
k =Φ= 0�  (4.25) 

where ( ) ( )SSaa k⋅Φ0  is the value of strain at the end of primary creep. Formula 
(A) shows that the plane distances do not change with time, meaning that the 
steady state creep deformation is “produced” by the set of motionless planes 
which are located on the endpoint of the stress deviator stress (Fig. 7c). Since 
function K  appears in the formula for steady-state creep rate, we can infer that it 
takes very small values, and the manifestation of the second term in (4.22) 
becomes material only under long-termed loadings. At the same time, it is 
important to emphasize that the role of the time integral in (4.22) grows with the 
increase in the duration of loading especially at elevated temperatures. 

2) On the basis of the above, we can neglect the second term in (4.22) or the term 
dtK Nψ  in formula (C) when plastic or unsteady state creep strains are 

investigated. This is absolutely justifiable due to the fact that the second term in 
(4.22) is comparable with the term ( )aa Φ0  only under very long-termed loading 
(at least several tens of hours). Therefore, formula (C) at 0=K  takes the form 
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NN drd ψ=ϕ  (4.26) 

and expression (4.22) gives 

( )
S

S
aae ki

k Φ= 0 , (4.27) 

where i
ke  is the total, plastic + primary creep, strain components. The function 

( )aΦ  is not to be thought of as being of a time-independent nature because its 
argument a  contains the integral of non-homogeneity, which regulates the time-
dependent development of deformation. 

Formula (4.26) reflects another well-known fact that the increase in plastic 
deformation causes that in the defects of crystal lattice leading to the work-
hardening of material and, consequently, the plastic deformation progress requires 
an increase in acting stress. 

The plastic deformation ( S
ke ) at the end of active loading ( 1tt = ) is calculated by 

(4.27) in which 

1
1 IS

S
aa P

−
=≡ . (4.28) 

The deformation produced for 1tt > , when 0=dtdS , is calculated by (4.27) in 
which 

2
2 IS

S
aa P

−
=≡ . (4.29) 

The analysis of expressions (4.27) and (4.20) shows that the increase in plastic 
deformation during active loading is modeled by the growth of S  in (4.28) (since 
the condition SSS >  is hold, the growth in S  prevails over that in 1I ). Further, 
the progress of deformation for 1tt ≥  is regulated by the decrease of 2I  in (4.29). 
The condition 02 →I  symbolizes the end of primary creep. 

Pure primary creep strain components (without the initial plastic strain 
components S

ke ), C
ke , are calculated as the difference between the total and 

plastic strain components: 

( ) ( )[ ]
S

S
aaae kC

k 120 Φ−Φ= . (4.30) 

It is easy to see that 

const
S

S
S

S
aee kPC

k
S
k =⎟

⎠

⎞
⎜
⎝

⎛
Φ=+ 0  as 02 →I . (4.31) 
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As follows from (4.31), the synthetic theory states that a material possesses some 
reserve of irreversible deformation which can be manifested in the form of plastic 
or creep deformation dependent on the loading rate in active loading. Formulae 
(4.28), (4.29) and (4.27) lead to the following relations between the magnitudes of 
plastic and primary creep: the growth in loading rate, on the one hand, leads to a 
decrease in plastic deformation, but, on the other hand, causes the increase in the 
magnitude of primary creep strain. Another conclusion is that slow loading does 
not result in following primary creep at all due to 0=I  at slow loading. 

It is worthwhile to emphasize that only the function Φ  is applicable to the 
calculation of any type of deformation. 

3) Consider the case when a complete or partial unloading follows the loading 
which has produced some irreversible deformation. It is clear that 0=ϕNd  in 
unloading and formula (C) becomes 

dtKd NN ψ−=ψ . (4.32) 

The solution of the differential equation above is 

( )KtNN −ψ=ψ exp0 , (4.33) 

where 0Nψ  is the defect intensity accumulated during the initial irreversible 

straining. Expression (4.32) describes the process of defects relaxation. 

4.4 Loading Criterion 

While the limits of integration in formula (D) for proportional loading can be 
determined relatively simply, this is not the case for arbitrary (curvilinear) loading 
paths. To express analytically the integration limits for curvilinear loading paths is 
a very difficult task and, consequently, computer assisted methods must be 
applied. Nevertheless, a general criterion for the development of irreversible 
straining must be formulated. Let a current stress vector S

G
 have produced some 

irreversible strain, i.e. some set of tangent planes are on its endpoint. For these 
planes, formulae (A) and (2.3) give 

NS
GG
⋅=+ψ+ NNP IS . (4.34) 

If the vector S
G

 acquires increment S
G

d , for planes that are on the endpoint of 
vector SS

GG
d+  we have 

NSNS
GGGG

⋅+⋅=++ψ+ψ+ ddIIdS NNNNP . (4.35) 

Therefore, formulae (4.34) and (4.35) give that 

NN dIdd −⋅=ψ NS
GG

. (4.36) 
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We propose the following criterion: the planes that produce irreversible strains 
due to a given vector S

G
 continue to do this due to the vector SS

GG
d+  if for these 

planes 0≥ψNd : 

0≥−⋅ NdId NS
GG

. (4.37) 

Eq. (4.37) must be applied to the determination of integration limits in formula 
(D) for arbitrary loading paths. 

As seen from the series of Rusinko’s works [14-16], the synthetic theory 
demonstrates good agreement with experimental data. 

5 Steady-State Creep. Function K 

The steady-state creep rate is governed by expression (4.25), which for the case of 
uniaxial tension is 

( )aKaeP Φ= 01� ,   xPa σσ= . (5.1) 

The function K is proposed as the product of two functions: 

( ) ( )σΘ= 21 KKK . (5.2) 

Let us split the range of homological temperature into three diapasons: 
10 Θ≤Θ<  (low temperature), 21 Θ≤Θ≤Θ  (elevated temperature), and 

32 Θ≤Θ≤Θ  (high temperature). The values of iΘ  are 25,01 ≈Θ , 5,02 ≈Θ  
and 7,03 ≈Θ  for pure metals and 3,01 ≈Θ , 55,02 ≈Θ  and 75,03 ≈Θ  for 
alloys. The range 13 ≤Θ≤Θ  is not considered below. 

Within the range 10 Θ<Θ< , the temperature is not enough for the thermal 
activation of dislocation motion, so steady creep does not occur, ( ) 01 =ΘK . For 

32 Θ≤Θ≤Θ  the dislocation climb is a dominating mechanism of creep. Since 
the rate of dislocation climb is controlled by the intensity of the diffusional 
processes, it is natural to assume that the function ( )Θ1K  is proportional to the 
quantity of migrating (activated) atoms that regulate the vacancy-motion intensity. 
The relative quantity of activated atoms is 

∫
∞

⎟
⎠

⎞
⎜
⎝

⎛
−=

0

exp 0

U
RT
U

pdU , (5.3) 
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where 0U  is the atom-migration-activation energy. In arriving at the result (5.3) 
we have utilized the Maxwell-Boltzmann energy distribution 

⎟
⎠
⎞

⎜
⎝
⎛−=

RT
U

RT
p exp1 . Thus, (denoting through T~  the melting point of metal): 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
Θ

−=⎟
⎠

⎞
⎜
⎝

⎛
−=Θ

TR
U

RT
U

K ~expexp 00
1 . (5.4) 

Within the range of elevated temperatures, 21 Θ≤Θ≤Θ , various processes 
govern the steady-state creep, none dominating over another. Therefore, the 
establishing of function ( )Θ1K  from physical reasoning can lead to unreliable 
results. As a result, we propose the linear form of function ( )Θ1K  so that 

( ) 011 =ΘK  and ( )21 ΘK  takes the form of expression (5.4) (Fig. 9): 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Θ
−

Θ−Θ
Θ−Θ

=Θ
TR

U
K ~exp

2

0

12

1
1  for 21 Θ<Θ<Θ . (5.5) 

 

 

 

 

 

 

Figure 9 
K1 (Θ) function 

Function 2K  can be found by making use of the empirical formula for steady-
state creep rate in uniaxial tension: 

( ) k
x

P
x Cf σΘ=ε� ,   0=εP

x�  at Px σ<σ . (5.6) 

It is clear that expressions (5.1) and (5.6) give 0=εP
x�  as Px σ<σ . 

Further, as follows from (4.20), function Φ behaves as ( )Px σπσ 2  for 
0→σσ xP  and the strain-rate in (5.1) (together with (2.12)) can be written as 

( ) ( ) xx
P
x KK

r
σσΘ

π
=ε 21

2

9
� . (5.7) 

K1 
1 

Θ2 ΘΘ1 Θ3
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Taking function f in (5.6) to be in the form of 1K  and equating the right-hand 
sides of formulae (5.6) and (5.7) to each other, we obtain 

( ) 1
22

9 −σ
π

=σ k
xx

CrK . (5.8) 

6 Creep Delay 
Consider the case when a loading regime is as in Fig. 10a. 

 

 

 

 

 
 
 
 

Figure 10 
Creep delay 

Let the modulus of stress deviator vector at 1tt =  ( PSS > ) not reach any 
tangential plane (Fig. 10b), i.e. there is no plastic deformation ( 0=ψN  and 

0=ϕN  for all the planes). According to formula (3.26), once 0=dtdS , the 
integral of non-homogeneity starts to decrease and formula (A) becomes 

( )[ ] ( )ptpt
p

vBSH PN −−+= exp1exp 1 ,   1tt > . (6.1) 

The formula above means that the tangent planes move back. The instant that a 
first plane touches the endpoint of the stress vector, dtt = , symbolizes the start of 
creep deformation (Fig. 10c). The period of time when the creep deformation is 
absent, [ ]dt,0 , is referred to as creep delay [10]. It is clear that the first plane to be 

on the endpoint of the stress deviator vector is perpendicular to it, SH =⋅= NS
GG

. 
Replacing NH  in (6.1) by S  gives the following equation for dt : 

( )[ ] ( ) Sptpt
p

vBS dP =−−+ exp1exp 1  (6.2) 

As seen from (6.2), the duration of creep delay grows with the loading rate and is 
absent at slow loading when 0=NI . 
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6.1 Steady-State Creep as a Function of Initial Deformation 

According to formulae (5.1), (5.4), (5.5) and (5.8), the steady-state creep rate is a 
single-valued function of acting stress and temperature independently of whether 
the stress magnitude exceeds the yield limit of the material or not. This is in full 
agreement with numerous experiments. In this context, the investigations of 
Namestnikov, V. and Chvostunkov, A. [11] carried out as long ago as in the 1960s 
are of great importance. They deal with the comparison of the strain-hardening 
creep theory to experimental results for the cases when a creep deformation 
develops from an elastic or plastic state. First, the case when the creep diagram 
starts with some initial plastic deformation is considered. The model constants are 
determined so that the calculated steady-creep rates best fit experimental ones. As 
it has turned out, if we use these constants for the case when the creep deformation 
develops from an elastic state, the calculated results show considerable 
discrepancy with experiments. 

Let us investigate, in terms of the generalized synthetic theory, whether the 
presence or absence of the initial plastic deformation affects the steady-state creep 
rate. Consider the case when at a given temperature one and the same stress 
deviator vector produces or not plastic deformation at 1tt =  (Figs. 11a and 11b) in 
the loading regime shown in Fig. 4a. Such a situation can be obtained at different 
loading rates. Following the techniques of the construction of loading surface 
discussed in 4.1. and 4.2, it is easy to see that the loading surfaces for the steady-
state creep state are identical in both cases (Figs. 11c and 11d). This simple 
illustration shows that the generalized synthetic theory provides experimentally 
confirmed results that a secondary creep rate is a single-valued function of stress 
and temperature. 

 

 

 

 

 

 

 

 

 

 

Figure 11 
Identical steady-state creep surfaces with different initial straining states 
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Therefore, in contrast to classical creep theories, the generalized synthetic theory 
leads to correct results independently of whether the creep deformation develops 
from a plastic or elastic state (after some creep-delay-period). 

7 The Bauschinger Negative Effect 

The Bauschinger effect – an initial plastic deformation of one sign reduces the 
resistance of the material with respect to a subsequent plastic deformation of the 
opposite sign – is explained by the fact that the repulsive forces, which arise 
within dislocations conglomeration generated in initial loading, hasten the onset of 
the plastic deformation of opposite sign and, consequently, the smaller stresses are 
needed to induce plastic deformation. Starting from a certain initial-plastic-strain, 
the so-called Bauschinger negative effect is observed [7] when the compressive 
plastic deformation starts to develop at a positive magnitude of acting stress, Fig. 
12a. 

In order to allow for the Bauschinger effect, one must replace the equation 
proposed in [18] by the following: 

NN ψ−=ψ− , (7.1) 

where an index -N symbolizes the plane whose outward-pointing normal vector 
N
G

−  is in the opposite direction to the vector N
G

. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 

Bauschinger negative effect 
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The parameter of non-homogeneity for tangent planes with normal vectors N
G

− , 
NI− , is 

( ) ( )[ ] ( )[ ] N

tt

N Idsstp
ds
dBdsstp

ds
dBI −=−−⋅−=−−−⋅= ∫∫−

00

expexp NSNS GGGG
 (7.2) 

It is clear that a rate-hardening occurring due to a plastic loading does not exert 
influence upon that in the following loading of opposite sign. To rephrase this in 
terms of synthetic theory, we say that if NI  is positive, then NI−  is set to be zero 
and vice verse. 

The distance to the planes with vectors N
G

− , on the basis of expressions (A), (7.1) 
and (7.2), can be written as 

NNPNNPN ISISH −ψ−=+ψ+= −−− . (E) 

Formula (E) symbolizes that an initial plastic deformation of one sign reduces the 
resistance of material with respect to a subsequent plastic deformation of the 
opposite sign. Indeed, distance NH −  decreases with the growth in defect intensity 

Nψ  and integral NI  due to the plastic straining in directions N
G

. The decrease in 

NH −  means that tangential planes with normals N
G

−  near the origin of 
coordinates. If the initial loading is of such a magnitude that PNN SI >+ψ , the 
distance to the planes calculated by formula (E) becomes negative, meaning that 
the planes with normals N

G
−  have gone over the origin of coordinate, i.e. the 

Bauschinger negative effect is manifested. Fig. 12b shows the loading surface 
whose lower part is constructed on the basis of formula (E) for the case of the 
Bauschinger negative effect in pure shear. 

Formula (E), which governs the relation between the hardening/softening 
processes occurring in opposite directions, must be included into the system of 
constitutive equations (A)-(D). 

8 Reverse Creep 

Consider the time-dependent deformation of a specimen of aluminum alloy PA4 
(chemical composition 0.7-1.2% Mg, 0.6-1.0% Mn, 0.7-1.2% Si, 0.5% Fe, the rest 
Al) under the stepwise uniaxial loading shown in Fig. 13 [12]. The t−ε  curve 
consists of the following portions: 

(1-2) unsteady creep under constant tensile stress 1σ  at room temperature for 
[ ]ctt ,0∈  (portion 0-1 is the initial plastic deformation due to 1σ ); 
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(2-3) the drop of stress by the amount of σΔ  that results in the plastic 
compressive! strain SεΔ ; this is the manifestation of the Bauschinger negative 
effect; 

(3-4) compressive reverse creep! Despite the stretching stress acts, the specimen 
undergoes compressive creep deformation for [ ]rcc tttt +∈ , ; 

(4-5) the creep deformation does not progresses for the range 
[ ]drcrc tttttt +++∈ , ; 

beyond point 5, for drc tttt ++> , the creep in the direction of acting stress is 
resumed. 

As stated in [12], the reverse creep is observed only if the Bauschinger negative 
effect takes place. 

 

 

 

 

 

 

 

 

Figure 13 
Creep diagram under stepwise loading 

Let the magnitude of time-periods rt  and dt  be the main task of this Section. 

For the case of uniaxial tension, according to expression (2.1), the stress deviator 
tensor components are 32 11 σ=S  and 032 == SS , i.e. vector )0,0,( 1SS

G
 is 

co-directed with 1S -axis. To determine rt  and dt , it is quite sufficient to study 

the displacements of two planes with normals N
G

 and N
G

− , which are tangential to 
sphere (4.2) in the virgin state ( 0=λ ) and perpendicular to the vector S

G
. These 

planes will be denoted by I and I', respectively. The perpendicularity of planes I 
and I' to 1S -axis implies that the orientations of their normals N

G
 and N

G
−  are set 

by angles 0=α  and 0=β , and π=α  and 0=β , respectively. 

Formulae (2.5) and (2.7) give that 

Ω=λ=λ⋅= 111 coscos SmSH N mS
GG

,   λβα=λ=Ω coscoscoscos 11 Sm  (8.1) 
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It is clear that 1=Ω  for planes I and I' and, further throughout, all formulae will 
be written at 1=Ω . 

By making use of the basic formulae of the generalized synthetic theory, let us 
study the positions of planes I and I' on each portion of loading (the indexes in 
further formulae follow the marks in Fig. 13). Fig. 14 illustrates the positions of 
planes I and I'. In Fig. 14 a, b, d and e, together with planes I and I', the set of 
planes shifted by the stress deviator vector are also shown. Since we restrict 
ourselves only to the determination of rt  and dt , the number of these planes is 
immaterial and thus they are shown purely schematically. 

Portion 0-1. The plane I is displaced by the stress deviator vector )0,0,( 1SS
G

 (Fig. 
14a). Assuming the loading rate on potion 0-1 to be infinitely large, formulae 
(3.25) and (A), together with (8.1), give that 

011 >= BSI N ,   11 SH N = ,   ( ) PN SBS −−=ψ 111 . (8.2) 

The distance to the plane I' can be calculated by formula (E) as 

( )BSSSH PNPN −−=ψ−=− 12 111 . (8.3) 

In arriving at the result (8.3) we have taken into account that 01 =−NI . 
Dependent on the values of PS , 1S  and B , the distance 1NH−  can take both 
positive and negative values. 

Portion 1-2. The distance to plane I remains unchangeable for ctt ≤≤0  due to 
the fact that it continues to be on the endpoint of the stress deviator vector. 
Expressions (3.26) and (A) are 

( ) ( )ptBSI N −=− exp121 , (8.4) 

( ) ( )( ) PN SptBS −−−=ψ − exp1121 ,   ( )
cttNN =−ψ=ψ 212 . (8.5) 

The distance to the plane I' is governed by formula (E) at ( ) 021 =−−NI  and 

formula (8.4): 

( ) ( ) ( )( )ptBSSSH PNPN −−−=ψ−= −−− exp12 12121 , 

( )
cttNN HH

=−−− = 212 . (8.6) 

To ensure the arising of the Bauschinger negative effect at the unloading in 
portion 2-3, we require that PSS 〉〉1  so that the magnitude of distance 2NH −  is 
negative, i.e. plane I' has gone over the origin of coordinates. The positions of 
planes I and I' at ctt =  are shown in Fig. 14b. 
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Figure 14 
Positions of planes I and I’ 

Portion 2-3 (stress drop). The stress increment vector S
G

Δ  shifts a set of planes 
with normals N

G
−  (plane I' is also among them) thereby producing the 

compressive plastic-strain-increment SεΔ . Since SεΔ  is produced under the 
action of positive stress, SS

GG
Δ+ , it is clear that the Bauschinger negative effect 

occurs. Let us find a yield limit, SS , in the partial unloading. To do this, we need 

to determine the distance to the plane I' when the vector S
G

Δ  reaches this plane. At 
SSSS −=Δ 1 , the compressive plastic strain starts to develop (Fig. 14c). 

Before we turn to the determination of SS , special attention must be paid to the 
integral of non-homogeneity NI− . Since the reverse creep is of a compressive 
nature, its development can be modeled only by means of planes with normals 

N
G

− . Therefore, we require that 3NI−  be positive. This means that the reverse 
creep will develop if the compressive (negative) plastic deformation has occurred, 
i.e. the material needs to obtain some strain energy which can be released in the 
form of time-dependent deformation. To meet condition 03 >−NI , we require 
that the integral of non-homogeneity 3NI  be negative. 3NI , due to the stress drop 
of SΔ , is ( )[ ]SptSBI cN Δ−−= exp13 . The inequality 03 <NI  holds true if to 
require that 

( )cptSS −>Δ exp1 . (8.7) 

As a result, 

( )[ ] 0exp133 >−−Δ=−=− cNN ptSSBII . (8.8) 

The yield limit SS  is equal to the magnitude of the stress vector when it reaches 
the plane I', which is at the following distance from the origin of coordinate (Fig. 
14c): 

( ) SN SH −=−⋅=− NS
GG

 (8.9) 
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Since the planes with normals N
G

 are not on the stress deviator vector SS
GG

Δ+ , 
there is no increment in the defect intensity, 23 NN ψ=ψ . Therefore, expressions 
(8.5) and (A) give at SSSS −=Δ 1  that 

( ) SPNNPN BSBSSISH −−−=+ψ+= −−− 12 1333 . (8.10) 

By letting 3NH −  in (8.10) be equal to SS− , the equation for the yield limit in the 
partial unloading is: 

B
SSS P

S −
−=

1
2

1 . (8.11) 

Summarizing, the occurrence of SεΔ  is possible if the magnitude of SS  is 
positive and the stress SS Δ−1  is less than SS  (Fig. 14d). These conditions, in 
the view of (8.11), can be met if 

B
SS P
−

>
1
2

1   and  
B

SS P
−

>Δ
1
2 . (8.12) 

As 1SS ≤Δ , the fulfillment of the second inequality in (8.12) provides the 
fulfillment of the first one. 

Portion 3-4 (reverse creep). The integral of non-homogeneity for ctt >  can be 
obtained if we multiply 3NI−  from (8.8) by ( )[ ]cttp −−exp : 

( ) ( )[ ] ( )[ ]ccN ttpptSSBI −−−−Δ=−− expexp143 . (8.13) 

Since plane I' is on the endpoint of the vector SS
GG

Δ+ , one can write that 

( ) ( ) ( ) ( )SSISH NNPN Δ−−=+ψ+= −−−−−− 1434343 , (8.14) 

( ) PNN SISS −−Δ−−=ψ −−−− )43(1)43( , (8.15) 

( ) )43()43(43 −−−−−− =−=ψ NNN pII�� . (8.16) 

Reverse creep strain rate intensity, ( )43−−ϕ N� , can be found from formula (C): 

( ) ( ) ( ) ( ) ( )4343434343 −−−−−−−−−− ψ+=ψ+ψ=ϕ NNNNN KpIKr �� . (8.17) 

Now, formulae (8.13) and (8.15)-(8.17) give that 

( ) ( ) ( )[ ] ( ) ( )[ ]PcN SSSKptSptSKpBr +Δ−−−−Δ−=ϕ −− 1143 expexp� . (8.18) 

As seen from (8.14), tangent planes with negative normals start to move towards 
the origin of the coordinate leaving the endpoint of the stress deviator vector. The 
decrease in the number of planes on the endpoint of the stress deviator vector 
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leads to a decrease in the ( )43−−ϕ Nr�  from (8.18), i.e. the decrease in the reverse 

creep rate is modeled. As long as the right-hand side in (8.18) is positive, tangent 
planes with negative normals produce irreversible (creep) strain at constant 

SS Δ−1 . By letting ( ) 043 =ϕ −−N� , we express the fact that the last plane (I' plane) 

has left the endpoint of stress deviator vector (Fig. 14e), and we can calculated the 
duration of reverse creep rt  as 

( ) ( )( )
( )P

c
r SSSK

ptSSKpB
p

t
+Δ−

−−Δ−
=

1

1 exp
ln1 . (8.19) 

0>rt  if the numerator is greater than the denominator in (8.19): 

( )[ ] ( ) ( )[ ] Pc KSSKptKpBSKKpB ++−−>Δ+− 1exp . (8.20) 

Therefore, the formulae derived are valid if the magnitude of partial unloading 
SΔ  satisfies expressions (8.8), (8.12) and (8.20). 

As seen from (8.19), the reverse creep time rt  grows with SΔ  if we hold 1S  and 

ct  fixed; this is true for the whole range of SΔ , from SSS −1  to 1S  (complete 
unloading). Another result is that the reverse creep time rt  grows with the initial 
creep duration ct  at fixed values of 1S  and SΔ . Furthermore, the function ( )cr tt  
is bounded above by horizontal asymptote 

( )
( )P

r SSSK
SKpB

p
t

+Δ−
Δ−

=
1

ln1max    as ∞→ct . (8.21) 

These results agree with experimental data. 

Portion 4-5 (creep delay). The defect intensity for plane I at rc ttt +=  is 
determined by formulae (7.1), (8.10) and (8.14) at rc ttt += : 

( )SSS
Kp

p
PNN Δ−+

−
=ψ−=ψ − 144 . (8.22) 

Since tangents planes with neither positive or negative normals are not on the 
endpoint of SS

GG
Δ+  (Fig. 14f), irreversible straining does not occur for rc ttt +> , 

0=ϕNd . Therefore, we arrive at defects relaxation equation (4.33) which, 
together with initial condition (8.22), takes the form 

( ) ( ) ( )( )rcPN tttKSSS
Kp

p
−−−Δ−+

−
=ψ − exp154 . (8.23) 

As ( ) 054 =−NI , the distance to plane I is 
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( ) ( ) ( )( )rcPPN tttKSSS
Kp

pSH −−−Δ−+
−

+=− exp154 . (8.24) 

This means that plane I moves in the direction towards the origin of the 
coordinates. The instant of time when the plane is on the endpoint of vector 

SS
GG

Δ+  (Fig. 14g) can be found from (8.24) by letting 

( ) SSH N Δ−=− 154 . (8.25) 

As a result, we obtain the duration of creep delay dt  as 

( )
( )( )SSSKp

SSSp
K

t
P

P
d Δ−−−

Δ−+
=

1

1ln1 . (8.26) 

For drc tttt ++>  the creep of positive sign develops in time due to the fact that 

the planes come back to the endpoint of vector SS
GG

Δ+ . It is worth noting that the 
formula for dt  holds true if 

PSSS >Δ−1 . (8.27) 

This inequality expresses an obvious condition for the occurring of the positive 
creep deformation that the acting stress SS Δ−1  must exceed the creep limit PS . 

 
 

 
Figure 15 

Experimental and calculated cr tt −  and σΔ−rt  curves 
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In Fig. 15, cr tt ~  and σΔ~rt  curves are plotted on the basis of (8.19) (symbols 
� and × indicate experimental points), for the following values of acting stress, 
creep limit, and the model constants, MPa 2271 =σ , MPa 10=σP , 05.0=B , 

4105.2 −⋅=K , -1min 2.0=p . The comparison between the calculated result and 
experimental data shows satisfactory agreement. 

Discussion 

The phenomenon of reverse creep is of great importance relative to the theories 
based on the hypothesis of creep potential. According to the concept of potential, a 
creep rate is a single-valued function of the state of stress and stress values, 
meaning that a loading prehistory does not affect the creep rate. On the other hand, 
the reverse creep strongly depends on loading regime. Furthermore, the sign of the 
reverse creep is opposite to that of the acting stress. Therefore, the generalized 
theory provides broader possibilities than classical creep theories. 

Conclusions 

The generalized synthetic theory of irreversible deformation is capable of 
modeling a very wide circle of problems ranging from plastic and 
steady/unsteady-state creep deformation to non-classical problems of irreversible 
deformation such as creep delay, the Bauschinger negative effect and reverse 
creep. This capability results from (i) the uniformed approach to the modeling of 
irreversible deformation and (ii) the intimate connection between macro-
deformation and the processes occurring on the macro-level of material. 
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