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Abstract: This paper is aimed to develop a model for the analytical description of the effect 

of direct current (DC) upon the steady-state creep of metals. For the mathematical 

apparatus, the synthetic theory of irrecoverable deformation is taken. As a result, 

relationships between creep rate, stress, temperature, and current intensity have been 

derived. For this purpose, a term, taking into account the passing of DC, is entered into the 

constitutive equation of the theory. The model results fit well experimental data. The 

analysis of loading surface in steady-state creep for the ordinary loading and that coupled 

with DC is provided. 
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1 Introduction 

The electrical-mechanical behavior of materials has been extensively studied 

analytically and numerically for the potential applications in micro 

electromechanical systems and field-assisted sintering process. 

A number of investigators have clearly established that mechanical properties 

such as flow stress, creep, and stress relaxation undergo significant changes under 

the influence of electrical field. Whatever the detailed mechanism for the effect of 

electric current on deformation behavior, the effect is most likely associated with 

the interaction of the electric field with the structural defects, notably dislocations. 

When current is imposed on the deformation, it will cause not only heating and 

thus expansion of material, but also will weaken the binding forces between 

dislocations and obstacles impeding dislocation motion that otherwise cannot be 

overcome by thermal activation alone. As a result, the nucleation and 

multiplication of dislocations will be alleviated that in turn will increase the 

density of mobile dislocations. Therefore, electron wind frees more and more 

dislocation from the pinning defects and enhances the mobility of dislocations that 

will be reflected as an increased rate of deformation. 
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Researches [1-7] report an increase steady-state creep rate due to the passage of 

DC, see Fig. 2, which is suggested to be caused by the following: 

(i) DC-induced Joule heating causing a change in local temperature and 

resulting in time-dependent plastic deformation [8-10]. 

(ii) Themomentumexchangebetweenmovingelectronsandlatticeatomsreducesthee

nergybarrierandincreasesthemigration velocity of atoms [11-13]. 

(iii) The intensification of the current field assisted sliding rate and diffusional 

creep [14-16] 

Such metals and their alloys as copper, nickel, aluminum, tin, etc. [1-3, 6] show 

the increase in their steady-state creep due to the passage of direct current (DC). It 

must be noted that, so far, experimental results dominates over analytical studies 

about the influence DC on the steady-state creep of metals. Here can be mentioned 

work [2] proposing a linear relation between the creep rate and squared current 

intensity. 

This paper continues the investigations presented in [17], where, in terms of the 

synthetic theory of irrecoverable deformation, formulae  , J    at a given 

temperature have been proposed ( J  is current intensity). At the same time, a 

deeper analysis of the results obtained shows unsatisfactory results for variable 

temperature. Consequently, the goal of this paper is to model the effect of DC 

upon the steady-state creep of metals encompassing all the three parameters 

affecting the creep, i.e.  , ,T J   . 

2 Synthetic Theory 

The synthetic theory incorporates the Batdorf-Budiansky slip concept [18] and the 

Sanders flow theory [19]. The theory models small irrecoverable (plastic/creep) 

deformations of hardening materials. While works [20-22] provide comprehensive 

information on the basic notions and relationships of the synthetic theory, here we 

utilize only its key formulae. 

The modeling of irrecoverable deformation takes place in the three-dimensional 

subspace of the Ilyushin five-dimensional space of stress deviators [23]. The 

loading process is expressed by a stress vector, S , whose components are 

converted from the stress deviator tensor components – 
ijS  ( , , ,i j x y z ) – as 

follows [20, 21]: 

3 2 , 2 2 , 2xx xx yy xzS S S S 
 

S . (1) 
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Since the synthetic theory is of two-level nature, the macrodeformation (strain 

vector e) is calculated a sum of slips occurring at the microlevel of material (strain 

intensity N ) 

N dV
  

   e N ,   cosdV d d d     (2) 

where angles  ,   and   give the orientation of slip system and the slip 

direction. 

The strain vector components are related to the strain-deviator tensor components, 

ije  ( , , ,i j x y z ), in the following way 

1 3 2 xxe e ,   
2 2 2xx yye e e  ,   

3 2 xze e . (3) 

For the case of steady-state creep (  t constS ), the strain intensity takes the 

form as [20, 21] 

 
2 22 3N P

K

r
    

 
S N , (4) 

   1 2 effK K T K  ,  1 exp
Q

K T
RT

 
  

 
,   2

2

9 3

2 2

k

eff eff

cr
K  



  (5) 

where r , c  and k  are model constants; 
P  the creep limit of material in 

uniaxial tension, Q  creep activation energy. According to Schimd’s law, the 

driving force of plastic slip within a slip system is resolved shear stress, which is 

determined by the product S N , where unit vector N  gives the orientation of slip 

system. 

In Eq. (5), We define the function 
2K via the Bailey-Norton law (power law 

creep). In terms of the synthetic theory, the effect of power index is expressed by 

constant k . 

In uniaxial tension ( 1 2 3S  , 1 cos cos cosN     [19, 20]), Eq. (2) gets 

 
1 1 1

1 1

2 2 2

1

0

2
cos cos cos cos cos cos

3
P

K
e d d d

r

  

 

          
 

  
    . (6) 

The boundaries of integration are [20, 21] 

1 1 1cos ,   cos ,   cos
cos cos cos

P P P  
  

     
   . (7) 

By integrating in (6), we obtain 
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 1e AF b ,  
2

2

1

3

2 2

kPc
A K


   , (8) 

 
2

2 2 2 4

12

1 1 1
2 1 5 1 3 ln ,  cos

b
F b b b b b b

bb


  
      
 
 

. (9) 

In [20-22] it is shown that  F b  increases with the decrease in b . On the other 

hand, the last formula in Eq. (7) shows that b  decreases as the stress   grows. 

Therefore, the final result is that the function F  is an increasing function of the 

acting stress. For the sake of further simplification, we approximate function F  

from (9) as 

2
1

1F
b

 
  
 

,     1 ' 1 0F F  . (10) 

3 Relationships of the Synthetic Theory in the Case of 

Creep Accompanied by Current 

To model the action of DC which it exerts on the processes occurring in a slip 

system during steady-state creep, we enter into Eq. (4) terms containing current 

intensity, J  (kA/cm
2
). 

1) To take into account the current passage induced temperature increase (Joule 

heating), we write down the function  1K T  from (5) as 

 
 

1 2
exp

5.23

Q
K T

R T J

 
  
 
 

, (11) 

where the factor 5.23 is taken from [2]. 

2) A new term, C , is inserted into formula (4) for 
N , 

   
2 2 21 2 3N P

K
C

r
     

 
S N . (12) 

The presence of C in (12) symbolizes the increase in deformation within a slip 

system caused by electric field. We propose to define the function C  as a product 

of two functions, 

   C U J W T  , (13) 
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both related to their arguments as power functions 

2

1

u
U u J , (14) 

  3

1 2 4

w
W wT w w   , (15) 

where
iu  and 

jw  model constants to be determined to best fit experiments. 

The choice to adopt the term standing for the electric field in the form of 
2C  in 

(12) is motivated by the proposition that the creep rate can be taken as a linear 

function of 2J , 
2

0 aJ    [2]. Therefore, we follow this phenomenological 

fashion, at least, at the microlevel of material. The further complication of the 

function C , which can be obtained from the observation on the microlevel of 

material to understand what effect the current has on the dynamics of slides, is 

strongly needed. 

By defining the function C  as the product    U J W T , we try to follow the 

tendency from formula (5) when defining the K . i.e. the effect from DC is 

decomposed on two components: (a) the force interaction between the electron 

wind and the material lattice  U J  and (b) temperature-dependent effect. The 

temperature increase (11) alone is not enough to reach a good agreement between 

experimental and model results. 

To be in line with experimental results [2], stating that DC does not strongly affect 

the slope of log𝜀̇~log𝜎 lines, we enter function C  into formula (12) as a factor 

multiplying  . This means a parallel alignment of the log𝜀̇~log𝜎 plots for 

different current intensities at a given stress. At the same time, the change in the 

slope must be inspected due to formula (11). 

Long-term study of the behavior of  ,
T

J    and  ,J T


   dependencies 

has been shown that these are the relationships (14) and (15) that leads to the 

results fitting experimental data. 

To calculate the value of the first stress inducing creep deformation in the 

presence of DC (
C ), we let 0N   and , , 0     in Eq. (12): 

21C

P C   . (16) 

As one can see, Eq. (16) expresses the fact that the passage of current decreases 

the stress needed to initiate the development of creep deformation (
C

P  ). 

Now, taking into account (12)-(15), Eq. (2) takes the following form: 
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   
1 1 1

1 1

1

2 2 2 2

0

2

3

cos cos cos 1 cos cos cos
C C C

C C

P

K
e

r

C d d d

  

 

          
 

 

  
   

 (17) 

where 

1
2

cos
1 cos cos

P

C

C




  



,

1
2

cos
1 cos

P

C

C




 



,

1 1 1 1
2

cos cos
1

P

C C

C


   


   


. (18) 

The secondary creep rate in uniaxial tension under the action of DC, 
1

Ce , is 

calculated from Eqs. (17) and (18) as 

 1

C

Ce AF b , 
1cosC Cb  . (19) 

The following conclusions can be drawn from Eqs. (17) and (18): 

1) formula (17) shows that the action of DC intensify the slips, (factor 
21 C ), 

2) formula (18) means the enlarging of integration domain, comparing to the case 

of ordinary creep; in other words, the number of slip systems contributing to creep 

strain increases under the action of DC. 

Consider results obtained in terms of the synthetic theory for the steady-state 

creep rate of tin in uniaxial tension (melting point 505.08 K). The following four 

diagrams are plotted to inspect their fits with the following experiments [2]: 

(i) Fig. 1a. Steady-state creep of tin   as a function of tensile stress  without 

current ( 0J  ); experiments were conducted at different temperatures 

(323,348,373,398,423 K). 

(ii) Fig. 1b. Steady-state creep of tin   as a function of temperature T  without 

current ( 0J  ); experiments were conducted under tensile stress 3.09 MPa  . 

(iii) Fig. 2a. Steady-state creep of tin   as a function of tensile stress   under the 

action of current of different intensities – 
20,  1.26, 1.89, 2.52, 2.835, 3.15 kA cmJ  ; experiments were conducted 

at 323 KT  . 

(iv) Fig. 2b. Steady-state creep of tin   as a function of current intensity squared 
2J ; experiments were conducted under tensile stress 3.09 MPa  at different 

temperatures (see (i)). 
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To complete the tasks announced, first, the model constants c  and k must be 

chosen for constructing 𝜀̇~𝜎 and 𝜀̇~𝑇 graphs at 0J  . Plots in Fig. 1 are 

obtained by Eqs. (8)-(10) at 6k   and 26c   (activation energy here and 

further throughout is 
47.0 10  J/moleQ    [2]). The experimental data for Fig. 

1b are read from Fig. 2b at 0J  . 

 

Figure 1 

log𝜀̇~log𝜎 (a) and 𝜀̇~𝑇 (b) diagrams of tin ( 0J  ) (points – experiment [2], lines– model) 

Figure 2 

log𝜀̇~log𝜎 (a) and 𝜀̇~𝐽2 (b) diagrams of tin ( 0J  ) (points– experiment [2], lines– model) 

The next step is  ,
T

J    and  ,J T


   diagrams of tin subjected to DC. 

Results obtained by Eqs. (18) and (19), together with (13-15), calculated at 
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  22

1 0.5 cm / kA
u

u  , 
2 3.0u  , 

1 0.0121w K , 
2 4.102w  , 

3 6w  , 

4 0.12w  , are shown in Fig. 2 (the values of c and k , naturally, are the same as 

above). Fig. 2bdemonstrates that the synthetic theory follows Zhao’s proposition 

[2] to express 𝜀̇~𝐽 dependency as 
2

0 aJ    (the model 𝜀̇~𝐽2 curve has a great 

radius of curvature. 

The change in the slope of 𝜀̇~𝜎 lines in Fig. 2a, caused by formula (11), is only of 

3.57%, which is in accordance with experiments. 

As one can see, all the four analytical results give good agreement with the 

experimental data. It must be stressed once more that the analytical curves in Figs. 

1 and 2 are obtained via formulae of the synthetic theories using one and the same 

set of constants: , , ,i jk c u w . 

4 The Analysis of Loading Surface in Steady-State 

Creep Coupled with DC 

The essential characteristics of the plastic/creep constitutive models are: 

(i) The yield criterion that defines the material state at the transition from elastic to 

elastic-plastic behavior. Yield function actually describes the surface in the stress 

space that demarks the boundary between the elastic and plastic/creep behavior of 

materials. 

(ii) The flow rule that determines the increment in plastic strain from the 

increment in load. 

(iii) The hardening rule that gives the evolution in the yield criterion during plastic 

deformation. In other words, the hardening rule describes how the yield surface 

changes (size, center, shape) as the result of permanent deformation. Development 

of yielding criteria is hence pivotal in predicting whether or not a material will 

begin to yield under a given stress state. 

The synthetic theory utilizes the Von-Mises yield criterion, which results in the 

sphere in three-dimensional stress-deviator space [21, 24]: 

2 2 2 2

1 2 3 PS S S S   , (20) 

where 2 3P PS  , and 
P  is the creep limit of material. 

The flow rule is defined by Eq. (2) for one slip system at the micro-level of 

material, and the macro deformation is calculated via Eq. (2) (for the case of 

uniaxial tension we obtain formula (6)). 
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The evolution in yield criterion (i.e. the behavior of subsequent yield surface, or 

loading surface) obeys the principle proposed by Sanders [19]. The yield surface 

(20) is treated as the inner envelope of the planes tangential to the sphere, i.e. we 

have the continuous set of equidistant planes. During loading, stress vector ( S ) 

translates at its endpoint some set of planes to which it reaches. The displacement 

of plane at the endpoint of the S  symbolizes the development of permanent 

defamation within appropriate slip system. 

In the case of steady-state creep the equations for the plane distances under the 

action of stress vector S (
NH , index N  stands for the normal vector N  that gives 

the orientation of the plane) are 

The stress vector displaces the plane

2 3 Stationary planes
N

P

H



 


S N
 (21) 

The loading surface for uniaxial tension, which is the inner envelope of the planes 

whose distances are determined by the formulae above, is shown in Fig. 3, surface 

 . It consists of two portions: 

(i) the sphere formed by stationary planes, i.e. those which are not reached 

by the stress vector, 

(ii) the cone whose generator is made up of boundary planes reached by the 

stress vector (their orientation is given by angle 
1 ). 

 

Figure 3 

Loading surfaces in S1-S3 coordinate plane for uniaxial tension under the condition of stready-state 

creep;  – ordinary load, C – creep with DC 

As one can see, the synthetic theory gives rise to a singular point on the loading 

surface, loading point A . 
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When considering the creep accompanied by direct current, formulae (16)-(18) 

lead to the following transformations in the loading surface. 

Formula (16) results in the decreasing of the initial radius of yield surface (the 

virgin state of material), namely 21PS C  instead of 
PS  (Fig. 3, surface C). 

This fact implies that the stress needed to induce plastic shift within a slip system 

is less for the case of simultaneous action of loading and the passage of current. 

Really, while, in the case of ordinary loading, the stress vector reaches plane 2 

from Fig. 3 at point 
1A , the plane with the same orientation (plane 1) is achieved 

by the stress vector at point 
1CA  (creep with DC). 

Another result is that, for a given stress vector, the distance covered by a plane 

increases due to the action of DC. Indeed, both planes from Fig. 3, plane 1 and 2, 

are translated by the stress vector into position 3, but it is clear that the plane 1 

travels the greater distance than the plane 2 does. This result is in accordance with 

the conclusion obtained from formula (17), namely, the passage of current 

intensifies the slip within every slip system. 

In addition, Fig. 3 demonstrates the final result, the passage of current increases 

the number of slip systems where plastic shifts occur (
1 1C  ), obtained by Eq. 

(18). 

Conclusions 

The model describing the steady-state creep of metals under the action of direct 

current has been developed in terms of the synthetic theory of irrecoverable 

deformation. To catch the effect the current exerts upon the creep rate, we extend 

the constitutive relationships of the synthetic theory, which govern the hardening 

of material, by a term containing the current intensity. As a result, we have 

derived relationships for the steady-state creep rate coupled with DC. Results 

obtained in terms of our model show good agreement with experimental data. 

Understanding the evolution of loading surface, i.e. the onset and development of 

irrecoverable deformation (plastic or creep), is critical in modeling any type of 

deformation. For this reason the analytical results obtained are accompanied by 

the analysis of loading surface for the case of ordinary steady-state creep and that 

in electrical field. 
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