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Abstract: Maximum tolerated dose (MTD) is a maximal amount of drug or radiation re-
sulting relatively acceptable dose-limiting toxicity (DLT). Accurate value of MTD should
be found in Phase I trials in order to create the possibility to conduct successful Phase II
(pilot efficacy and safety evaluation) and Phase III (comparative efficacy) trials. The aim
of this paper is to review the difficulties of the dose-finding methods including multi-agent
problems and late-onset toxicities, and to discuss Bayesian adaptive dose-finding methods
which can handle these issues.
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1 Introduction
The main aim of evidence-based medicine is to collect, analyze and critically
evaluate research data, and translate systematically collected and evaluated med-
ical knowledge into practice in order to obtain optimal health outcomes [1].
Nowadays, evidence-based approach is fundamental in the field of oncology as
well, and biostatistics is an important tool for this.

The aim of Phase I clinical cancer studies from oncological point of view is to
find the maximum tolerated dose (MTD) of a drug or radiation which refers to a
maximal amount of drug resulting relatively acceptable (typically grade 3) dose-
limiting toxicity (DLT) [2]. Knowing the precise value of MTD has a key role in
oncological treatment design [3].

Phase I design methods can be divided into three groups: algorithm-based de-
signs, model-based designs and model-assisted designs [4–6].

Algorithm-based designs are conventional designs in the sense that there are pre-
specified rules to decide on the dose escalation and de-escalation. Algorithm-
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Figure 1
Characteristics of Phase I Design groups.

Transparency and simplicity criterion is defined based on whether dose escalation and de-escalation
rule can be predetermined, and the estimation is computation heavy or not. Flexibility refers to the
ability that a design targets prespecified dose-limiting toxicity rate, and decision can be made with
low sample size and changing cohort size. The good performance criterion is met when the design
accurately identifies maximum tolerated dose, and high percentage of the patients are allocated to

maximum tolerated dose. In terms of these criteria, algorithm-based designs are the least applicable;
model-based designs have good perfomance and flexibility, but these designs can be overly complex;

while model-assisted designs combine all the good properties.

based designs group contains the most common Phase I design method, the
”3+ 3” design which can be used in a single-agent trial. Albeit it is a simply
and easy to use model, it has been widely criticized due to its poor efficiency in
terms of treating too many subjects at a suboptimal dose and weakly estimating
MTD [7].

Taking into account not a single-agent but a drug combination trial, the process
is more challenging due to the complex drug–drug interactions [8]. However,
in oncology, combination therapy is often used due to its synergistic treatment
effect.

Model-based designs are adaptive designs where a statistical model is used in
order to quantify the dose-toxicity relationship, and describe the dose-toxicity
curve [9, 10]. Model-based designs have the following dose-finding strategy.
The first step is creating a probability model (that can be parametric or non-
parametric) in order to quantify the dose-toxicity relationship. The second step
is the collection of data from the treated patients, and based on that, the model
continuously updates the estimate of the model after each cohort, and this up-
dated estimation is used to find the dose for the next cohort. The final step is
the identification of the maximum tolerated dose based on the estimated toxicity
probabilities of the dose combinations. Model-based designs group includes the
Continuous Reassessment Method (CRM), and the Bayesian copula regression
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and logistic regression model.

Model-assisted designs group is a relatively new class of trial designs which were
developed in order to combine the advantages of algorithm-based and model-
based designs. Before the onset of the trial, dose escalation and de-escalation
rule can be predetermined (like in algorithm-based designs), and a statistical
model is used in order to quantify the dose-toxicity relationship, and describe
the dose-toxicity curve (like in model-based designs). Model-assisted designs
group contains e.g. the Bayesian Optimal Interval (BOIN) design [11, 12] and
the keyboard design [13] for single-agent dose finding.

According to Yuan et. al [5], Phase I design characteristics can be evaluated on
three criteria. Transparency and simplicity criterion is defined based on whether
dose escalation and de-escalation rule can be predetermined, and the estimation
is computation heavy or not. Flexibility refers to the ability that a design tar-
gets prespecified dose-limiting toxicity rate, and decision can be made with low
sample size and changing cohort size. The good performance criterion is met
when the design accurately identifies maximum tolerated dose, and high percent-
age of the patients are allocated to maximum tolerated dose. In terms of these
criteria, algorithm-based designs are the least applicable; model-based designs
have good perfomance and flexibility, but these designs can be overly complex;
while model-assisted designs combine all the good properties (Fig. 1). Besides
Yuan’s evaluation, there are other comparative reviews discussing the pros and
cons of algorithm-based designs, model-based designs and model-assisted de-
signs (e.g. [6]).

The paper is organized as follows. The second section discusses the most com-
mon dose-finding solution for single-agent trials, namely the Continual Reassess-
ment Method. In the third section, two Bayesian adaptive dose-finding methods
for multi-agent trials are shown, a copula-type regression model and a logistic
regression model. The fourth section considers the question of late-onset toxic-
ities and presents two different methods to handle this problem. Time-To-Event
Continual Reassessment Method offers a solution for single-agent trials, while
Bayesian data augmentation approach can be used in multi-agent trials. The pa-
per ends with the conclusion section.

2 Continual Reassessment Method (CRM) for Single-
Agent Dose-Finding Trials

In dose-finding studies, the typical procedure is that a sequence of doses is in-
vestigated in order to find DLT and the corresponding MTD. The main assump-
tion in Continual Reassessment Method [14–16] is that by increasing drug dose,
the probability of therapeutic efficacy is monotonically increasing, as well as the
probability of toxicity. Hence, the main purpose of Phase I trials is to find a trade-
off solution, viz. finding the most efficacious therapy which results in tolerable
toxicity risk. Steps of the CRM are the following [14].

Step 1. Choosing of an a priori dose-toxicity model. There are two main
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groups of a priori dose-toxicity curve models: one-parameter and two-parameter
models. In the case of one-parameter models, the intercept of the curve is fixed,
and trial data update the slope (s) of the curve from cohort to cohort. In con-
trast, using two-parameter models, both intercept (i) and slope (s) of the curve
is re-estimated step by step. Advantage of the one-parameter models is that they
require less information; however, their accuracy is limited due to the fixed in-
tercept parameter. Using two-parameter models, the accuracy can be improved,
but a bigger data set is required for good estimation. In the following, the mostly
used dose-toxicity models are listed:

• hyperbolic tangent model

ptoxicity(dose) =
(

tanh(dose)+1
2

)s

, (1)

where s is the slope of the curve.

• one-parameter logistic model

ptoxicity(dose) =
exp(c+ s ·dose)

1+ exp(c+ s ·dose)
, (2)

where s is the slope of the curve, and c is a constant, typically c = −4 or
c = 3.

• two-parameter logistic model

ptoxicity(dose) =
exp(i+ s ·dose)

1+ exp(i+ s ·dose)
, (3)

where s is the slope, and i is the intercept of the curve. In Fig. 2 (blue solid
line), a two-parameter logistic curve is chosen as an a priori dose-toxicity
model.

Step 2. Choosing of a target toxicity level. By target toxicity level, we can de-
scribe what percentage of the investigated patients would be acceptable to have
dose-limiting toxicity (DLT). In oncology trials, investigating chemotherapeutic
agents which may cause serious side-effects and usually applied in short treat-
ment period, the target toxicity level is typically chosen to be between 0.2 and
0.3. However, if the purpose of the study is to examine the clinical response and
efficacy rate of a drug, target toxicity level can be chosen form a wider range, e.g.
[0.3,0.9]. In Fig. 2 (gray solid line), the target toxicity level is 0.5, meaning that
it is acceptable that 50% of the patients have DLT.

Step 3. Dose levels and mapping. Physiologically relevant dose levels should
be chosen for the dose-toxicity model. A typical choice for dose levels is cal-
culated by using the modified Fibonacci sequence. In this case, dose1 is chosen
based on preliminary data, and the next doses are calculated as follows: dose2 =
2 ·dose1,dose3 = 1.67 ·dose2,dose4 = 1.5 ·dose3,dose5 = 1.4 ·dose4,dose6 =
1.33 ·dose5,dose7 = 1.33 ·dose6,dose8 = 1.33 ·dose7. Finally, the correspond-
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Figure 2
Dose-toxicity models for Continual Reassessment Method.

The a priori dose-toxicity curve is shifted up if at least one of the patients from the previous cohort
experienced dose-limiting toxicity; if no patient from the previous cohort experienced DLT, the

curve is shifted down. The treatment dose of the next cohort is the closest following dose level to the
intersection of the dose-toxicity curve and the target toxicity level.

ing toxicity risks should be estimated for every mapped dose value. In Fig. 2 (x
axis), modified Fibonacci sequence-based mapped dose levels are shown.

Step 4. Find the optimal starting dose. The optimal starting dose should be
chosen based on the intersection of the a priori dose-toxicity curve and the tar-
get toxicity level. The starting dose is the closest following dose level to the
intersection. In Fig. 2, the optimal starting dose is dose5.

Step 5. Re-estimation of model parameters of the dose-toxicity curve. Us-
ing the optimal starting dose, a given number of patients are treated in the first
cohort. Based on the observed toxicity data from this cohort, and using the a
priori dose-toxicity model, parameters of the original dose-toxicity curve are re-
estimated. This method applies the Bayesian approach, i.e. statistically combines
a priori assumptions with observed data. As a result, the dose-toxicity curve is
shifted up or down based on whether the patients experienced DLT in the given
cohort or not. Finally, using the updated dose-toxicity curve, the treatment dose
of the next cohort can be calculated. From cohort to cohort, as the number of
patients involved in the trial is increasing, the dose-toxicity curve is almost only
estimated from the observed data, the originally chosen a priori dose-toxicity
model is substantially changing. In Fig. 2, dashed red curve shows the modi-
fied dose-toxicity model if at least one of the patients from the previous cohort
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Figure 3
Probability of toxicity as a function of dose level in dose-finding trials.

In one-agent models, there are maximum two adjacent doses for a given dose level, and the
probability of toxicity is monotonically increasing as the drug dose is increased. In two-agent

models, there are eight adjacent doses; diagonal movements where doses are not changing in the
same direction (blue solid arrow) are allowed, but diagonal movements where both doses are

changing in the same direction (red dashed arrow) are not allowed. The monotonic order of toxicity
is not guaranteed in the case of multi-agent models, the joint toxicity probability is unknown.

experienced DLT (the curve is shifted up, meaning that doses are presumably as-
sociated with higher toxicity risks). The treatment dose of the next cohort in this
case is dose4. In contrast, green dotted curve in Fig. 2 represents the case when
the dose-toxicity model was updated due to no patient from the previous cohort
experienced DLT (the curve is shifted down, meaning that doses are presumably
associated with lower toxicity risks). The treatment dose of the next cohort is
dose6.

Step 6. Stopping CRM and finding MTD. After each cohort, dose escalation
or de-escalation takes place as it is described in Step 5. CRM stops when a pre-
defined stopping criterion is met. In a typical stopping criterion, the total number
of the patients who have been treated at a given dose (during the different cohorts)
is specified, and an additional condition could be that the next cohort would give
the same dose level. This dose is the MTD that was being sought.

3 Bayesian Adaptive Dose-Finding Method for Multi-
Agent Trials

Beside the traditional frequentist biostatistical designs, a specific model-based
design group, namely Bayesian methods gain more and more importance. Bayes’
theorem establishes the relationship between the conditional probability of A
given B with the conditional probability of the reverse, i.e. B given A [17]. The
advantages of the use of Bayesian biostatistics in clinical oncology are mani-
fold [18–20]. On the one hand, a priori knowledge can be incorporated into
the trial design and complex statistical methods can be expeditiously handled.
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On the other hand, a probability can be assigned directly to the efficiency of
the treatment. Also, Bayesian methods have the capacity to naturally integrate
evidence from multiple sources [21] and Bayesian methods can provide better
results by minimizing risk and maximizing utility [22]. Besides this, Bayesian
methods can be used in minimum effective dose (MinED) finding problems as
well [23]. However Bayesian methods have significant computational complex-
ity, it is not an obstacle anymore due to modern computing power and available
software [24]. Ewings et al. discusses a practical recommendations for imple-
menting a Bayesian adaptive phase I design during a pandemic using AGILE trial
which is a randomised seamless phase I/II trial platform [25].

Other important question in Phase I trials is the fact that in most of the cases, on-
cology protocols recommend multi-modal therapies where a given combination
of drugs is used. In these cases, it should be determined which drug is causing
the observed toxicity, which is a significant challenge [26].

As we have discussed previously, in single-agent dose-finding trials the main
assumption is that the probability of toxicity is monotonically increasing as the
drug dose is increased. For a given dose level, there are maximum two adjacent
doses where – based on the dose-finding algorithm – the current dose can be
escalated or de-escalated (Fig. 3 a) one-agent model), and the order of toxicity
level corresponding to the new dose is known (i.e. is it higher or lower than the
previous one).

In contrast, using a two-agent model [27, 28], the doses span a 2-dimensional
space where for a given dose, there are eight adjacent doses, including diago-
nal movements when both doses are changing in one step (Fig. 3 b) two-agent
model). Such diagonal movements where both doses are changing in the same
direction (i.e. both agent doses are increasing or both are decreasing in one step)
is not allowed [29]. A special case in two-agent models is when a discrete dose
space is used, i.e. several doses of one agent are fixed. A solution for this case
can be the parsimonious working model for the dose–toxicity relationship where
the aim is to find the MTD of the other agent to be used in combination with each
of the doses of agent one [30, 31].

The main problem using multiple agents is that monotonicity of the dose-toxicity
curve is not an always valid assumption, namely the monotonic order of toxic-
ity is not guaranteed [32, 33], the joint toxicity probability is unknown, hence
deciding on dose escalation or de-escalation is not trivial [34].

3.1 Copula regression model
Yin et al. [29] published a copula-type drug combination regression model where
a priori information comes from trials in which drugs were investigated individu-
ally as single agents. The developed copula-type Bayesian adaptive dose-finding
method reduces to the Continual Reassessment Method when a single-agent is
investigated.

The (individual) toxicity probability of agent A in the case of the jth dose (A j)
is p j, and the investigated sequence is p1 < p2 < ... < p j < ... < pJ , where
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pJ is the toxicity probability of the MTD of agent A (i.e. AJ). Similarly, the
(individual) toxicity probability of agent B in the case of the kth dose (Bk) is qk,
and the investigated sequence is q1 < q2 < ... < qk < ... < qK , where qK is the
toxicity probability of the MTD of agent B (i.e. BK). The individual toxicity
probabilities are known. As it was mentioned before, however the individual
toxicity probabilities are ordered, the joint toxicity probabilities are not trivially
ordered; for instance the relationship between π j,k (joint toxicity probability of
(A j,Bk)) and π j−1,k+1 (joint toxicity probability of (A j−1,Bk+1)) is not known.

In the next step, a power parameter is assigned to the a priori toxicity proba-
bilities in order to reduce the uncertainty of the probabilities; the ”true” toxicity
probabilities are pα

j and qβ

k , where α > 0 and β > 0 are unknown parameters
with prior means centered at 1. To calculate the joint toxicity probabilities, the
following conditions have to be satisfied:

• if pα
j = 0 and qβ

k = 0 ⇒ π j,k = 0,

• if pα
j = 0 ⇒ π j,k = qβ

k ; and if qβ

k = 0 ⇒ π j,k = pα
j ,

• if either pα
j = 1 or qβ

k = 1 ⇒ π j,k = 1,

where j = 1, ...,J and k = 1, ...,K.

In a copula-type model, the joint toxicity probability distribution can be calcu-
lated using the marginal distributions and a dependence parameter. The depen-
dence function in the Archimedean copula family is

Cγ(u,v) = ψγ

{
ψ

−1
γ (u)+ψ

−1
γ (v)

}
, (4)

where 0 ≤ u,v ≤ 1, and γ is an association parameter, Cγ is a distribution function
on [0,1]2, and ψγ is the copula generator with the following properties: 0 ≤ ψγ ≤
1, ψγ(0) = 1, ψ ′

γ < 0 and ψ ′′
γ > 0. Taking into account a specific type from

the Archimedean copula family (Clayton copula), the proposed regression model
copula is

π j,k = 1−
{(

1− pα
j
)−γ

+
(

1−qβ

k

)−γ

−1
}− 1

γ

, (5)

where γ > 0 describes the drug–drug interaction. This model is a multivariate
generalization of the Continual Reassessment Method, allowing internal learning
from other combinations of dose levels.

In the case of multi-agent models, target toxicity level has an intersection curve
with the joint toxicity probability surface, this curve defines the required maxi-
mum tolerated dose. As a consequence, there could be more than one discrete
MTD solution. The final MTD combination should be selected based on the
recommendation of medical experts.
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The likelihood function can be calculated based on a binomial distribution

L(α,β ,γ|data) ∝

J

∏
j=1

K

∏
k=1

π
x j,k
j,k (1−π j,k)

n j,k−x j,k , (6)

where n j,k represents the patients who are treated with ( j,k) dose level combina-
tion, and x j,k represents the patients who experienced dose-limiting toxicity.

Assuming independent a priori distributions, viz. f (α,β ,γ) = f (α) f (β ) f (γ),
joint posterior distribution is

f (α,β ,γ|data) ∝ L(α,β ,γ|data) f (α) f (β ) f (γ). (7)

After each cohort, Gibbs sampler is used to find the unknown parameters, and
hence the π j,k joint toxicity probability can be calculated, on which the dose
escalation or de-escalation decision for the following cohort can be done.

The dose-finding algorithm has the following steps (denotations: φ is the target
toxicity level, ce is the probability cut-off for dose escalation, cd is the probability
cut-off for dose de-escalation, ce + cd > 1):

• Starting the first cohort: patients are treated with the lowest combination:
(A1,B1)

• Start-up rule in order to obtain reliable posterior estimates:

– first, the dose of agent A is fixed, while the dose of agent B is contin-
uously increased based on the predescribed sequence, until the first
DLT is experienced: {(A1,B2),(A1,B3), ...,(A1,BDLT )}

– second, the dose of agent B is fixed, while the dose of agent A is
continuously increased based on the predescribed sequence, until the
first DLT is experienced: {(A2,B1),(A3,B1), ...,(ADLT ,B1)}

– if one patient experiences DLT in both agents, the start-up period is
finished

• Investigating joint toxicity probabilities:

– if P
(
π j,k < φ

)
> ce, then dose escalation takes place to an adjacent

dose combination where the corresponding joint toxicity probabil-
ity is higher than the current one; if the current dose combination is
(AJ ,BK) (viz. the individual MTD for both agents), no more dose
escalation takes place, dose combination stays at the same level

– if P
(
π j,k > φ

)
> cd , then dose de-escalation takes place to an adja-

cent dose combination where the corresponding joint toxicity proba-
bility is lower than the current one; if the current dose combination
is (A1,B1) (viz. the lowest dose for both agents), no more dose de-
escalation takes place, the trial is terminated
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J. Sápi Finding Maximum Tolerated Dose in Phase I Oncology Clinical Trials with Bayesian Methods

– otherwise (when no cut-off dose for escalation or de-escalation is
reached), the next cohort continues with the same dose combination

– when the predefined maximum cohort size is reached, the trial ends;
the dose combination which has the closest value to the target toxicity
level is set to be the joint MTD for the investigated agents

For an integrated Bayesian Phase I/II adaptively randomized oncology trial de-
sign based on the copula model, see [35].

3.2 Logistic regression model
Riviere et al. [2] proposed a drug combination–toxicity relationship logistic re-
gression model

logit(π j,k) = β0 +β1u j +β2vk +β3u jvk, (8)

where π j,k is the joint toxicity probability of a two agent drug combination, β1
is the the toxicity effect of agent A, β2 is the the toxicity effect of agent B, and
β3 is the interaction between the two agents (β0...β3 are unknown parameters).
Variable u j represents the standardized dose of the jth level of agent A, vk is the
standardized dose of the kth level of agent B. Standardized doses are defined
individually (as if they are administered as a single-agent) using the a priori
estimates of the toxicity probabilities of the jth dose level of agent A (p j) and the
kth dose level of agent B (qk)

u j = log
p j

1− p j
(9)

vk = log
qk

1−qk
. (10)

In this model, the likelihood function is a product of the Bernoulli probabilities

L(β0,β1,β2,β3|data) ∝

J

∏
j=1

K

∏
k=1

π
x j,k
j,k (1−π j,k)

n j,k−x j,k , (11)

where n j,k represents the patients who are allocated at combination ( j,k), and
x j,k represents the patients who experienced dose-limiting toxicity.

The posterior distribution is sampled using Gibbs sampler, and the a posteriori
toxicity probabilities are estimated using Monte Carlo simulation

π̃ j,k =
1
L

L

∑
l=1

exp
(

β
(l)
0 +β

(l)
1 u j +β

(l)
2 vk +β

(l)
3 u jvk

)
1+ exp

(
β
(l)
0 +β

(l)
1 u j +β

(l)
2 vk +β

(l)
3 u jvk

) , (12)

where
(

β
(l)
0 ,β

(l)
1 ,β

(l)
2 ,β

(l)
3

)
l=1,...,L

are the L posterior samples, assuming that β0

and β3 are normal a priori distributions (N(0,10)), and β1 and β2 are exponential
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a priori distributions (Exp(1)).

The dose-finding algorithm is the one that was proposed in the copula regression
model [29]; however, MTD level is found in a different way. Target toxicity level
is extended to a target toxicity interval using parameter δ

φinterval = [φ −δ ;φ +δ ], (13)

where φ is the target toxicity level.

Using the target toxicity interval, the a posteriori densities of the toxicity proba-
bility can be divided into three groups:

• if the toxicity probability is in the [0;φ − δ ] interval, the corresponding
cumulative density is the probability of under-dosing,

• if the toxicity probability is in the [φ −δ ;φ +δ ] interval, the corresponding
cumulative density is the probability of target toxicity,

• if the toxicity probability is in the [φ +δ ;1] interval, the corresponding cu-
mulative density is the probability of over-dosing (for a specific solution of
the over-dosing problem, see e.g. [11] where the Bayesian Optimal Interval
(BOIN) design is introduced).

For each (A j,Bk) dose combination, the probability of being in the targeted tox-
icity interval can be calculated. The dose combination that has the highest a
posteriori probability, and have been used previously to treat at least one cohort
of the patients, should be chosen as MTD

(AMT D,BMT D) = max
{

P
(
π j,k ∈ [φ −δ ;φ +δ ]

)}
. (14)

For another Bayesian dose-finding method which use logistic regression model,
see e.g. [36] where the approach allows the inclusion of covariates.

4 Bayesian Dose-Finding Methods for Trials with De-
layed Toxicities

Administering different radiations to the patients, late-onset toxicities can be ob-
served which affect the dose escalation or de-escalation decisions. In order to
conduct a complete follow-up after each cohort, in some cases several weeks or
even months are required. Late-onset toxicity is an important problem in the non-
conventional cancer therapies like Targeted Molecular Therapies (TMTs) [37].

4.1 Time-To-Event Continual Reassessment Method (TITE-
CRM) for single-agent trials

The time-consuming nature is a strong limit to the use of Continual Reassessment
Method in the case of late-onset toxicities. A short-cut for this problem is to
allow patients to enter to the trial in a staged fashion, which extends the CRM
to Time-To-Event Continual Reassessment Method (TITE-CRM) that can handle
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late-onset toxicities [38, 39].

In the original CRM, the decision of the dose level of the next cohort can be
formulated as

F (dn+1, p̂n)−φ ≤ F (dk, p̂n)−φ for k = 1, ...,K, (15)

where F(d, p) is the dose-toxicity model, d1, ...,dK are the dose levels, p is the
probability of toxicity, n is the number of observations, p̂n is an estimate of p,
and φ is the target toxicity level.

The likelihood function in this case is

Ln(p) =
n

∏
i=1

F (di, p)yi {1−F (di, p)}1−yi , (16)

where yi is the indicator of toxic response for the ith patient.

In the TITE-CRM, there is a weighted dose-toxicity model G(d,ω, p) that has
the following properties: G(d,0, p) = 0 and G(d,1, p) = F(d, p), where ω (0 ≤
ω ≤ 1) is a function of the time-to-event of a patient, and it is linear in F . The
dose escalation or de-escalation decisions are the same as in the original CRM
(i.e. (15)), but the likelihood is weighted as well

L̃n(p) =
n

∏
i=1

G(di,ωi,n, p)yi,n {1−G(di,ωi,n, p)}1−yi,n , (17)

where yi,n is the indication of toxic response for the ith patient prior to the entry
time of the (n+1)th patient, and ωi,n is the corresponding weight. Using TITE-
CRM, patients who have not experienced DLT are weighted by the proportions
of their follow-up times compared to the full period of the trial, and patients who
have experienced DLT are weighted by 1.

4.2 Late-onset toxicity model for multi-agent trials
Liu et al. [37] proposed a late-onset toxicity model for multi-agent trials using the
Bayesian data augmentation approach, treating the late-onset toxicity as missing
data. The dose-toxicity model is described by the Finney model

logit(π j,k) = β0 +β1 log
(

a j +ρbk + γ (a jρbk)
1
2

)
, (18)

where β1 is the slope of the regression (β1 > 0), ρ is the relative potency of agent
B versus agent A to induce toxicity (if ρ > 1 ⇒ agent B is more likely to cause
toxicity than agent A), and γ is the synergy-antagonism parameter describing the
drug-drug interaction between the agents (γ < 0 ⇒ antagonism effect, γ = 0 ⇒
dose additivity effect, γ > 0 ⇒ synergy effect). In this model, β0, β1, γ and ρ are
unknown parameters. The Finney model reduces to the standard logistic model
when a single-agent is investigated.

If no late-onset toxicity takes place, the toxicity outcomes are fully observed and
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hence the complete-data likelihood function can be described for the ith patient
as

L(θ |y) =

n

∏
i=1

exp
{

yiβ0 + yiβ1 log
(

a ji +ρbki + γ
(
a jiρbki

) 1
2

)}
1+ exp

{
β0 +β1 log

(
a ji +ρbki + γ

(
a jiρbki

) 1
2

)} , (19)

where n is the total number of patients, yi is the binary toxicity outcome, a ji is
the jth dose of agent A for the ith patient, and bki is the kth dose of agent B for
the ith patient. The a posteriori distribution of θ = (β0,β1,γ,ρ) in this case is

f (θ |y) ∝ f (θ)L(y|θ), (20)

where f (θ) is the a priori distribution of θ .

If late-onset toxicities take place, the toxicity outcomes are not fully observed
due to the missing binary toxicity outcome values. These missing values can be
handled using data augmentation which contains two iterative steps:

• imputation (I):

– in this step, the missing data is imputed by drawing samples from
their posterior predictive distribution using Bernoulli probability

f (yi|ti > si,θ) = Bernoulli(P(yi = 1|ti > si,θ)) , (21)

where ti is the time to toxicity for the ith patient, and si is the actual
follow-up time;

• posterior (P):

– in this step, the posterior samples of unknown parameters are simu-
lated based on imputed data

– here – due to the imputation of the missing data in the previous step –
the standard Markov chain Monte Carlo method [26] can be used as
in the case of complete-data when no late-onset toxicity takes place.

Iteration-based techniques are well-known not only in model-baesd dose-toxicity
modelsbut in fixed point, iteration-based controls as well [40].

5 Discussion and Conclusion
Finding the maximum tolerated dose in Phase I oncology clinical trials is an im-
portant and not trivial problem. Beside the safety criterion of the patients (viz.
avoiding over-dosing), cost-effectiveness viewpoints should be taken into ac-
count as well (e.g. avoiding unnecessary under-dosing experiments), and some-
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times even extreme circumstances such as a pandemic [25].

A promising solution of the dose-finding problem is the use of Bayesian methods.
In every case, the method is based on an a priori dose-toxicity model which
gives a preliminary estimation of the toxicity probability for the investigated drug
dose levels. In the following steps, these a priori assumptions are statistically
combined with observed data. The trials consist of cohorts; from cohort to cohort,
dose escalation or de-escalation takes place. The trial ends when a pre-defined
stopping criterion is met, and maximum tolerated dose can be found which results
in relatively acceptable dose-limiting toxicity.

For the simplest dose-finding problem, viz. single-agent trials with fully observed
data, the most common solution is the Continual Reassessment Method. In this
case the toxicity is monotonically increasing as the drug dose is increased. How-
ever, using multiple agents, the monotonic order of toxicity is not guaranteed, the
joint toxicity probabilities are unknown, and as a consequence, dose escalation
or de-escalation decision is not trivial.

In this paper, two models for multiple agents have been discussed: the copula
regression model and the logistic regression model. Both models estimate the
joint toxicity probability distribution and define a likelihood function. The dose
escalation or de-escalation decision is made after Gibbs sampling, but MTD level
is found in different ways in respect of the two methods.

Another incremental problem can be the presence of late-onset toxicities. For a
single-agent problem, the use of Time-To-Event Continual Reassessment Method
can handle the problem by allowing patients to enter to the trial in a staged fash-
ion. Taking into account multi-agent trials, the Bayesian data augmentation ap-
proach can be applied which treats the late-onset toxicity as missing data, and
missing values can be handled using data imputation and simulation of posterior
samples.

Besides the above discussed Bayesian methods, dose-finding criteria can be cal-
culated using other approaches like toxicity and efficacy odds ratios [41]. In this
case, acceptable doses satisfy the following two conditions:

Pr(p j < πT )> p∗, (22)

Pr(q j > πE)> q∗, (23)

where πT is a pre-defined upper toxicity limit, πE is pre-defined lower efficacy
limit, and p∗ and q∗ are fixed probability cutoffs.

Dose j has p j toxicity probability and q j efficacy probability. Taking into account
two-dimensional toxicity and efficacy domain, we expect that p j and q j are the
closest values to the lower-right corner (1,0). The horizontal and vertical lines
which cross point A(q j, p j) split the domain into four rectangles.
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After that, the odds ratio between the toxicity and efficacy of dose j can be cal-
culated:

ω
(2)
j =

p j/(1− p j)

q j/(1−q j)
=

p j(1−q j)

(1− p j)q j)
. (24)

Note that ω
(2)
j is exactly the ratio of the lower-right versus the upper-left rectan-

gle’s area. In this way, an equivalent odds ratio contour can be defind: along the
curve, all the points have the same toxicity-efficacy odds ratio, namely ω

(2)
j .

Furthermore, this two-dimensional probability space can be extended by a third
scale, where the new axis is the probability of efficacy given no toxicity. Hence in
this three-dimensional domain, the toxicity-efficacy odds ratio trade-offs are ar-
ranged with an efficacy value given no toxicity. Compared to the two-dimensional
domain, there not an equivalent odds ratio contour, but an equivalent odds ratio
surface is defined. All the points on this smooth surface have the same odds ratio,
ω

(3)
j . Based on this, one can find the best dose to treat the patients in the next

cohort.

References

[1] A. E. Chang, P. A. Ganz, D. F. Hayes, T. Kinsella, H. I. Pass, J. H. Schiller, R. M.
Stone, and V. Strecher. Oncology: an evidence-based approach. Springer Science
& Business Media, 2007.

[2] M. K. Riviere, Y. Yuan, F. Dubois, and S. Zohar. A Bayesian dose-finding design
for drug combination clinical trials based on the logistic model. Pharmaceutical
Statistics, 13(4):247–257, 2014.
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