
Acta Polytechnica Hungarica Vol. 6, No. 4, 2009 

 – 5 – 

Grid-based Support for Different Text Mining 
Tasks 

Martin Sarnovský, Peter Butka, Ján Paralič 
Centre for Information Technologies 
Department of Cybernetics and Artificial Intelligence 
Faculty of Electrical Engineering and Informatics 
Technical University of Košice 
Letná 9, 04200 Košice, Slovakia 
E-mail: martin.sarnovsky@tuke.sk, peter.butka@tuke.sk, jan.paralic@tuke.sk 

Abstract: This paper provides an overview of our research activities aimed at efficient use 
of Grid infrastructure to solve various text mining tasks. Grid-enabling of various text 
mining tasks was mainly driven by increasing volume of processed data. Utilizing the Grid 
services approach therefore enables to perform various text mining scenarios and also 
open ways to design distributed modifications of existing methods. Especially, some parts 
of mining process can significantly benefit from decomposition paradigm, in particular in 
this study we present our approach to data-driven decomposition of decision tree building 
algorithm, clustering algorithm based on self-organizing maps and its application in 
conceptual model building task using the FCA-based algorithm. Work presented in this 
paper is rather to be considered as a 'proof of concept' for design and implementation of 
decomposition methods as we performed the experiments mostly on standard textual 
databases. 
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1 Introduction 

The process of knowledge discovery is one of the most important topics in 
scientific and business problems. Nowadays, when the information overload 
means a big problem, knowledge discovery algorithms applied on very large text 
document collections can help to solve numerous problems and as text is still 
premier source of information on the web, the role of text mining is increasing. 
However, data are often geographically distributed in various locations. One 
approach to face this problem is distributed computing - distributed text mining 
algorithms can offer an effective way to mine extremely large document 
collections. 



M. Sarnovský et al. Grid-based Support for Different Text Mining Tasks 

 – 6 – 

Motivation of this work is to use the Grid computational capabilities to solve text 
mining tasks. Grid is a technology, that allows from geographically distributed 
computational and memory resources create a universal computing system with 
extreme performance and capacity [1]. Nowadays the Grid projects are built on 
protocols and services that enable applications to handle distributed computing 
resources as s single virtual machine. 

Some of the methods are time-consuming and use of the Grid infrastructure can 
bring significant benefits. Implementation of text mining techniques in distributed 
environment allows us to perform text mining tasks, such as text classification, in 
parallel/distributed fashion. 

Knowledge discovery in texts is a variation of a field called knowledge discovery 
in databases, that tries to find interesting patterns in data. It is a process of 
semiautomatic non-trivial extraction of previously unknown, potentially useful 
and non-explicit information from large textual document collection. A key 
element of text mining is to link extracted information together to form new facts 
or new hypotheses to be explored further by more conventional means of 
experimentation. While regular data mining extracts the patterns from structured 
databases, text mining deals with problem of natural language processing. The 
biggest difference between data mining and text mining is in the preprocessing 
phase. Preprocessing of text documents is completely different than in the case of 
databases; in general, it is necessary to find a suitable way to transform the text 
into an appropriate internal representation, which the mining algorithms can work 
with. One of the most common internal representations of document collections is 
Vector Space Model [2]. Text mining phase is the core process of knowledge 
discovery in text documents. There are several types of text mining tasks as 
follows: 

• Text categorization: assigning the documents with pre-defined categories 
(e.g. decision trees induction). 

• Text clustering: descriptive activity, which groups similar documents 
together (e.g. self-organizing maps). 

• Concept mining: modelling and discovering of concepts, sometimes 
combines categorization and clustering approaches with concept/logic-
based ideas in order to find concepts and their relations from text 
collections (e.g. formal concept analysis approach for building of concept 
hierarchy). 

• Information retrieval: retrieving the documents relevant to the user’s 
query. 

• Information extraction: question answering. 

It is very usual that in any text mining process first three types are basic elements 
in order to support also information retrieval/extraction. Main goal of our work is 
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to show how well-known methods for text categorization, text clustering and 
concept mining could be adopted in Grid (distributed) environment in order to 
achieve more robust and faster application of text mining tasks. In our case we 
have implemented and tested three candidates, one per each type. After briefly 
presenting related work in Section 2, we describe every method with all 
modifications we have used in Section 3. In Section 4 we provide proposal and 
implementation details of Grid-based support in every case, and describe our 
experiments, results achieved and their evaluation (with emphasis on distribution 
aspects) in Section 5. Finally, we sum up the main results in conclusions section. 

2 Related Work 

In this section, we briefly describe related projects that utilize the Grid to perform 
advanced knowledge discovery in textual documents. DiscoveryNet1 provides a 
service-oriented computing model for knowledge discovery, allowing the user to 
connect to and use data analysis software as well as document collection that are 
made available online by third parties. The aim of this project is to develop a 
unified real-time e-Science text mining infrastructure that leverages the 
technologies and methods developed by the DiscoveryNet and myGrid2 projects. 
Both projects have already developed complementary methods that enable the 
analysis and mining of information extracted from biomedical text data sources 
using Grid infrastructures, with myGrid developing methods based on linguistic 
analysis and DiscoveryNet developing methods based on data mining and 
statistical analysis. National Centre for Text Mining3 is also involved in research 
activities covering the Grid based text mining. Primary goal of this project is also 
focused to develop an infrastructure for text mining, a framework comprised of 
high-performance database systems, text and data mining tools, and parallel 
computing. Our work, presented in this article is complementary to the previous 
projects. Some of our algorithms (classification and clustering tasks) have been 
used within the GridMiner project4. Moreover, the FCA approach as far as we 
know has not been approached in any of the projects listed above. 

                                                           
1 www.discovery-on-the.net 
2 www.myGrid.org.uk 
3 www.cse.salford.ac.uk/nactem 
4 www.gridminer.org 
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3 Text Mining Algorithms 

3.1 Classification Using Decision Trees 

Text Classification is the problem of assigning a text document into one or more 
topic categories or classes based on document’s content. Traditional approaches to 
classification problems usually consider only the uni-label classification problem. 
It means that each document in collection has associated one unique class label. 
This approach is typical for data mining classification tasks, but in a number of 
real-world text mining applications, we face the problem of assigning the 
document into more than one single category. One sample can be labelled with a 
set of classes, so techniques for the multi-label classification problem have to be 
explored. Especially in text mining tasks, it is likely that data belongs to multiple 
classes, for example in context of medical diagnosis, a disease may belong to 
multiple categories, genes may have multiple functions, etc. In general there are 
many ways to solve this problem. One approach is to use a multinomial classifier 
such as the Naive Bayes probabilistic classifier that is able to handle multi-class 
data. But most of commonly used classifiers (including decision trees) cannot 
handle multi-class data, so some modifications are needed. Most frequently used 
approach to deal with multi-label classification problem is to treat each category 
as a separate binary classification problem, which involves learning a number of 
different binary classifiers and use an output of these binary classifiers to 
determine the labels of a new example. In other words, each such problem answers 
the question, whether a document should be assigned to a particular class or not. 
In the work reported in this paper, we used the decision trees algorithm based on 
the Quinlan’s C4.5 [3]. A decision tree classifier is a tree with internal nodes 
labelled by attributes (words), branches departing from them are labelled by tests 
on the weight that attribute has in the document, and leafs represent the categories 
[4]. Decision tree classifies the unknown example by recursively testing of 
weights in the internal nodes, until a leaf is reached. While this algorithm is not 
suitable to perform multi-label classification itself, we use the approach of 
constructing different binary tree for each category. The process of building many 
binary trees can be very time consuming when running sequentially, especially on 
huge document collections. Due to the fact that these binary classifiers are 
independent on each other, it is natural to find a suitable way how to parallelize 
the whole process. Growing of these binary trees is ideal for parallel execution on 
a set of distributed computing devices. Such a distribution might be desirable for 
extremely large textual document collections or large number of categories, which 
e.g. can be associated with a large number of binary classifiers. 



Acta Polytechnica Hungarica Vol. 6, No. 4, 2009 

 – 9 – 

3.2 Clustering Using Growing Hierarchical Self-Organizing 
Maps 

Self-organizing maps (SOM) [5] algorithm is one of the methods for non-
hierarchical clustering of objects based on the principles of unsupervised 
competitive learning paradigm. This model provides mapping from high-
dimensional feature space into (usually) two-dimensional output space called map, 
which consists of neurons characterized by n-dimensional weight vector (same 
dimension as input vectors of the objects). Specific feature of SOM-based 
algorithms is realization of topology preserving mapping. Neurons are ordered in 
some regular structure (e.g. usually it is simple two-dimensional Grid) 
representing output space. A distance measure used in this space could be e.g. 
Euclidean distance based on the coordinates of weight vectors of neurons in the 
output space. Mapping created by learning of SOM then has a feature that two 
vectors which are closed each other in the input space are also mapped onto 
closely located neurons in the output space. Training consists of two steps: 
presentation of input document at the network input and adaptation of weight 
vectors. Based on the activation of the network best candidate from the neurons on 
the map is used as winner (e.g. Euclidean distance is used to find lowest distance 
to input vector). Next, weight vector of the winner and its neighbourhood neurons 
(with descending influence) are adapted in order to decrease its distance to the 
input vector. 

One of the disadvantages of SOM algorithm is that structure of the whole output 
space is defined apriori. It is possible to avoid these using modifications, which 
dynamically expand map according to needs of the input feature space. The 
problem of adapting map is that it could expand to really large Grid (so we get 
same result like in case of SOM structure with predefined larger size) and in some 
applications it is hard to interpret results usefully. This leads us to go for another 
modification in “hierarchical” dimension – algorithm called GHSOM (Growing 
Hierarchical Self Organizing Map) [6], where map expands in two different ways: 

• Hierarchically – according to the data distribution of input vectors some 
neurons on a map with large number of input documents assigned to 
them should be independently clustered in separate maps (each of these 
neurons expands into a submap on lower level), this provides hierarchical 
decomposition and navigation in submaps (Hierarchical SOM part). 

• Horizontally – change of size of particular (sub)maps according to 
requirements of the input space (as it is done by Growing SOM). 

Algorithm GHSOM consists of these steps: 

1 First, mean quantization error (deviation of all input vectors) is 
computed on at layer 0 (it could be seen as mean deviation of all input 
vectors with respect to a map with just one neuron - cluster). Then weight 
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vector [ ]Tnm 002010 ,...,, ηηη= contains average values for every 
attribute from the whole collection of input vectors. Mean quantization 
error of layer 0 is simply: 

xm
d

mqe −⋅= 00
1

, 

where d is the number of input vectors x. 

2 Learning of GHSOM starts with the layer on level 1. This map is usually small 
(e.g. 2x2). For every neuron i we need n-dimensional weight vector 

[ ] n
i

T
iniii mm ℜ∈= ,,...,, 21 ηηη , 

which is initialized randomly. Dimension n of these vectors has to be the same 
as dimension of input vectors. 

3 Learning of SOM is competitive process between neurons for better 
approximation of input vectors. Neuron with weight vector nearest to the input 
vector is the winner. Its weight vector as well as weight vectors of neurons in 
its neighborhood is adapted in order to decrease their difference to input 
vector. The grade of adaptation is controlled by learning parameter α(t), which 
is decreasing during time of learning. Number of neighboring neurons, which 
are also adapted, is also decreasing with time. At the beginning of the learning 
process many of winner’s neighbors are adapting, but near the end of learning 
only the winner is adapted. Which neurons and how much are adapted is 
defined by the neighborhood function hci(t), which is based on distance 
between winner c and current neuron i (in output space). As a combination of 
these principles we have the following learning rule for computing of weight 
vector mi: 

[ ])()()()()()1( tmtxthttmtm iciii −⋅⋅⋅=+ α , 

where x is actual input vector, i is current neuron and c is winner in iteration t. 

4 After some number of iterations (parameter λ) mean quantization error of map 
is computed using: 

∑⋅=
i

im mqe
u

MQE 1
, 

where u is number of neurons i at map m, mqei is mean quantization error of 
neuron i at the map m. Every layer of the GHSOM is responsible for explaining 
some portion of the deviation of the input data as present in its preceding layer. 
This could be achieved by adding of new neurons into map on every layer in 
order to have suitable size. Maps on every level grow until the deviation 
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present in the unit of its preceding layer is reduced to at least a fixed 
percentage τm. The smaller the parameter τm is chosen, the larger will be the 
size of SOM. If for current map condition 

MQEm ≥ τm . mqe0 

is fulfilled, new row or column of neurons is added into map. It is added near 
the error neuron (neuron with largest error). Addition of row or column 
depends on position of most distant neighbor neuron to error neuron (new row 
or column is inserted between them; distance is computed in input space – 
weight vectors of neurons). Weight vectors of new neurons are usually 
initialized as average values of neighboring neurons. After such a neuron 
addition learning parameters are setup to starting values and map is re-learned. 

5 When the learning of map on level 1 (or any other level) is finished, it means 
that 

0mqeMQE mm ⋅< τ , 

it is a time to expand neurons of the map to another level (if needed). Neurons, 
which have still high mean quantization error (comparing with mqe0), should 
be expanded and new map in next hierarchical level is created. Every neuron i, 
which fulfils next condition, have to be expanded: 

0mqemqe ui ⋅> τ , 

where τu is parameter for controlling of hierarchical expansion. 

6 Learning process follows for every new map identically with steps 2 to 5. Only 
difference is that in every new submap only inputs from one expanded neuron 
of parent map are used for learning of its submap, and only fraction of 
quantization error of the parent map is going to be analyzed (concretely error 
of expanded neuron). 

7 GHSOM algorithm is finished when there is no neuron for expansion, or some 
predefined maximal depth of hierarchy is reached. 

To summarize, the growth process of the GHSOM is guided by just two 
parameters. The parameter τu specifies the desired quality of input data 
representation at the end of the training process in order to explain the input data 
in more detail (if needed). Contrary to that, the parameter τm specifies the desired 
level of detail that is to be shown in one SOM. Hence, the smaller τm the larger 
will be the emerging maps. Conversely, the larger τm the deeper will be the 
hierarchy. 
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3.3 Use of Formal Concept Analysis in Text Analysis 

Formal Concept Analysis (FCA, [7]) is a theory of data analysis that identifies 
conceptual structures among data sets. FCA is able to identify and describe all 
concepts (extensionally) and discover their structure inform of conceptual lattice 
that can be e.g. graphically visualized. These formal structures present inherent 
structures among data that (in our case) can be understand as knowledge model – 
e.g. ontology. It is an explorative method for data analysis and provides nontrivial 
information about input data of two basic types – concept lattice and attribute 
implications. Concept is cluster of “similar” objects (similarity is based on 
presence of the same attributes); concepts are hierarchically organized (specific vs. 
general). Standard usage of FCA is based on binary data tables (object has/has not 
attribute) – crisp case. 

Problem is that classic data table from textual documents contains real-valued 
attributes. Then we need some fuzzification of classic crisp method. One approach 
to one-sided fuzzification was presented in [8]. Concept lattice created from real-
valued (fuzzy) attributes is called one-sided fuzzy concept lattice. The proposed 
algorithm for FCA discovery is computationally very expensive and provides a 
huge amount of concepts (if we use definition). One approach to solve the issue is 
based on the problem decomposition method (as was described in [9]). This paper 
describes one simple approach to creation of simple hierarchy of concept lattices. 
Starting set of documents is decomposed to smaller sets of similar documents with 
the use of clustering algorithm. Then particular concept lattices are built upon 
every cluster using FCA method and these FCA-based models are combined to 
simple hierarchy of concept lattices using agglomerative clustering algorithm. For 
our experiments we used GHSOM algorithm for finding of appropriate clusters, 
then ´Upper Neighbors´ FCA algorithm (as defined in [10]) was used for building 
of particular concept lattices. Finally, particular FCA models were labelled by 
some characteristic terms and simple agglomerative algorithm was used for 
clustering of local models, with the metric based on these characteristic lattices 
terms. This approach is easy to implement in distributed manner, where computing 
of local models can be distributed between nodes and then combined together. 
This will lead to reduction of time needed for building the concept model on one 
computer (sequential run). Next, we will shortly describe the idea of one-sided 
fuzzy concept lattice, process of data pre-clustering, concept lattices creation and 
algorithm for combination of concept lattices (introduced in [18]). 

3.3.1 One-sided Fuzzy Concept Lattice 

Let A (attributes) and B (objects) are non-empty sets and R is fuzzy relation on 
their Cartesian product, R: A × B → [0,1]. This relation represents real-valued 
table data with rows and columns as objects and attributes, respectively. In case of 
texts, object is document and attribute is term (word). Then R(b,a) express a grade 
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in which the document b contains term a (or in text mining terminology – weight 
of term a in vector representation of document b). 

Now we can define mapping τ: Ρ(B) → A[0,1] which assigns to every set X of 
elements of B function τ(X) with value in point a ∈A (Ρ – power set): 

τ(X)(a) = min{R(a,b): b ∈X}, 

i.e. this function assigns to every attribute the least of such values. This means that 
objects from X have this attribute at least in such grade. 

Another (backward) mapping σ: A[0,1] → Ρ(B) then simply assigns to every 
function f: A → [0,1] a set: 

σ(f) = {b ∈B: (∀a ∈A) R(a,b) ≥ f(a)}, 

i.e. those attributes, which have all values at least in grade set by the function f 
(these attributes the function of their fuzzy-membership to objects dominates over 
f). From properties of mappings we can see that the pair <τ,σ> is Galois 
connection, i.e. ∀ X ⊆ B and f ∈ A[0,1] holds f ≤ τ(X) iff X ⊆ σ(f). 

Now we can define mapping cl: Ρ(B) → Ρ(B) as the composition of the mappings 
τ and σ, i.e. ∀ X ⊆ B : cl(X) = σ(τ(X)). Because conditions X ⊆ cl(X), X1 ⊆ X2  → 
cl(X1) ⊆ cl(X2) and cl(X) ⊆ cl(cl(X)) are fulfilled, cl is a closure operator. 

As in crisp case, concepts are subsets X ⊆ B for which X = cl(X). Such pair 
<X,τ(X)> is called (one-sided) fuzzy concept (X – extent of this concept, τ(X) – 
intent of this concept). Then the set of all concepts, i.e. L = {X∈Ρ(B): X = cl(X)}, 
ordered by inclusion is a lattice called one-sided fuzzy concept lattice, operation of 
which are defined as following: X1 ∧ X2  = X1 ∩ X2  and X1 ∨ X2  = cl(X1 ∪ X2). In 
next parts we will use only term concept lattice, but we mean always one-sided 
fuzzy concept lattice presented above. 

3.3.2 Proposed Approach for Using of Problem Decomposition Method 

In our case, FCA can be used to create hierarchy of concepts and relations 
between these concepts. Problems with use of this method in textual documents 
domain is time-consuming computation of concepts and hard interpretability of 
huge amounts of concepts. Solution can be combination with other algorithms like 
clustering algorithms. Problem decomposition approach can be seen on Fig. 1 [9]. 
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Figure 1 

This diagram presents general scheme of the reduction-based conceptual model creation step. In 
clustering phase input dataset is divided in many smaller training sets. Then particular model Oi using 
FCA is created from every cluster Ci. Finally, all local models are merged together in the last phase of 

model generation step. 

“Pre-clustering” of input set of documents can be viewed as reduction step where 
interesting groups of similar documents are found. The reduction step is based on 
filtering of terms that these objects (inside cluster) do not contain cooperatively. 
This step is top-down reduction problem (divide-and-conquer) approach to 
conceptual model extraction phase. Every cluster has independent training set 
(with reduced cardinality of weight vector), for each one a small concept lattice is 
built with a help of fuzzy FCA approach. Small models are merged then together 
and whole conceptual model from tested collection is finally created. 

Important steps of our implementation are (more detailed description of every step 
is provided in [18]): 

1 We use GHSOM clustering method for dividing the initial large set of 
documents into a hierarchy of clusters. 

2 Find local concept lattices for every cluster of similar documents in the 
resulted GHSOM ´leafs´ (neuron without sub-map, in the end of 
expansion), i.e. in created hierarchy of maps particular one-sided concept 
lattices are built upon documents using ´Upper Neighbors´ algorithm (as 
presented in [10], updated for real-valued attributes). Before creation of the 
whole concept lattice documents are tested through attributes, if value of 
some attribute is lower than some threshold, value of attribute is set to zero. 
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This is inspired by work presented in [11] and is very useful for reduction 
of number of terms in concept lattice description. If we have higher concept 
in hierarchy of lattices, the number of concept’s terms and weights is 
smaller. Terms with non-zero weights can be used as characteristic terms of 
actual concept (set of documents in concept). 

3 Every concept lattice then can be presented as hierarchy of concepts 
characterized by some terms. Because we needed some description of 
lattice for merging of lattice to one model, we extracted terms from 
particular lattices and created their representation based on these terms. A 
weight of descriptive terms was based on level of terms in hierarchy (of 
course, important was highest occurrence of term). Then terms can be used 
for characterization of particular lattices and for clustering based on some 
metric. 

4 Merging phase is based on clustering of lattices. First, we created one node 
for every local hierarchy (for every concept lattice), which contains list of 
documents, list of characteristic terms (sorted by value of weights), vector 
of terms weight’s values (also in normalized type). Particular nodes are 
then compared using vectors of terms’ weights, so vectors are normalized 
into interval <0,1>. After this step differences between numbers of 
documents in particular nodes are respected. Comparison of lattices is used 
in process of agglomerative clustering of these nodes (for detailed 
description of algorithm see [18]). 

Final hierarchy contains nodes with list of documents in it and the sorted list of 
characteristic terms of nodes. Every node has link to upper node and list of lower 
nodes. ´Leaf´ nodes of hierarchy contain link on the particular local concept 
lattices. 

4 Distributed Support for Text Mining Algorithms 

4.1 Tools and Technologies for Grid-based Support 

JBOWL - (Java Bag-of-Words Library) [12] is an original software system 
developed in Java to support information retrieval and text mining. The system is 
being developed as open source with the intention to provide an easy extensible, 
modular framework for pre-processing, indexing and further exploration of large 
text collections, as well as for creation and evaluation of supervised and 
unsupervised text mining models. JBOWL supports the document preprocessing, 
building the text mining model and evaluation of the model. It provides a set of 
classes and interfaces that enable integration of various classifiers. JBOWL 
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distinguishes between text mining algorithms (SVM, SOM, linear perceptron) and 
text mining models (rule based classifiers, classification trees, maps, etc.). 

GridMiner [13] is a framework for implementing data mining services in the Grid 
environment. It provides three layered architecture utilizing a set of services and 
web applications to support all phases of data mining process. The system 
provides a graphical user interface that hides the complexity of the Grid, but still 
offers the possibility to interfere with the data mining process, control the tasks 
and visualize the results. GridMiner is being developed on top of the Globus 
Toolkit. 

4.2 Distributed Trees Induction 

The interface of the sequential and distributed versions of the service defines two 
main methods needed to build final model: BuildTextModel and 
BuildClassificationModel. While the first one is implemented as a pure sequential 
method, the second one can build the final model distributing the partial binary 
classifiers [14, 15]. This behaviour of the service depends on its configuration. 
Moreover, other methods were implemented to provide term reduction and model 
evaluation, but these methods were not used during the performance evaluation 
experiments discussed in the next section. 

1  BuildTextModel - This method creates the Text Model from the documents in 
the collection. The model contains a document-term matrix created using TF-IDF 
weighting, which interprets local and global aspects of the terms in collection. The 
input of the method is a parameter specifying the text model properties and the 
location of the input collection. 

2  BuildClassificationModel - The Classification Model, as the result of the 
decision tree classifier, is a set of decision trees or decision rules for each 
category. This service method creates such a model from the document-term 
matrix created in the previous method. The sequential version builds the model for 
all categories and stores it in one file. The process of building the model iterates 
over a list of categories and for each of them creates a binary decision tree (based 
on tree algorithm described in Chapter 3). The distributed version performs the 
same, but it distributes the work of building individual trees onto other services, so 
called workers, where partial models containing only trees of dedicated categories 
are created. These partial models are collected and merged into the final 
classification model by the master node and stored in the binary file, which can be 
passed to a visualization service. 
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4.3 Distributive Approach in Learning of GHSOM Model 

Distributed algorithm GHSOM is implemented as service in GridMiner system 
Grid layer using Jbowl (Java 1.5). Implementation contains distributed algorithm 
together with preprocessing of text documents and visualization of output model. 
After creation of first map several new clustering processes are started – building 
of hierarchical sub-GHSOMs, which consist of hierarchically ordered maps of 
Growing SOM. Main idea is parallel execution of these clustering processes on 
working nodes of Grid. Approach can be described easily (scheme of distribution 
is shown on Fig. 2) [16]: 

 
Figure 2 

Distribution scheme of GHSOM algorithm in Grid environment 

1 On master node deviation of input data and layer 1 map is computed, and 
neurons for expansions are chosen (as described in Section 3.2). Important is 
that before start of learning all necessary preprocessing steps are done and 
input collection is ready in vector representation based on tfidf terms 
weighting scheme. Then from the input collection related vectors are selected 
(which are needed for particular expanded neurons) and distributed on 
working nodes. Using GridMiner methods current list of available working 
nodes is retrieved. Number of nodes is important parameter for distribution. 

2 Distributed vectors are then used as inputs for GHSOM algorithm which runs 
on particular nodes in order to create hierarchical submodel. When end 
condition is reached (maximal depth or nothing to expand), particularly 
created GHSOM submodels are returned to the main node. 

3 Returned parts of GHSOM model are merged (on the main node) into one 
complete model. 
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Every clustering task contains identifier of neuron within layer 1 map, list of 
(identifiers of) input vectors mapped on this neuron and parameters of GHSOM 
algorithm. Assignment of clustering tasks to Grid nodes is following: 

Let h is number of neurons to be expanded and u is number of available working 
nodes on Grid, then 

1 If h ≤ u, into tasks queues of first h nodes exactly one clustering task per 
queue is assigned. 

2 If h > u, in first iteration u clustering tasks are assigned to first u nodes, in 
next iteration rest of the tasks is assigned similarly while is needed. 

After assigned tasks are distributed, particular submodels are created on separate 
nodes. When node finishes all tasks in queue, his work is finished. If all 
submodels are returned to the master node, merging of model finishes whole 
process. Reference to “parent” map node of level 1 is set correctly to main map 
created at start of the process as well as references to ”children” are correctly set 
to maps created on particular nodes. Then final merged model is saved as 
persistent serialized Java object (important for next usage). 

4.4 Combination of Local FCA Models Using Distributed 
Service-based Architecture 

The implemented algorithm for distribution of FCA-based algorithm (presented in 
Section 3.3) on the Grid can be divided into two basic fragments - the server and 
client (worker) side. The method that we have designed, implemented and tested is 
sketched on Figure 3. The method works as follows. 

In the first step, master node performes the following tasks: document pre-
processing (tokenization, elimination of stop-words, stemming, term selection), 
document clustering (use of GHSOM algorithm), assigning each cluster (each map 
including clusters, neurons) to client. Second step is based on the client side 
(worker nodes) where each client will get particular clusters, and then local FCA 
model is created on each client followed by sending of local FCA hierarchies to 
master node. Last step is again performed on server side (master node), in this 
case server receives local FCA hierarchies from all clients and final merged FCA-
based model is built. 
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Figure 3 

Distribution scheme for FCA-based problem decomposition method 

5 Experiments 

Two different data collections of text documents were used in this part of work. 
We used the collection “TIMES 60” which contains 420 articles from Times 
newspaper and Reuters ModApte dataset, which is standard corpus of textual 
documents that contains 12,902 documents. After pre-processing it contained 7769 
documents and 2401 terms. We performed the experiments with the distributed 
algorithms on different workstations. In general, all of the workstations were Sun 
machines with different performance and different memory. Differences between 
types of text mining tasks will be emphasised. 

5.1 Experiments with Decision Trees Induction 

In this section, we present experiments performed on the local area network of the 
Institute of Scientific Computing in Vienna. As the experimental test bed, we used 
five workstations Sun Blade 1500, 1062 MHz Sparc CPU, 1.5 GB RAM 
connected by a 100 MBit network. 
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The main goal of the experiments was to prove, that the distribution of processes 
mentioned above, can reduce the time needed to construct the classification model. 
We started the experiments using the sequential version of the service, in order to 
compare the sequential version with the distributed one. The time to build the final 
classification model on a single machine using the ModApte dataset was measured 
three times and its mean value was 32.5 minutes. Then we performed the first 
series of the distributed service tests without using any optimization of distribution 
of categories to the worker nodes. According to the number of worker nodes, the 
master node assigned the equal number of categories to each worker node. The 
results show us the speedup of building the classification model using multiple 
nodes (see also Figure 4). 

The detailed examination of the results and of the document collection proved that 
the time to build a complete classification model is significantly influenced by the 
working time of the first node. Examination of the dataset and workload of 
particular workers showed us that the first node always received a set of categories 
with the highest frequency of occurrences in the collection. It means that other 
worker nodes always finished the building of their partial models in a shorter time 
than the first one. It is caused by non-linear distribution of category occurrences in 
this collection. The most frequent category (category number 14) occurs in 2780 
documents and it was always assigned to the first worker node. That was the 
reason, why the first worker node used much longer time to build-up the partial 
model. 

After the first series of tests, we implemented the optimization of distribution of 
the categories to the worker nodes according to the frequency of category 
occurrences in the documents. Categories were sorted by this frequency and 
distributed to the worker nodes according to their frequency of occurrence, what 
means that each node was assigned with equal number of categories, but with a 
similar frequency of their occurrences. We run the same set of the experiments as 
in the first series and the results showed us more significant speedup using less 
worker nodes, see optimized bars in Figure 4. The best performance results were 
achieved using optimized distribution on 5 worker nodes (5.425 minutes), which 
was comparing to single machine computing time (32.5 minutes) almost 6 times 
faster. The minimal time to complete classification model is limited by the time of 
processing of the most frequent category - if this is assigned to a single worker 
node. 
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Figure 4 
Experiments with distributed decision trees induction 

5.2 Experiments with Distribution of GHSOM Maps Creation 

The goal of experiments was in comparison of time complexity between 
sequential and distributed version of GHSOM algorithm. Experiments were 
realized in network of servers and workstations under usual working conditions 
(they were at the same time used also by other services). In order to get more 
precise results experiments are averaged from three identical tests. Number of 
computing nodes and parameter τm of GHSOM were changed during experiments. 

Distributed version worked in testing Grid environment, which consisted of master 
server (4 x UltraSPARC-III 750 MHz, 8 GB RAM) and 6 SUN workstations, 100 
Mbit/s network, data collections Times60 (420 documents) and Reuters-21578 (12 
902 documents). 

Experiments on Times collection were realized with τm 0.3, 0.6 and 0.8. First we 
started with sequential runs on one node. And then we tested distributed version 
for 0.3 τm with 2, 3, 4, 5 and 6 nodes (12 expanded neurons on layer 1 map). For 
parameter set to 0.6 and 0.8 only 2, 3 and 4 Grid nodes, because there were only 4 
expanded neurons on layer 1 map. Graphical results of resulting computation 
times are shown on Figure 5. 

For experiments with Reuters collection only τm with 0.6 and 0.8 was used and 
maximum number of nodes was 4. Results are shown on Figure 6. 



M. Sarnovský et al. Grid-based Support for Different Text Mining Tasks 

 – 22 – 

0

50

100

150

200

250

300

350

400

450

1 2 3 4

0,3
0,6
0,8

 
Figure 5 

Graph of times (in seconds, y axis) for Times 60 collection for different number of nodes (x axis, max 
4 nodes) with different values of τm parameter (legend – values 0.3, 0.6, 0.8) 
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Figure 6 

Graph of times (in seconds, y axis) for Reuters collection for different number of nodes (x axis, max 4 
nodes) with different values of τm parameter (legend – values 0.6, 0.8) 
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The results of the experiments show interesting improvements in computation 
times of the algorithm in distributed version, but also the fact that addition of more 
worker nodes sometimes does not lead to better time reduction. The reasons could 
be unbalanced distribution of data for worker nodes, different values of variance 
error in learning from particular data parts and different computational power of 
Grid worker nodes. Better optimization of workers usage should be interesting for 
the next experiments. Critical point in such distributed version of GHSOM 
algorithm is creation of level 1 map (very often it is more then 50% of computing 
time). This means that further reductions of computation times are not possible 
with current distribution strategy. Combination of parallel building of first layer 
map (e.g. using computational cluster) and then distribution of this maps on the 
Grid could be helpful for another reduction of time complexity. 

5.3 Experiments with FCA-based Distributed Approach 

Again, both data collections of text documents were used in this part of work. Our 
main goal was to compare time consumption of the algorithm depending on the 
number of worker nodes. We used 9 different workstations deployed on the Grid. 
We performed various experiments with different values of threshold parameter 
0.03, 0.05, 0.07 and 0.1. For each value of the threshold parameter we performed 
three runs of algorithm, final execution time of the algorithm was computed by 
averaging times of all three runs. The results of the experiments are depicted in the 
graphs. 

Figure 7 
Experiment results on the Times dataset 
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Figure 8 
Experiment results on the Reuters dataset 

We have compared number of the working nodes and its influence to the 
computing time of the merged FCA model generation. The results of experiments 
show that our distributed version has leads to clear reduction of computation time 
(even for small number of nodes). But the experiments in real environment also 
showed that increasing number of nodes leads (from some moment) to decreasing 
time complexity reduction. It is caused by heterogeneous computational power of 
involved worker nodes as well as their concurrent use by other, non-experimental 
tasks. More effective should be to optimize distribution of work according to the 
actual performance of particular nodes, i.e. dynamic distribution. 

5.4 Discussion 

Several questions could arise from the description of our grid-based approach. 
When discussing the difference between sequential and parallel running of tasks 
we have to emphasis that our approach cannot produce any information loss due to 
character of the decomposition and computing of the models. Text-mining results 
of the sequential and parallel run are therefore identical. Main aim of work 
presented in the paper is to provide the proof of concept for potential speedup of 
tasks computing that we have implemented. In this case proof of concept means 
that our approach is demonstrated on rather smaller number of computing units 
and applied on standard collections of text documents (Reuters) in order to prove 
that presented approach to distribution is scalable. Scalability of distributed 
algorithms is important issue, especially if applying them within large-scale 
distributed environment. Our experiments were aimed at algorithms behaviour in 
the testbed environment by increasing number of involved computing resources 
for which the selected datasets are sufficient. We assumed, that if our approach is 
proved to be scalable on our testbed, it can be applied in more large-scale fashion 
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(on larger datasets and using more computing resources) gaining similar results 
(speedup). Of course, bounds of scalability of these methods are data and 
environment-dependent. Our assumption based on experiments is that if data 
collections have approximately normal distribution of documents among the 
categories (in case of classification task), the scalability of our approach should be 
maintained also in larger scale. Similar assumptions can be expected also in case 
of clustering and FCA approaches. We have chosen three completely different text 
mining tasks, trying to cover text classification, text clustering and formal concept 
analysis tasks. Particular algorithms were chosen with respect to possibility of 
distributed implementation as our approach cannot be applied on several other 
algorithms. 

Conclusions 

Main aim of this article was to present the idea of suitable modifications and 
implementation of text mining services into the distributed Grid environment. 
Integration of the text mining services into the distributed service oriented system 
enables a plenty of various possibilities for building the distributed text mining 
scenarios. Using the Grid as a platform it is possible to access different distributed 
document collections and perform various text mining tasks. In this paper we 
focused on how to effectively use the Grid infrastructure by means of suitable 
decomposition of algorithms into the distributed fashion. We proposed three data-
driven distributed methods for text mining: induction of the decision trees, 
GHSOM clustering algorithm and FCA method. One of the main goals of this 
work was to provide the proof of concept that proposed approach is well suited for 
distribution on the Grid, and results showed, that Grid-enabling of text mining 
process should considerably decrease time costs in comparison with sequential 
versions of these algorithms. 
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