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Abstract: Data streams represent a continuous stream of data, in many forms, coming from 

different sources. Streams are often dynamic and its underlying structure usually changes 

over time. When solving predictive tasks on the streaming data, traditional models, trained 

on historical data, may become invalid, when such change occurs. Therefore, adaptive 

models, equipped with mechanisms to reflect the changes in the data, are suitable to solve 

these tasks. Adaptive ensemble models represent a popular group of such methods used in 

classification tasks on data streams. In this paper, we designed and implemented the 

modifications of the adaptive bagging methods, which utilizes internal class-weighting 

schemes for the model adaptation. Implemented models were evaluated on two simulated 

real-world data streams and compared with base classifiers and other adaptive methods. In 

addition to the performance evaluation, we also analyzed other models' characteristics, 

such as the duration of model update and memory requirements. 
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1 Introduction 

Nowadays, the size of data is growing much faster, than in the past. Information is 

being collected from household appliances, tools, mobile devices, GPS, vehicles, 

various sensors, websites and many other sources. An increasingly large number 

of organizations are starting to analyze this big data, as the information obtained 

from these data can provide a competitive advantage over other businesses. Data 

collection from devices is often continuous, and the data comes in the form of data 

streams [1]. The data stream can be defined as potentially unlimited, ordered 

sequence of data items coming in over time. The data streams can be divided 

according to whether they provide data incrementally (sequentially, one item by 

one) or in blocks of data. The blocks usually have the same length, and their 

processing, evaluation or updating is done when all the examples in the new block 

are available. 
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There are two basic types of data streams: stationary and non-stationary [2]. For 

stationary streams, examples are drawn from a fixed, albeit unknown probability 

distribution. A significant change in attributes is not expected, so in case of 

predictive tasks applied on this type of stream, it is possible to use a model trained 

on historical data as expected to perform in constant accuracy over the time. Non-

stationary data streams are characterized by changing data over time [2]. This 

results in a gradual or sudden fall of the models performance. In other words, the 

concept, which generates a data stream moves after a minimum period of stability. 

This phenomenon of shifting is called a concept drift or a covariant shift [3]. 

When solving predictive or classification tasks on streaming data, the data 

generation process is not strictly stationary and its underlying structure may 

change over time. From the model training perspective, one of the essential 

requirements is the ability to adapt and incorporate new data into the model to 

react to the potential drift occurrence [4]. In that field, the adaptive learning 

algorithms are advanced machine learning methods that can adapt to new data 

streams in real-time. There are multiple types of adaptive learning models 

available, including ensemble methods. Ensemble methods are based on a 

combination of several models and a combination of their individual predictions 

into a final one. Based on a different ensemble method types, those models are 

trained on different training set subsets, using different subsets of predictors. 

When classifying of a new instance, voting mechanisms are usually applied. 

Often, ensemble methods have superior performance. Also, due to the method's 

nature, it is relatively easy to scale such approaches to handle the big data. Among 

the most popular ensemble methods are boosting and bagging methods [5]. 

This paper describes the design and implementation of modifications of adaptive 

ensemble bagging algorithm with different mechanisms of weight-based 

individual models update. Two modifications of such mechanism are presented 

and evaluated on two different real-world data streams. The paper is organized as 

follows: the second section provides basic definitions related to concept drift in 

data streams and description of various drift types. The following section 

describes the actual state of the art in the area of the adaptive models used to 

handle the concept drift and defines the motivation for the presented approach. 

Next section describes the designed and implemented adaptive ensemble methods. 

The evaluation section, then describes experiments and results on two datasets. 

The last section concludes and summarizes the experimenal results and lastly, 

addresses some possible directions for future research. 

2 Drifting Data Streams 

For each point at time t, example x is generated, which has a common probability 

distribution Pt(x, y). The concepts in the data are stable or stationary if all the 

examples are generated by the same distribution. However, the components in 
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Pt(x, y) may change. If there is x between the two points t and t + Δ, which holds 

the expression Pt (x, y) ≠ Pt + Δ (x, y), then a concept is drift present. Some real-

world examples of the drifting data may include: 

 Traffic monitoring, where traffic may vary over time, 

 Weather forecast where climate change and other natural anomalies can 

affect the final prognosis, 

 Systems for tracking individuals' interests, such as personalized ads, 

where people can gradually change interests. 

There are two different types of concept drift. The real drift represents a 

probability change P(y/x). This can occur with or without changes in the 

probability P(x). Virtual drift is defined as the change in the value of P(x), or class 

distribution P(s) that do not affect the decision boundary of the classifiers. 

Sometimes a virtual drift is defined as a change that does not affect later 

probabilities. Virtual drift is also referred to as temporary drift or sampling shift. 

In addition to the differences between the cause and the effect of changes in 

concepts, we distinguish several ways these changes have occurred. According to 

the frequency and velocity of the concept drift, we can recognize four different 

categories [6]: incremental, gradual, sudden and reoccurring drift. A sudden drift 

occurs when, at time t, the target distribution St , is suddenly replaced by another 

distribution S(t + 1). For example, when city crime data is gathered, and the 

classifier tries to predict the development of crime based on these data, and a 

change in legislative may cause, that some crime types can be classified under a 

different kind or some cases are no longer considered as offences. With gradual 

drift, data transformations are not so radical and are associated with a slower rate 

of change that can only be tracked after a long-term view of the data stream. The 

gradual drift refers to the transition phase in which the probability of the sample 

from the first distribution Pj is reduced, while the probability of obtaining the 

examples from the following distribution P(j + 1) increases. The incremental drift 

consists of a sequence of small changes. If the difference is slight, the drift can be 

only captured during observation of a more extended period of data, for example, 

technological developments, where the gradual development of new technologies 

is beginning to replace the older ones. Such development is not initially visible but 

becomes evident in a longer time horizon. In some cases, the concepts can revert 

over time. A return to previous concepts (repeated in some cycles), represents a 

seasonal or reoccurring drift. For example, we can use data representing an 

offering of seasonal jobs, where their number rises significantly at a certain point 

in time but returns to the original numbers after then [7]. 

When processing the non-stationary drifting streams, the necessary feature of the 

predictive algorithms is their ability to adapt. Some of the algorithms are naturally 

incremental (e.g. Naive Bayes), while other ones require significant changes in the 

algorithm structure to enable incremental processing. Therefore, the learning 
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algorithms applied on the drifting streams are usually modified with the 

mechanisms to update the model with the newly appearing concepts and on the 

other hand, mechanisms able to forget the obsolete ones. Drift detectors are used 

to detect the concept drift in the data streams. These methods can detect the 

possible drift occurrence by analyzing the incoming data or monitoring the 

classifier performance. Drift detectors then usually trigger the update of the 

classification model. There are several drift detection methods, Drift Detection 

Method (DDM) [8], Early Drift Detection Method (EDDM) [9] as the most 

popular ones. Methods which utilize any type of drift detection are often called as 

active ones. Another group of adaptive models, also called passive methods, 

periodically update the model, without any prior knowledge about the drift 

occurrence. 

A very popular group of adaptive models for the drifting data classification, are 

ensemble models. The ensemble model is in general, composed of a collection of 

classifiers, also called base learners or experts. The composed ensemble model 

then combines individual decisions to classify the new examples [10]. The 

primary motivation behind the ensemble models is the assumption that a set of 

"weak" classifiers together can achieve better performance than individual 

classifiers. Bagging (or bootstrap aggregation) represents a popular ensemble 

method. The basic principle of bagging is in the generation of the m training sets 

Di (each of the same size) of the training set D by sampling with replacement. 

Sampling with replacement causes that some examples from the training set may 

be repeated in Di. Then, m classifiers are trained on the created training sets. 

Outputs of the partial classifiers are combined using voting. Usually, decision 

trees are applied as base learners in the bagging approach, but it can be used with 

any kind of classification method. Bagging models are also suitable for data 

streams classification where target concepts change over time. The following 

section summarizes the use of ensembles (including bagging methods) in the 

classification of drifting streams. 

3 Related Work 

In this section, we describe the current state of the art in the area of adaptive 

ensemble classifiers used to classify the drifting data [11]. Various types of 

different adaptive models are available, one of the frequently used groups of such 

models are ensemble methods. There are several versions of bagging methods 

implemented for data streams processing with adaptive behaviors, e.g., Online 

Bagging (or OzaBagging) and Leveraging Bagging [12] [13]. The advantage of 

these methods is that they can be used not only for processing data streams but 

also for static data when there is a lack of memory and computing capacity for the 

processing in a single iteration as evaluation and possibly update of the models on 

relatively small data sets is less demanding for computing performance [14]. 
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OzaBagging [15], on the other hand, which does not use random sampling from 

the data, but uses the Poisson distribution, to mimic the bootstrapping. These 

methods are also capable of handling continuously incrementing data and can 

adapt to different types of drift based on different weighting rules of individual 

classifiers. An interesting combination is also using ASHT Bagging (trees of 

different size) with the ADWIN (Adaptive Windowing) approach. OzaBagging 

can also be combined with ADWIN when ADWIN can detect the drift and reset 

the worst classifier in the ensemble [16]. 

Adaptive bagging was successfully used in the classification of the imbalanced 

data streams [17]. Moreover, by adapting scalable technologies, online bagging 

ensembles were successfully used to tackle with the big data [11]. 

Most of the mentioned ensemble methods are based on different modifications of 

adaptation rules and different variations of voting mechanisms. The main 

objective of work presented in this paper is to focus on model re-training 

mechanisms. We used an adaptive bagging algorithm as a basis and designed and 

implemented several different mechanisms of partial models re-training. Our idea 

was based on the evaluation of partial models quality within the bagging ensemble 

and specifying of rules which of the partial models and how they should be re-

trained. For models re-training, we used different approaches, combining re-

training using both newly arrived instances and historical data. As a base model, 

we used tree classifiers. We evaluated the designed and implemented algorithms 

on two data sets – network intrusion detection and energy consumption prediction 

data. For evaluation purposes, we used standard model quality metrics (e.g., 

precision, recall, F1). On the other hand, an essential aspect of adaptive models 

able to handle a concept drift is also a time and resources needed to re-train and 

deploy the updated model to react quickly as possible to the drift occurrence. 

Therefore, metrics describing the resources spent on re-training of the models 

were also considered. 

4 Proposed Adaptive Bagging Methods 

We designed and implemented two different variations of the basic adaptive 

bagging method, each with a different way of updating individual partial 

classifiers. The differences between them concerned the frequency of updates of 

the individual ensemble members as well as the number of updated models. 

Another factor was the way of combining newly arriving data with historical data 

when updating the ensemble. Either a new sample of data was added to the 

historical data, and a random set was chosen from this combined sample, based on 

which a particular classifier was trained, or an entirely new classifier was created 

using the most up-to-date data and replaced the older one. 
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Parameter description: 

 D - a set of trained classification models 

 IW (iterative window) – represent the data in the current batch 

 LIW – the length of the iterative window 

 M - a list containing the results of metrics (precision, recovery, F1 score) 

 N – the number of classifiers in the ensemble 

 NU - the number of models to be updated in each iteration 

 PL - a set of lists containing predictors for individual classifiers 

 R - the difference between the TW and IW sizes 

 TW (train window) - list consists of lists containing data that are used for 

classifiers training 

 wi - the weight of i
th

 classifier in the ensemble 

 YP – list of predicted class values 

As the simplest variant of the adaptive bagging algorithm, we used a bagging 

model which updates all of its ensemble members periodically in each iteration. 

Its main goal is to evaluate the data in an iteration of a specified length and then 

update all partial models in the ensemble using these newly obtained data. 

Initially, the method creates multiple equal subsets of TWx data, which serve as 

training data for individual partial models. In the case of working with streaming 

data, we could simply adjust the processing queue to the required length. In each 

iteration, the individual Dx classifiers are first trained on the TWx data. Each partial 

model in the ensemble then individually evaluates a set of newly arriving data 

from the last iteration window (IW). The results of partial models are sets of 

evaluated, and the most frequent predicted value is selected. These predicted 

values are stored and compared to the actual values obtained from the dataset. The 

last step of the process is to update the TW training set with currently received 

records from the previous iteration window. If the training window TW is larger 

than IW, the entire set of data that from the last iteration is included in the updated 

training set. The rest of the data are selected from the original training data. 

4.1 Adaptive Bagging – Weight Update Classifiers (WUC) 

This modification of the adaptive bagging method does not update all partial 

classifiers in each iteration but based on the calculated weights it takes the worst-

performing N classifiers (with the highest error rate) and updates only those. Other 

ensemble members remain unchanged. 

In the first step, the goal is to predict IWx data using classifiers D. The results are 

compared to the actual real IWy values and compute the F1 metric for each partial 

classifier. The NB weights, with the highest values, (e.g. NB=3, shown in Fig. 1), 
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represent the ensemble members who are worst-performing members. These 

classifiers will be updated by re-training them using new data from the stream. 

The predicted class will be chosen as a majority vote of remaining classifiers (in 

the current iteration). 

 

Figure 1 

Determining the worst-performing members of the ensemble 

This algorithm has not updated all classifiers in each iteration. It does so only with 

the specified number of worst-performing partial classifiers at a given time as well 

as it doesn't compute the prediction voting of all partial predictions but only of 

those that were not updated in the current iteration. 

 

Adaptive Bagging – Weight Update Classifiers 

Inputs: N, LT, LIW, NB 

 Create random data samples 

1: For i = 1, ..., N 

2: TWi = A random sample of the training set 

3:  TW = TWi  TW 

4:  Train the classifier Di on the TWi data 

5:   

6: Return TW, D 

7: For each new record in IW 

  Prediction and evaluation of individual classifiers 

8:  PL = Ø  

9:  All weights w set to 1 

10:  For j = 1, ..., N 

11: Add the predictions of Dj classifier on the IWx to PLj 

12: Calculate the F1 Score based on the true IWy class 

values and predicted class values PLj 

13:   Weights wj = 1 – F1 Score 
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14:  worst_pos = position NB worst performing ensemble members 

15: PLF = the most common values only for those PLw, that are not 

in the list worst_pos 

Removing NB of the worst classifiers and replacing them with 

new ones 

16:  For each position p from the list worst_pos 

17:   If part_fit = true 

18:    Merge the lists TWp and IW 

19: TWp = replace the original list of the random 

data on the size of the original data from the 

TWp 

20:   Else 

21:    R = length of TW - LIW 

22:    If R <= 0 

23: TWp = replace the original list of 

random data on the size of the original 

TWp from the IW list 

24:    Else 

25:     TW'p = select the last R data from TWp  

26: TWp = merge the lists TW'j and IW 

and then randomly select the specified 

% of these data 

27:   Train the Dp classifier on the TWp data 

28:   Replace Dp in the list of classifiers D with new Dp 

29:  Return TW, D 

4.2 Adaptive Bagging – Weight Update Classifiers Parameters 

(WUCP) 

This modification of the adaptive bagging method is an improved version of the 

WUC adaptive bagging. The initial creation of training sets and initial model 

training are identical with WUC. WUCP method then works with recovery 

thresholds, which means that if the performance of a partial ensemble member 

drops below a certain threshold, then this particular member is updated. The 

determination of the final prediction is realized in the same way as for the WUC 

method. Based on the comparison of predicted PW data with actual IW data, the 

individual ensemble members are evaluated, and their error rate is transferred to 

the respective weights. Updates of individual ensemble members occur when their 

weights reach or exceed the recovery limit. The method works with two recovery 

thresholds which determine, how the particular ensemble member will be updated, 

e.g., what data will be used for re-training of the ensemble member. 
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Figure 2 

Adaptive ensemble with updated weights of base classifiers parameters 

If a partial classifier's weight falls under the first threshold (yellow line depicted 

on Fig. 2), the ensemble member will be updated by re-training of the expert on a 

random selection from the dataset which is composed of the training set of the 

given classifier TWi of the current IW data window. If the ensemble members 

weight exceeds the second threshold (red line on Fig. 3), it will be re-trained using 

just the latest IW data. If the training set TW were larger than IW, all IW data and 

the last data of the original TWi would be included in the creation of the new 

classifier, which will help us achieve the required size of the training set. 

 

Adaptive Bagging – Weight Update Classifiers Parameters 

Inputs: N, LIW, THR_1, THR_2 

 Create random data samples 

1: For i = 1, ..., N 

2: TWi = random sample of data representing from the training set 

3:  TW = TWi TW 

4:  Train the classifier Di on the TWi data 

5:  Save D = Di D 

7: Return TW, D 

8: For Each record in IW 

  Prediction and evaluation of individual classifiers 

9:  PL, best_pos, worst_pos = Ø  
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10:  All weights w set to 1 

11:  For j = 1, ..., N 

12: Add Dj predictions of IWx records to PLj  

13: Calculate the F1 metric based on the actual IWy classes 

and predicted classes PLj 

14:   Weights wj = 1 – F1 Score 

15:  End For 

16:  best_pos – position NB of the best weights 

 

Removing NB of the worst classifiers and replacing them with 

new ones 

17:  For Each weight wx from w 

18:   If wx > THR_1 

19:    R = length TW - LIW 

20:    If R <= 0 

21: TWp = replace random data from IW  

22:    Else 

23:  TW'p - select the last R records from 

TWp  

24: TWp = merge the lists TW'j and IW 

and randomly select the data sample  

25:    End If 

26:    Train the Dp classifier on the TWp data 

27: Update Dp members in the ensemble  

28:   Else If wx > THR_2 

29:    Merge the lists TWp and IW 

30: TWp = replace the random data of the size of 

the original data from the TWp   

31:    Train the Dp classifier on the TWp data 

32: Update Dp members in the ensemble 

33:   End If 

34:  End For 

35: End For 

5 Experiments 

We used two datasets, from two different application domains, to conduct the 

experiments. Instead of using synthetic data, we focused on using real-world 

datasets. From the existing available real-world data used frequently in 

benchmarks, we considered two: network intrusion detection and electricity 

datasets. Both of the datasets contain a different type of concept drift. 

The first dataset is from the KDD Cup competition in 1999 [18]. This data file is a 

listing of device logs in a LAN network collected over nine weeks. The sample 
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contains 494,021 rows. The class label is a binary one and specifies if a particular 

log represents any kind of network attack or normal connection. This dataset 

contains a sudden concept drift. 

The second dataset considered in the experiments was the New South Wales 

Electricity Market dataset (commonly referenced as the ELEC dataset) [19]. In 

this case, we used the normalized version of the data. The dataset contains 45,312 

instances. The class label identifies the change of the price relative to a moving 

average of the last 24 hours. These data contain a balanced class distribution and 

contains incremental concept drift. 

On both datasets, we have performed two experiments. During the first set of the 

experiments, we compared the implemented adaptive bagging models them with 

baseline classifier (simple decision tree mode), non-adaptive bagging algorithm 

and basic adaptive bagging model with no weight adaptation mechanisms 

implemented. As a base classifier in the bagging ensemble, we used decision tree 

models. Our main objective was to measure the model quality metrics (precision, 

recall, F1 measure) as well as the time and resources needed to build and update 

the adaptive models. Lastly, we compared the best adaptive bagging algorithm 

with other similar adaptive models. Following sub-sections summarize the 

achieved results. The experiments were performed on a standard computer, 

equipped with an Intel processor, 8 Gigabytes of RAM running a Windows 

operating system. 

5.1 Experiments on the ELEC Dataset 

Table 1 

Comparison of model performance on the ELEC data. Time is measured in seconds; performance 

metrics are calculated as the final percentage of examples over the complete data. 

 Base 

classifier 

Bagging Adaptive 

Bagging  

Adaptive 

Bagging - 

WUC 

Adaptive 

Bagging - 

WUCP 

Precision 70.39% 70.58% 82.05% 85.70% 88.22% 

Recall 66.91% 66.39% 75.29% 81.58% 84.22% 

F1 61.13% 61.14% 73.12% 79.89% 82.90% 

Based on the results summarized in Tab. 1, the WUCP method achieved superior 

performance. Using the decision tree as a base classifier, it scored the highest 

score in all metrics. The optimal setting (also used in other experiments) of the 

offset size and the training set size is the value 1000 for both parameters. 

During the second set of the experiments, we compared the performance of the 

adaptive bagging models with the other popular adaptive models. We used the 

following algorithms: DDM, ADWIN and Page-Hinkley method. Adaptive 

bagging models were set using the optimal parameters identified from the first set 



M. Sarnovský et al. Adaptive Bagging Methods for Classification of Data Streams with Concept Drift 

 – 58 – 

of the experiments. Comparison of the model performance on the ELEC dataset 

visualized on Fig. 3 depicts, how the selected metrics evolved during the stream 

processing. The performance of basic methods decreases faster than adaptive, 

which makes me aware of the fact that these methods do not update over time and 

if the concept drift starts to occur in the data, so they have no way to find and 

further predict values on based on the classifiers learned at the beginning of the 

process. Adaptive methods also show a decrease in classifier accuracy, but it is not 

as significant, as static methods. 

In the following experiments, our primary goal was to compare the designed 

adaptive ensemble methods with other adaptive methods. We chose the 

implementations based on Page-Hinkley, ADWIN, and DDM algorithms for 

comparison. 

 

Figure 3 

Performance metrics evolution comparison of the implemented models with the other adaptive models 

on the ELEC dataset 

Fig. 3 depicts the performance evaluation of the WUC and WUCP Bagging 

methods with other adaptive methods. The experiments show that the adaptive 

bagging methods proved to be more efficient, especially when comparing to the 

DDM method. 
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5.2 Experiments on the KDD 99 Dataset 

In the first series of the experiments, we compared the performance of the base 

classifier, standard bagging method, adaptive bagging with a constant update of 

the ensemble members with proposed adaptive bagging methods. The results are 

summarized in the Tab. 2. From the performance metrics, we can observe superior 

performance achieved by the WUCP adaptive bagging method. 

Table 2 

Comparison of the methods performance on the KDD 99 dataset 

 Base 

classifier 

Bagging Adaptive 

Bagging  

Adaptive 

Bagging - 

WUC 

Adaptive 

Bagging - 

WUCP 

Precision 82.95% 93.56% 91.87% 96.24% 99.05% 

Recall 76.25% 93.95% 92.79% 96.37% 98.96% 

F1 75.46% 93.51% 92.08% 95.76% 98.86% 

In a similar fashion as during the experiments on the ELEC data, we compared the 

performance of the proposed methods to other adaptive models. We focused on 

the evolution of the F1 metric on the entire simulated data stream. Fig. 4 

visualizes the F1 ratio on the simulated stream of the KDD 99 data. As it can be 

seen from the performance visualization, the adaptive bagging methods (both 

WUC and WUCP) recover faster from the drift occurrence when comparing with 

the other adaptive methods. On this dataset, the WUC bagging method proved to 

be the more efficient one. 

 

Figure 4 

F1 metric evolution comparison of the implemented models with the other adaptive models on the 

KDD 99 dataset 
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When comparing adaptive methods on KDD CUP data, we can observe that all 

methods have a problem when drift occurs suddenly. The success of the method is 

based on how quickly they are able to adapt to the change. Adaptive bagging 

methods are able to recover faster when compared to other methods. 

5.3 Memory and Computation Requirements Comparison 

In this section, we compared how the implemented models performed in terms of 

their requirements on computational resources. An important aspect of the 

adaptive models is the fast recovery time - the time needed to update the 

classification model. In real-world scenarios, the aim is to minimize the recovery 

time in order to deploy the updated model as fast as possible. In this experiment, 

we observed how the implemented models utilized the RAM memory and 

measured the time to update the model during the process. Fig. 5 summarizes the 

results of the experiments. We can observe that the adaptive bagging methods 

with implemented class-weighting required slightly more memory. Update time 

also increased when comparing to the adaptive bagging with no class weighting 

scheme implemented. 

 

Figure 5 

The update time of the adaptive bagging methods and memory usage of the classifiers during the 

stream processing (Time measured in ms) 

The experiment was performed on the ELEC dataset. It is important to note that 

the observed metrics are highly dependent on the processed data. Data streams 

with a more complex structure (e.g. with large feature space) require more 

resources to process. Another important aspect is the actual real stream velocity 

(the number of items arriving per second), which determines the requirements for 

the recovery times. 

Conclusions 

The aim of the presented paper, is to propose weighted modifications, of adaptive 

bagging classification methods. We evaluated the models on two different real-

world datasets that contain a different type of concept drift. In both experiments, 
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we compared the adaptive bagging methods with the baseline classifier as well as 

with other incremental od adaptive models. The results prove that the absence of 

classifier ability to update, when concept drift occurs, results in a gradual decrease 

of model performance. Adaptive bagging methods achieved relatively good 

performance results on both of the datasets. Their accuracy and speed of update 

depended on how large a set of data was used in each upgrade iteration and how 

many partial classifiers were needed to be retrained. When comparing concrete 

approaches to retrain the classifiers, we can conclude that it is better to use the 

partial update method, which is a random selection of historical data and recent 

examples of the current iteration. Performance-wise, the WUCP adaptive bagging 

algorithm achieved the best results. When compared to other adaptive methods, 

those methods performed fast enough and again yielded the best results on both 

datasets. Based on these findings, we can say that adaptive ensemble methods are 

well able to be adapted on the data in which the concept drift occurs and can be 

very useful to the classification method for processing of data streams in a 

dynamic and ever-changing environment. For future work, we aim to enhance the 

adaptive ensemble models with a semantic model of the application domain. Such 

a knowledge model, should be used to improve the classification by capturing the 

expert domain knowledge, which may be related to drift occurrences. These 

models could be used to detect the patterns leading to the drift and therefore, be 

used in drift detection or adaptation rules. 
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