
Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 47 –

Adaptive Bagging Methods for Classification of

Data Streams with Concept Drift

Martin Sarnovsky, Jan Marcinko

Department of Cybernetics and Artificial Intelligence

Technical University of Košice

Letná 9, 042 00 Košice, Slovakia

martin.sarnovsky@tuke.sk, jan.marcinko@student.tuke.sk

Abstract: Data streams represent a continuous stream of data, in many forms, coming from

different sources. Streams are often dynamic and its underlying structure usually changes

over time. When solving predictive tasks on the streaming data, traditional models, trained

on historical data, may become invalid, when such change occurs. Therefore, adaptive

models, equipped with mechanisms to reflect the changes in the data, are suitable to solve

these tasks. Adaptive ensemble models represent a popular group of such methods used in

classification tasks on data streams. In this paper, we designed and implemented the

modifications of the adaptive bagging methods, which utilizes internal class-weighting

schemes for the model adaptation. Implemented models were evaluated on two simulated

real-world data streams and compared with base classifiers and other adaptive methods. In

addition to the performance evaluation, we also analyzed other models' characteristics,

such as the duration of model update and memory requirements.

Keywords: concept drift; classification; data streams; ensemble learning

1 Introduction

Nowadays, the size of data is growing much faster, than in the past. Information is

being collected from household appliances, tools, mobile devices, GPS, vehicles,

various sensors, websites and many other sources. An increasingly large number

of organizations are starting to analyze this big data, as the information obtained

from these data can provide a competitive advantage over other businesses. Data

collection from devices is often continuous, and the data comes in the form of data

streams [1]. The data stream can be defined as potentially unlimited, ordered

sequence of data items coming in over time. The data streams can be divided

according to whether they provide data incrementally (sequentially, one item by

one) or in blocks of data. The blocks usually have the same length, and their

processing, evaluation or updating is done when all the examples in the new block

are available.

M. Sarnovský et al. Adaptive Bagging Methods for Classification of Data Streams with Concept Drift

 – 48 –

There are two basic types of data streams: stationary and non-stationary [2]. For

stationary streams, examples are drawn from a fixed, albeit unknown probability

distribution. A significant change in attributes is not expected, so in case of

predictive tasks applied on this type of stream, it is possible to use a model trained

on historical data as expected to perform in constant accuracy over the time. Non-

stationary data streams are characterized by changing data over time [2]. This

results in a gradual or sudden fall of the models performance. In other words, the

concept, which generates a data stream moves after a minimum period of stability.

This phenomenon of shifting is called a concept drift or a covariant shift [3].

When solving predictive or classification tasks on streaming data, the data

generation process is not strictly stationary and its underlying structure may

change over time. From the model training perspective, one of the essential

requirements is the ability to adapt and incorporate new data into the model to

react to the potential drift occurrence [4]. In that field, the adaptive learning

algorithms are advanced machine learning methods that can adapt to new data

streams in real-time. There are multiple types of adaptive learning models

available, including ensemble methods. Ensemble methods are based on a

combination of several models and a combination of their individual predictions

into a final one. Based on a different ensemble method types, those models are

trained on different training set subsets, using different subsets of predictors.

When classifying of a new instance, voting mechanisms are usually applied.

Often, ensemble methods have superior performance. Also, due to the method's

nature, it is relatively easy to scale such approaches to handle the big data. Among

the most popular ensemble methods are boosting and bagging methods [5].

This paper describes the design and implementation of modifications of adaptive

ensemble bagging algorithm with different mechanisms of weight-based

individual models update. Two modifications of such mechanism are presented

and evaluated on two different real-world data streams. The paper is organized as

follows: the second section provides basic definitions related to concept drift in

data streams and description of various drift types. The following section

describes the actual state of the art in the area of the adaptive models used to

handle the concept drift and defines the motivation for the presented approach.

Next section describes the designed and implemented adaptive ensemble methods.

The evaluation section, then describes experiments and results on two datasets.

The last section concludes and summarizes the experimenal results and lastly,

addresses some possible directions for future research.

2 Drifting Data Streams

For each point at time t, example x is generated, which has a common probability

distribution Pt(x, y). The concepts in the data are stable or stationary if all the

examples are generated by the same distribution. However, the components in

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 49 –

Pt(x, y) may change. If there is x between the two points t and t + Δ, which holds

the expression Pt (x, y) ≠ Pt + Δ (x, y), then a concept is drift present. Some real-

world examples of the drifting data may include:

 Traffic monitoring, where traffic may vary over time,

 Weather forecast where climate change and other natural anomalies can

affect the final prognosis,

 Systems for tracking individuals' interests, such as personalized ads,

where people can gradually change interests.

There are two different types of concept drift. The real drift represents a

probability change P(y/x). This can occur with or without changes in the

probability P(x). Virtual drift is defined as the change in the value of P(x), or class

distribution P(s) that do not affect the decision boundary of the classifiers.

Sometimes a virtual drift is defined as a change that does not affect later

probabilities. Virtual drift is also referred to as temporary drift or sampling shift.

In addition to the differences between the cause and the effect of changes in

concepts, we distinguish several ways these changes have occurred. According to

the frequency and velocity of the concept drift, we can recognize four different

categories [6]: incremental, gradual, sudden and reoccurring drift. A sudden drift

occurs when, at time t, the target distribution St , is suddenly replaced by another

distribution S(t + 1). For example, when city crime data is gathered, and the

classifier tries to predict the development of crime based on these data, and a

change in legislative may cause, that some crime types can be classified under a

different kind or some cases are no longer considered as offences. With gradual

drift, data transformations are not so radical and are associated with a slower rate

of change that can only be tracked after a long-term view of the data stream. The

gradual drift refers to the transition phase in which the probability of the sample

from the first distribution Pj is reduced, while the probability of obtaining the

examples from the following distribution P(j + 1) increases. The incremental drift

consists of a sequence of small changes. If the difference is slight, the drift can be

only captured during observation of a more extended period of data, for example,

technological developments, where the gradual development of new technologies

is beginning to replace the older ones. Such development is not initially visible but

becomes evident in a longer time horizon. In some cases, the concepts can revert

over time. A return to previous concepts (repeated in some cycles), represents a

seasonal or reoccurring drift. For example, we can use data representing an

offering of seasonal jobs, where their number rises significantly at a certain point

in time but returns to the original numbers after then [7].

When processing the non-stationary drifting streams, the necessary feature of the

predictive algorithms is their ability to adapt. Some of the algorithms are naturally

incremental (e.g. Naive Bayes), while other ones require significant changes in the

algorithm structure to enable incremental processing. Therefore, the learning

M. Sarnovský et al. Adaptive Bagging Methods for Classification of Data Streams with Concept Drift

 – 50 –

algorithms applied on the drifting streams are usually modified with the

mechanisms to update the model with the newly appearing concepts and on the

other hand, mechanisms able to forget the obsolete ones. Drift detectors are used

to detect the concept drift in the data streams. These methods can detect the

possible drift occurrence by analyzing the incoming data or monitoring the

classifier performance. Drift detectors then usually trigger the update of the

classification model. There are several drift detection methods, Drift Detection

Method (DDM) [8], Early Drift Detection Method (EDDM) [9] as the most

popular ones. Methods which utilize any type of drift detection are often called as

active ones. Another group of adaptive models, also called passive methods,

periodically update the model, without any prior knowledge about the drift

occurrence.

A very popular group of adaptive models for the drifting data classification, are

ensemble models. The ensemble model is in general, composed of a collection of

classifiers, also called base learners or experts. The composed ensemble model

then combines individual decisions to classify the new examples [10]. The

primary motivation behind the ensemble models is the assumption that a set of

"weak" classifiers together can achieve better performance than individual

classifiers. Bagging (or bootstrap aggregation) represents a popular ensemble

method. The basic principle of bagging is in the generation of the m training sets

Di (each of the same size) of the training set D by sampling with replacement.

Sampling with replacement causes that some examples from the training set may

be repeated in Di. Then, m classifiers are trained on the created training sets.

Outputs of the partial classifiers are combined using voting. Usually, decision

trees are applied as base learners in the bagging approach, but it can be used with

any kind of classification method. Bagging models are also suitable for data

streams classification where target concepts change over time. The following

section summarizes the use of ensembles (including bagging methods) in the

classification of drifting streams.

3 Related Work

In this section, we describe the current state of the art in the area of adaptive

ensemble classifiers used to classify the drifting data [11]. Various types of

different adaptive models are available, one of the frequently used groups of such

models are ensemble methods. There are several versions of bagging methods

implemented for data streams processing with adaptive behaviors, e.g., Online

Bagging (or OzaBagging) and Leveraging Bagging [12] [13]. The advantage of

these methods is that they can be used not only for processing data streams but

also for static data when there is a lack of memory and computing capacity for the

processing in a single iteration as evaluation and possibly update of the models on

relatively small data sets is less demanding for computing performance [14].

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 51 –

OzaBagging [15], on the other hand, which does not use random sampling from

the data, but uses the Poisson distribution, to mimic the bootstrapping. These

methods are also capable of handling continuously incrementing data and can

adapt to different types of drift based on different weighting rules of individual

classifiers. An interesting combination is also using ASHT Bagging (trees of

different size) with the ADWIN (Adaptive Windowing) approach. OzaBagging

can also be combined with ADWIN when ADWIN can detect the drift and reset

the worst classifier in the ensemble [16].

Adaptive bagging was successfully used in the classification of the imbalanced

data streams [17]. Moreover, by adapting scalable technologies, online bagging

ensembles were successfully used to tackle with the big data [11].

Most of the mentioned ensemble methods are based on different modifications of

adaptation rules and different variations of voting mechanisms. The main

objective of work presented in this paper is to focus on model re-training

mechanisms. We used an adaptive bagging algorithm as a basis and designed and

implemented several different mechanisms of partial models re-training. Our idea

was based on the evaluation of partial models quality within the bagging ensemble

and specifying of rules which of the partial models and how they should be re-

trained. For models re-training, we used different approaches, combining re-

training using both newly arrived instances and historical data. As a base model,

we used tree classifiers. We evaluated the designed and implemented algorithms

on two data sets – network intrusion detection and energy consumption prediction

data. For evaluation purposes, we used standard model quality metrics (e.g.,

precision, recall, F1). On the other hand, an essential aspect of adaptive models

able to handle a concept drift is also a time and resources needed to re-train and

deploy the updated model to react quickly as possible to the drift occurrence.

Therefore, metrics describing the resources spent on re-training of the models

were also considered.

4 Proposed Adaptive Bagging Methods

We designed and implemented two different variations of the basic adaptive

bagging method, each with a different way of updating individual partial

classifiers. The differences between them concerned the frequency of updates of

the individual ensemble members as well as the number of updated models.

Another factor was the way of combining newly arriving data with historical data

when updating the ensemble. Either a new sample of data was added to the

historical data, and a random set was chosen from this combined sample, based on

which a particular classifier was trained, or an entirely new classifier was created

using the most up-to-date data and replaced the older one.

M. Sarnovský et al. Adaptive Bagging Methods for Classification of Data Streams with Concept Drift

 – 52 –

Parameter description:

 D - a set of trained classification models

 IW (iterative window) – represent the data in the current batch

 LIW – the length of the iterative window

 M - a list containing the results of metrics (precision, recovery, F1 score)

 N – the number of classifiers in the ensemble

 NU - the number of models to be updated in each iteration

 PL - a set of lists containing predictors for individual classifiers

 R - the difference between the TW and IW sizes

 TW (train window) - list consists of lists containing data that are used for

classifiers training

 wi - the weight of i
th

 classifier in the ensemble

 YP – list of predicted class values

As the simplest variant of the adaptive bagging algorithm, we used a bagging

model which updates all of its ensemble members periodically in each iteration.

Its main goal is to evaluate the data in an iteration of a specified length and then

update all partial models in the ensemble using these newly obtained data.

Initially, the method creates multiple equal subsets of TWx data, which serve as

training data for individual partial models. In the case of working with streaming

data, we could simply adjust the processing queue to the required length. In each

iteration, the individual Dx classifiers are first trained on the TWx data. Each partial

model in the ensemble then individually evaluates a set of newly arriving data

from the last iteration window (IW). The results of partial models are sets of

evaluated, and the most frequent predicted value is selected. These predicted

values are stored and compared to the actual values obtained from the dataset. The

last step of the process is to update the TW training set with currently received

records from the previous iteration window. If the training window TW is larger

than IW, the entire set of data that from the last iteration is included in the updated

training set. The rest of the data are selected from the original training data.

4.1 Adaptive Bagging – Weight Update Classifiers (WUC)

This modification of the adaptive bagging method does not update all partial

classifiers in each iteration but based on the calculated weights it takes the worst-

performing N classifiers (with the highest error rate) and updates only those. Other

ensemble members remain unchanged.

In the first step, the goal is to predict IWx data using classifiers D. The results are

compared to the actual real IWy values and compute the F1 metric for each partial

classifier. The NB weights, with the highest values, (e.g. NB=3, shown in Fig. 1),

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 53 –

represent the ensemble members who are worst-performing members. These

classifiers will be updated by re-training them using new data from the stream.

The predicted class will be chosen as a majority vote of remaining classifiers (in

the current iteration).

Figure 1

Determining the worst-performing members of the ensemble

This algorithm has not updated all classifiers in each iteration. It does so only with

the specified number of worst-performing partial classifiers at a given time as well

as it doesn't compute the prediction voting of all partial predictions but only of

those that were not updated in the current iteration.

Adaptive Bagging – Weight Update Classifiers

Inputs: N, LT, LIW, NB

 Create random data samples

1: For i = 1, ..., N

2: TWi = A random sample of the training set

3: TW = TWi TW

4: Train the classifier Di on the TWi data

5:

6: Return TW, D

7: For each new record in IW

 Prediction and evaluation of individual classifiers

8: PL = Ø

9: All weights w set to 1

10: For j = 1, ..., N

11: Add the predictions of Dj classifier on the IWx to PLj

12: Calculate the F1 Score based on the true IWy class

values and predicted class values PLj

13: Weights wj = 1 – F1 Score

M. Sarnovský et al. Adaptive Bagging Methods for Classification of Data Streams with Concept Drift

 – 54 –

14: worst_pos = position NB worst performing ensemble members

15: PLF = the most common values only for those PLw, that are not

in the list worst_pos

Removing NB of the worst classifiers and replacing them with

new ones

16: For each position p from the list worst_pos

17: If part_fit = true

18: Merge the lists TWp and IW

19: TWp = replace the original list of the random

data on the size of the original data from the

TWp

20: Else

21: R = length of TW - LIW

22: If R <= 0

23: TWp = replace the original list of

random data on the size of the original

TWp from the IW list

24: Else

25: TW'p = select the last R data from TWp

26: TWp = merge the lists TW'j and IW

and then randomly select the specified

% of these data

27: Train the Dp classifier on the TWp data

28: Replace Dp in the list of classifiers D with new Dp

29: Return TW, D

4.2 Adaptive Bagging – Weight Update Classifiers Parameters

(WUCP)

This modification of the adaptive bagging method is an improved version of the

WUC adaptive bagging. The initial creation of training sets and initial model

training are identical with WUC. WUCP method then works with recovery

thresholds, which means that if the performance of a partial ensemble member

drops below a certain threshold, then this particular member is updated. The

determination of the final prediction is realized in the same way as for the WUC

method. Based on the comparison of predicted PW data with actual IW data, the

individual ensemble members are evaluated, and their error rate is transferred to

the respective weights. Updates of individual ensemble members occur when their

weights reach or exceed the recovery limit. The method works with two recovery

thresholds which determine, how the particular ensemble member will be updated,

e.g., what data will be used for re-training of the ensemble member.

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 55 –

Figure 2

Adaptive ensemble with updated weights of base classifiers parameters

If a partial classifier's weight falls under the first threshold (yellow line depicted

on Fig. 2), the ensemble member will be updated by re-training of the expert on a

random selection from the dataset which is composed of the training set of the

given classifier TWi of the current IW data window. If the ensemble members

weight exceeds the second threshold (red line on Fig. 3), it will be re-trained using

just the latest IW data. If the training set TW were larger than IW, all IW data and

the last data of the original TWi would be included in the creation of the new

classifier, which will help us achieve the required size of the training set.

Adaptive Bagging – Weight Update Classifiers Parameters

Inputs: N, LIW, THR_1, THR_2

 Create random data samples

1: For i = 1, ..., N

2: TWi = random sample of data representing from the training set

3: TW = TWi TW

4: Train the classifier Di on the TWi data

5: Save D = Di D

7: Return TW, D

8: For Each record in IW

 Prediction and evaluation of individual classifiers

9: PL, best_pos, worst_pos = Ø

M. Sarnovský et al. Adaptive Bagging Methods for Classification of Data Streams with Concept Drift

 – 56 –

10: All weights w set to 1

11: For j = 1, ..., N

12: Add Dj predictions of IWx records to PLj

13: Calculate the F1 metric based on the actual IWy classes

and predicted classes PLj

14: Weights wj = 1 – F1 Score

15: End For

16: best_pos – position NB of the best weights

Removing NB of the worst classifiers and replacing them with

new ones

17: For Each weight wx from w

18: If wx > THR_1

19: R = length TW - LIW

20: If R <= 0

21: TWp = replace random data from IW

22: Else

23: TW'p - select the last R records from

TWp

24: TWp = merge the lists TW'j and IW

and randomly select the data sample

25: End If

26: Train the Dp classifier on the TWp data

27: Update Dp members in the ensemble

28: Else If wx > THR_2

29: Merge the lists TWp and IW

30: TWp = replace the random data of the size of

the original data from the TWp

31: Train the Dp classifier on the TWp data

32: Update Dp members in the ensemble

33: End If

34: End For

35: End For

5 Experiments

We used two datasets, from two different application domains, to conduct the

experiments. Instead of using synthetic data, we focused on using real-world

datasets. From the existing available real-world data used frequently in

benchmarks, we considered two: network intrusion detection and electricity

datasets. Both of the datasets contain a different type of concept drift.

The first dataset is from the KDD Cup competition in 1999 [18]. This data file is a

listing of device logs in a LAN network collected over nine weeks. The sample

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 57 –

contains 494,021 rows. The class label is a binary one and specifies if a particular

log represents any kind of network attack or normal connection. This dataset

contains a sudden concept drift.

The second dataset considered in the experiments was the New South Wales

Electricity Market dataset (commonly referenced as the ELEC dataset) [19]. In

this case, we used the normalized version of the data. The dataset contains 45,312

instances. The class label identifies the change of the price relative to a moving

average of the last 24 hours. These data contain a balanced class distribution and

contains incremental concept drift.

On both datasets, we have performed two experiments. During the first set of the

experiments, we compared the implemented adaptive bagging models them with

baseline classifier (simple decision tree mode), non-adaptive bagging algorithm

and basic adaptive bagging model with no weight adaptation mechanisms

implemented. As a base classifier in the bagging ensemble, we used decision tree

models. Our main objective was to measure the model quality metrics (precision,

recall, F1 measure) as well as the time and resources needed to build and update

the adaptive models. Lastly, we compared the best adaptive bagging algorithm

with other similar adaptive models. Following sub-sections summarize the

achieved results. The experiments were performed on a standard computer,

equipped with an Intel processor, 8 Gigabytes of RAM running a Windows

operating system.

5.1 Experiments on the ELEC Dataset

Table 1

Comparison of model performance on the ELEC data. Time is measured in seconds; performance

metrics are calculated as the final percentage of examples over the complete data.

 Base

classifier

Bagging Adaptive

Bagging

Adaptive

Bagging -

WUC

Adaptive

Bagging -

WUCP

Precision 70.39% 70.58% 82.05% 85.70% 88.22%

Recall 66.91% 66.39% 75.29% 81.58% 84.22%

F1 61.13% 61.14% 73.12% 79.89% 82.90%

Based on the results summarized in Tab. 1, the WUCP method achieved superior

performance. Using the decision tree as a base classifier, it scored the highest

score in all metrics. The optimal setting (also used in other experiments) of the

offset size and the training set size is the value 1000 for both parameters.

During the second set of the experiments, we compared the performance of the

adaptive bagging models with the other popular adaptive models. We used the

following algorithms: DDM, ADWIN and Page-Hinkley method. Adaptive

bagging models were set using the optimal parameters identified from the first set

M. Sarnovský et al. Adaptive Bagging Methods for Classification of Data Streams with Concept Drift

 – 58 –

of the experiments. Comparison of the model performance on the ELEC dataset

visualized on Fig. 3 depicts, how the selected metrics evolved during the stream

processing. The performance of basic methods decreases faster than adaptive,

which makes me aware of the fact that these methods do not update over time and

if the concept drift starts to occur in the data, so they have no way to find and

further predict values on based on the classifiers learned at the beginning of the

process. Adaptive methods also show a decrease in classifier accuracy, but it is not

as significant, as static methods.

In the following experiments, our primary goal was to compare the designed

adaptive ensemble methods with other adaptive methods. We chose the

implementations based on Page-Hinkley, ADWIN, and DDM algorithms for

comparison.

Figure 3

Performance metrics evolution comparison of the implemented models with the other adaptive models

on the ELEC dataset

Fig. 3 depicts the performance evaluation of the WUC and WUCP Bagging

methods with other adaptive methods. The experiments show that the adaptive

bagging methods proved to be more efficient, especially when comparing to the

DDM method.

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 59 –

5.2 Experiments on the KDD 99 Dataset

In the first series of the experiments, we compared the performance of the base

classifier, standard bagging method, adaptive bagging with a constant update of

the ensemble members with proposed adaptive bagging methods. The results are

summarized in the Tab. 2. From the performance metrics, we can observe superior

performance achieved by the WUCP adaptive bagging method.

Table 2

Comparison of the methods performance on the KDD 99 dataset

 Base

classifier

Bagging Adaptive

Bagging

Adaptive

Bagging -

WUC

Adaptive

Bagging -

WUCP

Precision 82.95% 93.56% 91.87% 96.24% 99.05%

Recall 76.25% 93.95% 92.79% 96.37% 98.96%

F1 75.46% 93.51% 92.08% 95.76% 98.86%

In a similar fashion as during the experiments on the ELEC data, we compared the

performance of the proposed methods to other adaptive models. We focused on

the evolution of the F1 metric on the entire simulated data stream. Fig. 4

visualizes the F1 ratio on the simulated stream of the KDD 99 data. As it can be

seen from the performance visualization, the adaptive bagging methods (both

WUC and WUCP) recover faster from the drift occurrence when comparing with

the other adaptive methods. On this dataset, the WUC bagging method proved to

be the more efficient one.

Figure 4

F1 metric evolution comparison of the implemented models with the other adaptive models on the

KDD 99 dataset

M. Sarnovský et al. Adaptive Bagging Methods for Classification of Data Streams with Concept Drift

 – 60 –

When comparing adaptive methods on KDD CUP data, we can observe that all

methods have a problem when drift occurs suddenly. The success of the method is

based on how quickly they are able to adapt to the change. Adaptive bagging

methods are able to recover faster when compared to other methods.

5.3 Memory and Computation Requirements Comparison

In this section, we compared how the implemented models performed in terms of

their requirements on computational resources. An important aspect of the

adaptive models is the fast recovery time - the time needed to update the

classification model. In real-world scenarios, the aim is to minimize the recovery

time in order to deploy the updated model as fast as possible. In this experiment,

we observed how the implemented models utilized the RAM memory and

measured the time to update the model during the process. Fig. 5 summarizes the

results of the experiments. We can observe that the adaptive bagging methods

with implemented class-weighting required slightly more memory. Update time

also increased when comparing to the adaptive bagging with no class weighting

scheme implemented.

Figure 5

The update time of the adaptive bagging methods and memory usage of the classifiers during the

stream processing (Time measured in ms)

The experiment was performed on the ELEC dataset. It is important to note that

the observed metrics are highly dependent on the processed data. Data streams

with a more complex structure (e.g. with large feature space) require more

resources to process. Another important aspect is the actual real stream velocity

(the number of items arriving per second), which determines the requirements for

the recovery times.

Conclusions

The aim of the presented paper, is to propose weighted modifications, of adaptive

bagging classification methods. We evaluated the models on two different real-

world datasets that contain a different type of concept drift. In both experiments,

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 61 –

we compared the adaptive bagging methods with the baseline classifier as well as

with other incremental od adaptive models. The results prove that the absence of

classifier ability to update, when concept drift occurs, results in a gradual decrease

of model performance. Adaptive bagging methods achieved relatively good

performance results on both of the datasets. Their accuracy and speed of update

depended on how large a set of data was used in each upgrade iteration and how

many partial classifiers were needed to be retrained. When comparing concrete

approaches to retrain the classifiers, we can conclude that it is better to use the

partial update method, which is a random selection of historical data and recent

examples of the current iteration. Performance-wise, the WUCP adaptive bagging

algorithm achieved the best results. When compared to other adaptive methods,

those methods performed fast enough and again yielded the best results on both

datasets. Based on these findings, we can say that adaptive ensemble methods are

well able to be adapted on the data in which the concept drift occurs and can be

very useful to the classification method for processing of data streams in a

dynamic and ever-changing environment. For future work, we aim to enhance the

adaptive ensemble models with a semantic model of the application domain. Such

a knowledge model, should be used to improve the classification by capturing the

expert domain knowledge, which may be related to drift occurrences. These

models could be used to detect the patterns leading to the drift and therefore, be

used in drift detection or adaptation rules.

Acknowledgement

This work was partially supported by the Slovak Research and Development

Agency under the contracts No. APVV-16-0213.

References

[1] KRAWCZYK, Bartosz, MINKU, Leandro L., GAMA, João,

STEFANOWSKI, Jerzy, WOŹNIAK, Michał: Ensemble learning for data

stream analysis: A survey, Information Fusion, 37, pp. 132-156, DOI:

10.1016/j.inffus.2017.02.004. ISSN 15662535, 2017

[2] GAMA, João: Knowledge discovery from data streams. Boca Raton, FL:

Chapman & Hall/CRC, Chapman & Hall/CRC data mining and knowledge

discovery series, ISBN 9781439826119, 2010

[3] ZLIOBAITE, Indre: Adaptive training set formation. Vilnius, PhD thesis.

Vilnius University, 2010

[4] BREIMAN, Leo: Bagging predictors. Machine Learning.

https://doi.org/10.1007/bf00058655, 1996

[5] GIRAUD-CARRIER, Christophe: A note on the utility of incremental

learning, AI Communications, Netherlands: IOS Press Amsterdam, 13(4),

pp. 215-223, 2000

M. Sarnovský et al. Adaptive Bagging Methods for Classification of Data Streams with Concept Drift

 – 62 –

[6] TRAJDOS, Pawel, KURZYNSKI, Marek: Multi-label Stream

Classification Using Extended Binary Relevance Model. In: 2015 IEEE

Trustcom/BigDataSE/ISPA. IEEE, pp. 205-210, DOI:

10.1109/Trustcom.2015.584, ISBN 978-1-4673-7952-6, 2015

[7] TSYMBAL, Alexey: The problem of concept drift: definitions and related

work, Technical Report TCD-CS, Trinity College Dublin, Ireland, 2004

[8] GAMA, João, MEDAS, Pedro, CASTILLO, Gladys, RODRIGUES, Pedro:

Learning with drift detection, Lecture Notes in ComputerScience (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 2004

[9] BAENA-GARCÍA, Manuel, DEL CAMPO-ÁVILA, José, FIDALGO,

Raúl, BIFET, Albert, GAVALDÀ, Ricard, MORALES-BUENO, Rafael:

Early Drift Detection Method, In: 4
th

 ECML PKDD International

Workshop on Knowledge Discovery from Data Streams, 2006

[10] SAGI Omer, ROKACH Lior: Ensemble learning: A survey, 2018

[11] LV, Y., PENG, S., YUAN, Y., WANG, C., YIN, P., LIU, J., WANG, C.: A

classifier using online bagging ensemble method for big data stream

learning. Tsinghua Science and Technology.

https://doi.org/10.26599/TST.2018.9010119, 2019

[12] OZA, Nikunj C., RUSSELL, Stuart: Online bagging and boosting. In

Proceedings of the Eighth International Workshop on Artificial Intelligence

and Statistics (AISTATS'01) p. 105112, Key West, USA. Morgan

Kaufmann, 2001

[13] BIFET, Albert, HOLMES, Geoffrey, PFAHRINGER, Bernhard:

Leveraging bagging for evolving data streams. In ECML/PKDD (1), pp

135-150, 2010

[14] ABDALLAH, Zahraa Said, GABER, Mohamed Medhat, SRINIVASAN,

Bala, KRISHNASWAMY, Shonali: Anynovel: detection of novel concepts

in evolving data streams, Evolving Systems, 7(2), pp. 73-93, 2016

[15] BIFET, A., HOLMES, G., PFAHRINGER, B., GAVALDÀ, R.: Improving

adaptive bagging methods for evolving data streams. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics)

https://doi.org/10.1007/978-3-642-05224-8_4, 2009

[16] READ, J., BIFET, A., HOLMES, G., PFAHRINGER, B.: Scalable and

efficient multi-label classification for evolving data streams, Machine

Learning, Vol. 88, No. 1-2, pp. 243-272, 2012

[17] WANG, B., PINEAU, J.: Online Bagging and Boosting for Imbalanced

Data Streams. IEEE Transactions on Knowledge and Data Engineering.

https://doi.org/10.1109/TKDE.2016.2609424, 2016

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 63 –

[18] KDD Cup 1999 Data: Abstract [online] [2018-01-14] Available from:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[19] MOA: Datasets [online] [2018-01-20] Available from:

https://moa.cms.waikato.ac.nz/datasets/

