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Abstract: Parkinson's disease is one of the most common neurological diseases. The patients 
suffer from different symptoms, e.g., tremor, bradykinesia, or walk gait disorders. One of the 
gait disorders which affects Parkinson's disease patients is freezing of gait, which shows as 
a sudden gait interruption without the ability to take the next step. It is hard to manage this 
symptom by medication. However, there are ways to address this symptom by applying 
different visual or vibration aids. This work presents a system for automatic detection and 
cue of freezing of gait events provided by ordinary smart devices. We used a deep learning 
approach to detect such events automatically. The test results and the doctors' opinions on 
the practical experience with the patients suggest the benefits of the provided solution. 
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1 Introduction 
Freezing of gait is a common symptom and severe complication, affecting every 
third patient with Parkinson's disease [1]. It is characterized clinically by sudden, 
relatively brief episodes of inability to produce effective forward stepping that 
typically occurs during gait initiation or turning while walking [2]. Parkison's 
disease is currently the second most common neurodegenerative disease [3], and 
many patients suffer from the freezing of gait symptoms. The estimated 
epidemiology of Parkinson's disease shows about 1% of people older than 60 years 
and up to 3% of people older than 80 years [3, 4]. The freezing of gait events often 
leads to falls, which cause serious injuries, significantly decreasing patients' quality 
of life [5]. As many authors agreed, treatment of freezing of gait is a challenging 
task. 
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Currently, medicine offers various ways to treat the freezing of gait, including 
drugs, surgery, and physiotherapy [6]. The most common way is the usage of 
Levodopa, which reduces the freezing of gait events. Unfortunately, this drug may 
cause a severe side-effect called dyskinesia, characterized by unwanted movements 
of patients' body parts [7-9]. Other treatment strategies are dopamine agonist or 
STN stimulation. Instead of many pharmacological strategies to manage the 
freezing of gait phenomena, the gait problems remain persistent for patients with 
Parkinson's disease [10]. 

Medication can effectively manage some symptoms of Parkinson's disease and 
improve the quality of life. However, symptoms like postural instability or gait 
impairments still cause unfortunate limitations [11, 12]. In addition to 
pharmacological methods, physiotherapy has become essential in treating 
Parkinson's disease patients in recent years. Many complications of Parkinson's 
disease are due to patients' muscle weakness, postural problems, and a general 
decline of physical activity [13]. This problem becomes more significant as the 
disease progress and motion abilities are getting worse, which causes the patient to 
have less and less physical activity [11]. 

Various approaches have been developed for gait rehabilitation in recent years, 
including individual, group, or home-based rehabilitation [14]. However, several 
authors agreed that home-based therapy could bring more injuries and falls and is 
ineffective in improving gait or balance [15-17]. An effective way to improve 
patients' walking ability appears in auditory and visual cueing [18]. The cueing is 
based on rhythmic visual or acoustic stimuli applied continuously or on-demand 
[19]. 

It is important to apply low-cost, widely used devices to make them available to 
home users. Mobile smart and wearable devices can be the right choice. Such 
devices are equipped with three-axis accelerometers, which can be used to detect 
the presence of freezing of gait. Anti-freeze aids can be divided into three main 
groups: visual, acoustic, and vibrational (tactile). All of them can be provided by a 
standard smartphone in conjunction with any other wearable device, such as smart 
glasses, smart watches, or headphones. 

The presented paper discusses the possibilities of creating a home system for on-
demand freezing of gait cueing, which can be a cheap and simple-to-use alternative 
to more complex systems. The paper begins with an overview of the related work 
in Section 2. We describe the current knowledge about walking freezes and their 
cueing using different approaches. The following section describes an experiment 
performed with patients to test devices in real conditions. In Section 4, we describe 
model training and the system architecture. Section 5 provides an evaluation of the 
experiments with patients and freezing of gait detection models, followed by 
conclusions of the paper. 
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2 Related Works 

2.1 Cueing of Parkinson's Disease Patients 

The reason why cueing works for Parkison's disease patients is still not fully 
understood. We can help patients using various types of different cues. The main 
idea is to provide sensory cueing based on rhythmic stimuli – acoustic, visual, or 
tactile. We can use simple metronome or rhythmic music for auditory stimulation. 
Usually, in studies, it is metronome beep in various ranges of frequencies from low 
frequencies with about 1 Hz [19] to high frequencies between 60 to 120 Hz [20]. 
Visual cues can be considered a wide range of regular patterns generated by digital 
devices or drawn on the floor [19, 21]. The tactile cues are rhythmic vibration 
impulses applied in low frequencies by wearable devices to any part of the patient's 
body (usually legs) [19]. In 2010, Bachlin and colleagues identified limitations with 
metronome cueing devices, such as those previously reported by Enzensberger et 
al., and Cubo et al. [38, 39]. When activated, these devices continually delivered 
auditory cueing regardless of whether freezing of gait was present or not. Cubo et 
al. identified this design limitation, reporting that patients may become habituated 
to the auditory stimuli, thus reducing the effect of cueing [39]. 

2.2 Cueing of Parkinson's Disease Patients by Wearable 
Devices 

As Sweeney et al. show, many wearable devices for cueing freezing of gait 
symptoms have been built [22]. They found 4480 publications from January 2009 
to December 2018, which contain Parkinson and Cue/cueing in its title. After a 
review process, they selected 18 publications that describe take-home systems for 
cueing Parkinson patients. Most of the reviewed works use continuous cueing, 
applied all the time. In the other cases, the authors provide the system that first 
detects freezing of gait events and applies on-demand cueing. The system usually 
uses more accelerometers placed on various parts of the user's body. One of the first 
works dealing with freezing of gait detection was Moore et al. [27]. The authors 
recorded 46 freezing of gait episodes during the experiment with eleven patients 
with idiopathic Parkinson's disease. Four of the patients does not show any freezing 
event during the experiment. The patients walk up to 100 m (based on their ability 
to walk). The patient's motion has been recorded by a 3-axis accelerometer placed 
on the patient's ankle with a frequency of 100 Hz. The work finds differences in 
dominant frequencies between freezing and regular gait events. The Freezing index, 
defined as a division of the area under the power spectra of 'freeze' band (3-8 Hz) 
by the square of the area under the spectra in the 'locomotor' band (0.5-3 Hz), can 
be then used to detect freezing of gait events. Based on the thresholds of the 
Freezing index, they were able to detect 78% of freezing of gaits events 
successfully, while the system also incorrectly labeled 20% of stand events as 
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freezing of gait by global threshold. Lima et al. in [28] bring a detailed review of 
existing works focusing on freezing gait detection using wearable devices. The 27 
works have been selected from PubMed and Web of Science databases. Four of 
them focus on falls and 23 on freezing of gait. The mentioned works use various 
sensors differently positioned on the patient's body. Only three of the mentioned 
works provide a system suitable for its use at home. The following Table 1 provides 
their overview, with the type of sensors and evaluation of detection results. As we 
can see, all these approaches only detect the events and none of them provide cueing 
functionality. 

Table 1 
Review of articles focusing on freezing of gait detection in the home environment [28] 

Article Sensors Location Results Cueing 

Rodríguez-
Martín [29] 

Accelerometer Waist Sensitivity: 91.7% 
Specificity: 87.4% 

NO 

Ahlrichs [30] Accelerometer Waist Sensitivity: 92.3% 
Specificity: 100.0% 

NO 

Tzallas [31] Accelerometer 
Gyroscope 

Wrist 
Shin 
Waist 

Accuracy 79% NO 

Thanks to the development of wearable visual headsets such as HoloLens or smart 
glasses, it has made it possible to create visual cues using wearable devices. One 
example of the use of HoloLens to guide freezing of gait was presented by Geerse 
et al. [32]. It is a solution called Holocue that displays 2D or 3D holographic 
elements for walking, as shown in Figure 1: 

 

Figure 1 

Holographic cues created by Holocue (source: [32]) 

According to [33], visual signals may be more effective than vibration or auditory. 
However, in [32], authors show that when wearable devices present visual stimuli, 
patients' immediate response generated by wearable devices worsens symptoms. 
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After several sessions, when patients became accustomed to wearing Holocue, the 
negative effect of Holocue disappeared but showed no significant improvement 
compared to control studies [32]. The Holocue solution offers an on-demand launch. 
However, it does not offer freezing of gait recognition, and a voice command 
triggers cueing. In addition to the mentioned solutions using wearable smart 
devices, even simpler solutions are already available. These simpler solutions use 
visual stimuli continuously, consisting of a laser lamp placed on boots or a 
wheelchair, as seen in Figure 2. 

 
Figure 2 

Simple solutions for visual FoG cueing (source: [35, 36]) 

Unfortunately, continuous application of the cues may reduce their performance 
during a time or cause cue addiction [19]. 

2.3 Machine-Learning Algorithms to Freezing of Gait 
Detection 

Lima et al. in [28] state that most freezing of gait detection works with data from an 
accelerometer or inertial measurement unit (IMU) located on the ankle, knee, and 
belt. In addition, some work such as [37] use plantar pressure data recorded from 
users' shoes to detect freezing of gait. Many machine learning algorithms have been 
used to detect the events of freezing of gait. Random forests and Support Vector 
Machines (SVM) show good performance [38, 39]. Recurrent neural networks 
(RNNs) can perform better due to handling time-series data. Long Short Term 
Memory (LSTM) units have been invented to process data streams in neural 
networks. When training with acceleration data from three accelerometer sensors 
located on the knee, hip, and ankle, the network showed 83% accuracy in freezing 
gait detection [40]. Most research focused on participant-dependent models [35, 39, 
40]. When FoG detection is performed on its wearable device, it is severely limited 
by the microcontroller's performance and memory size. Then, filtering, data pre-
processing, and another high-performance task affect the detection time [37].  
The scope of this paper is to overcome the performance limitations of wearable 
devices by using server-side detection. The second point is to improve patient 
comfort with a solution that uses only an ordinary smartphone placed in the patient's 
pocket without additional sensors on the feet or inside the shoe. 
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3 Setup of Aids Prototypes Testing with Patients 
To verify the theoretical information mentioned in the introduction and its usability 
with available devices, we first tested cueing using wearable and smart devices with 
a small group of patients with Parkinson's disease. 

We created a simple mobile application to test acoustic and tactile cues.  
The acoustic cues were applied using wireless headphones. The application makes 
metronome beeps in 60, 90, and 120 Hz frequencies. The vibration of the wearable 
watch has applied tactile cues placed on the patient's legs. It consisted of a short 
interval of vibrations in frequency based on the patient's standard gait period. We 
tried the period of patient native gait frequency, then half and quarter of this period. 

The experiment was performed on the neurological clinic of University Hospital L. 
Pasteur in Košice. Patients were asked to participate in our experiment during the 
regular control visit. Those who agreed made several walks through our test trial 
path. The test trial consists of two walks through narrowed space and making two 
U-turns, where freezing of gait usually appears. The patient stood up from the chair, 
walked 4 meters in the first room, then walked through the door and continued 4 
meters in the second room. After that, patients make a U-turn and continue back the 
same way. In the end, he should make a U-turn. Figure 3 depicts the visualization 
of the testing trial path. The total walk time and the number of freezing of gait 
occurrences were observed during the test walk. The medical specialist has counted 
the freezing of gait events. 

 

Figure 3 

Visualization of the testing trial path walked by the patients 

Tactile (vibration) and acoustic aids have been tested. During the test walk (first 4 
meters usually without freezing of gait event), medical specialists measure the time 
and count the number of steps to get the patient's step period. 

Then we added the smartwatch providing vibration aid onto the patient's wrist or 
ankle (the place with better sensitivity). We tested vibration aid with three periods 
- the base period of the patient's step and the half and quarter period of the steps 
period. The number of freezing episodes and time was measured using these aids. 
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We also tested acoustic aids on the same trial. As mentioned above, the acoustic aid 
was applied using wireless headphones, using simple beeps for selected frequencies 
of 60, 90, or 120 BPM. All these trials provided us with a dataset that showed 
practical usage of relatively cheap and usual devices (smartwatch with vibration 
ability, headphones) as tactile or acoustic cues for actual patients. We show the 
evaluation of the trial's results in Section 5. 

4 Proposed System – Freezing of Gait Detection and 
Final System Architecture 

After testing cues, we had a solid knowledge of how our tactile and acoustic aids 
work for the patients. We were able to design the final system architecture at this 
moment. Of course, we needed to work on a detection algorithm for freezing of gait 
(FoG) events for the final system setup. Therefore, this section describes the details 
on designed deep learning architectures for FoG detection, one of the proposed 
system modules. Then, we also added some details of the final system architecture 
itself. 

4.1 Dataset for Detection of Freezing of Gait Events 

Due to data-gathering issues through the COVID-19 pandemic with our pool of 
patients (testing of cues was shortly before pandemic), we decided to use the 
available dataset to design deep learning architecture to detect FoG events. The deep 
learning models trained on Parkinson's disease patients are expected to be 
transferable to new patients. To design and test the FoG detection algorithm, we 
used Daphnet Freezing of Gait Data Set [41], which contains more than 8 hours of 
walk data from ten patients. Eight of these patients experienced freezing of gait 
events during measurement. The professional physiotherapists identified 237 FOG 
events by video analysis. Three 3-axis accelerometers, placed on the patient's ankle, 
leg, and trunk, recorded data during the walking test trial in the laboratory. Data are 
sampled with a frequency of 64 Hz. Of course, we would like to use standard 
intelligent devices in our proposed system - smartphones, which are usually held in 
pockets. It supports our view to provide a solution as cheap as possible. It means 
that we can then minimize the need for placing any custom sensors. We use only 
data from the trunk sensor that are the same as data from smartphones in the pocket. 
Therefore, we will use only this part of the available dataset for learning, evaluation, 
and application for the deep learning architecture. 

4.2 Deep Learning Architectures for Detection of Events 

Contrary to most available works, we used data only from a sensor placed on the 
leg. This limitation may cause less accuracy of the FoG detection, but brings the 
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pros that users do not need to wear any additional sensors than smartphones in their 
pocket. For FoG events recognition, we designed and tested different deep learning 
architectures. 

For the primary reference on the foundations of neural networks and deep learning 
architectures, follow Goodfellow et al. in [42]. The usual architecture consists of 
some feature extraction and classification parts, where the second one is often 
realized as one or more fully connected feed-forward layers. For the extraction part 
in time series classification tasks, the main architecture types or elements within the 
neural network area include: 

 Convolutional layers – a type of architecture often used for features 
extraction in image recognition extraction, but in a 1-D setup are also used 
to identify features from time series. Convolution 1-D layers are suitable 
for identifying local changes in time series. 

 Long Short-Term Memory (LSTM) – recurrent network architecture for 
time series sequence learning, significantly better in learning longer 
relations between the elements within the series. Several extensions of the 
approach, like bidirectional LSTM, enhance features extraction from time 
series windows in both directions (forward and backward in time). 

 Specific layers for preprocessing features – in time series, there are often 
some specific operations that are useful for extracting features, e.g., 
Fourier transformation, which helps for the analysis of frequencies. Such 
processing elements can also be applicable as a layer within the 
architecture [43]. 

 Hybrid architectures – a combination of previous architecture types 
(elements) within the one network. 

We decided to combine such elements with another architectural idea used to 
improve classification and scalability in our work. It means that we combine parallel 
blocks within the architecture (with different setups in every block), producing one 
concatenated feature vector, followed by a fully connected part for final 
classification. This combined approach helps the classifier to enhance its granularity 
and robustness. The main idea comes from inception models from Google for more 
complex networks, which were introduced in [44], but we applied the principle for 
smaller networks. The main advantage of such architectures is that information is 
processed on different scales simultaneously within parallel blocks and their 
features are aggregated for one feature vector, which leads to better classification 
results and robustness of the models. We had a good experience with such 
architectures in other works in the domain of astrophysics, where we used it to 
classify eclipsing binary stars [45] or radio galaxies [46]. 

In the modeling phase, we used ReLU activation function in hidden layers and 
softmax for the output layer. We used categorical cross-entropy as a loss function 
and SGD as an optimizer. We compared four architectures to find the best for our 
purposes: 



Acta Polytechnica Hungarica Vol. 20, No. 2, 2023 

‒ 173 ‒ 

 CNN model – contains three parallel CNN (Convolutional Neural 
Network) blocks of layers with an input batch of 64 samples, each with 
three values. The CNN layers differ in the number of filters (20, 40, or 50). 
The output has two neurons with a soft-max activation function. 

 CNN + LSTM model – has two parallel flows. One with CNN layer and 
the second with bidirectional Long Short-Term Memory layer. 

 2xCNN + LSTM model – has three parallel flows. One block contains a 
bidirectional Long Short-Term Memory layer, and the second and third 
blocks contain the CNN layers. Same as in the first model, CNN-based 
blocks differ in the number of filters in layers. 

 Fourier + CNN – adds to CNN model Fourier transformation as a pre-
processing layer. Moore et al. in [27] found the importance of Fourier 
transformation in the detection based on frequency analysis. 

4.3 Final System Architecture 

It is essential to combine all the aspects mentioned above for practical application. 
Therefore, we proposed a cloud-based recognition system that connects acoustic or 
tactile aids. The cloud-based system enables the online model upgrade. The system 
consists of a mobile device as a sensor and an actuator for aids. As the first step, it 
is needed to label test data for a user, and then the system is able to work by itself. 

Figure 4 

High-level architecture of the proposed system 

Thanks to cloud-based messaging, the system may change the recognition system 
without changing any client application running on the user device. Figure 4 depicts 
the high-level architecture of the system. 

  1. Data collection 

3. Cue activation 

2. FoG detection 
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The solution can be divided into two parts: server and client application. The client 
application runs on a smart device, which can be easily held in the patient's pocket. 
Because the recognition algorithm was developed for 64 Hz data, the mobile device 
must be compatible with the need for an acceleration sensor with a frequency of at 
least 64 Hz. According to the Android 12 Compatibility Definition document [47], 
it is strongly recommended that Android phones include an accelerometer sensor, 
which (if included) must provide data with a frequency of at least 100 Hz.  
The second requirement for the device is a functional internet connection. When no 
internet connection is available, the application does not offer a recognition feature. 

The task of the client application is to record data from the accelerometer at the 
required frequency (for the presented models, it is 64 Hz). The recorded data are 
aggregated and sent as one batch (size N) to the server. FoG cueing is activated 
depending on the server response. After each N / 2 measurement, the batches are 
sent to improve performance and reduce response time. It means that for a batch of 
64 samples (1 second at 64 Hz), we send data to the server every 32 new samples. 
One batch consists of N / 2 rows of old data (data used in the previous recognition), 
followed by N / 2 rows of new data. This halves the recognition time delay. 

The server application uses a cloud platform as a service (PaaS) solution from a 
local provider running the Ubuntu operating system. The application is written in 
NodeJS and offers a Rest API. The Rest API offers a POST method at [host]/fog. 
The method accepts a json file containing the person's id and a recorded data, as the 
following code example shows: 

{ 
    "person":12, 
    "data": [ 
        [202,1803,386...], 
        [292,1598,-49...], 
        ..... 
    ] 
} 

The server provides a simple answer, containing a flag if the batch is FoG or not: 

{ 
    "fog": true 
} 

 

After the API method is called, the server receives the data and evaluates the model. 
The machine learning operations run using the TensorFlow JavaScript machine 
learning solution. According to the person ID sent in the actual request, the correct 
TensorFlowJS model is loaded and evaluated using predict function applied to 
received values. 
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The solution with presented settings (64 Hz frequency and batch of 64 samples) 
creates requests up to 1.2 KB. The application makes two calls in one second.  
It creates a maximum of 2.4 KB (19.2 Kb) network traffic per second. This 
requirement can be met with huge reserve by the current mobile networks. If the 
number of clients connected to the server raises the required performance of the 
server application, it could be easily scaled thanks to using a SaaS cloud service. 

5 Results and Evaluation 
The success of the presented solutions depends on two of its abilities. The first is to 
provide cueing that effectively reduces the number of freezing of gait (FoG) 
episodes, shortens FoG time, or helps overcome it. The second is the use of a 
machine learning algorithm that is efficient enough to recognize an FoG episode 
and provide on-demand guidance. 

5.1 Evaluation of Wearable Aids Testing 

Eleven patients ‒ four women and seven men with an average age of 66.44 years 
took part in the experiment. The average duration of patients' disease has been eight 
years. The acoustic and tactile cueing has been tested. Due to the motion limitation 
and fatigue, patients usually do not finish all tests. Two patients show no FoG events 
during the test walk. We excluded these patients from the evaluation. 

We observed improvement in total walk time and the number of freezing of gait 
events during the test. The average total time of walk without any cueing was 42,43 
± 19,43 seconds, and the average number of FoG occurrences was 1,95 ± 1,27.  
As we mentioned before, the acoustic cueing was tested with three frequencies - 60, 
90, and 120 BPM. There was a decrease in the number of FoG events and total walk 
time in all tested frequencies, leading to smoother and safer walks of the patients. 
The average reduction of occurrences of FoG events was about 60% in all three 
tested frequencies. However, the frequency of 120 BPM shows the best results in 
walking speeds (23,03%). Table 2 shows an overview of the results of acoustic aids. 

Similarly to acoustic aids, we tested vibration aids on three different frequencies. 
The basic level is the patient's base step frequency (p). Then, the tested frequencies 
are p, p/2, and p/4. The number of tested subjects was lower than in acoustic aids 
testing. The main reason is that some patients had problems with sensitivity.  
We also issued problems with their fatigue after the previous testing. Table 3 depicts 
the results of the testing. We achieved the best results with the frequency of p/4, but 
only two people took part in the test with this setup. These people were patients in 
good conditions who were able to take part in all tests. The good health conditions 
of patients may affect the results. However, generally, we can see that vibration aids 
can significantly decrease the number of FoG events by at least 80%. 
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We can see different numbers of tested subjects for various frequencies. During 
experiments, not all patients could finish all experiments due to their physical 
abilities – fatigue or other complications. In these cases, we had to end 
measurements earlier. That caused the different number of patients in columns in 
Table 2 and Table 3. Average walk time is calculated from times for users who took 
part in the experiment with the required frequency. Average walk time with aids 
can be calculated as "Average walk time T" plus "Average decrease of T". 

Table 2 

Results of acoustic aids testing 

 60 BPM  90 BPM 120 BPM  

Number of tested subjects 5 8 6 

Average walk time – T (seconds) 28,03 36,78 25,26 

Average decrease of T (seconds) 2,51 5,63 7,35 

Average decrease of T (%) 9,30 11,25 23,03 

Average decrease of FoG (occurrences) 1,60 1,56 2,25 

Average decrease of FoG (%) 64,28 62,50 58,33 

Table 3 

Results of vibration cueing 

 p  p/2 p/4 

Number of tested subjects 5 5 2 

Average walk time – T (seconds) 34,12 35,21 26,23 

Average decrease of T (seconds) 2,99 1,86 2,76 

Average decrease of T (%) 5,88 2,45 11,09 

Average decrease of FoG (occurrences) 1,4 1,4 1,5 

Average decrease of FoG (%) 80 80 100 

Due to the results of experiments, and according to theoretical background known 
from the literature, the designed acoustic and vibration aids show their usability for 
the proposed system. 
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5.2 Evaluation of FoG Recognition Algorithm 

To evaluate FoG recognition models based on deep learning architectures, we used 
the following metrics: 

 Accuracy = (TP+TN)/(TP+FP+FN+TN). It's the ratio of the correctly 
labeled subjects to the whole pool of subjects. 

 Recall = TP / (TP+FN). Recall (sensitivity) is the ratio of the correctly 
positively labeled subjects by our models to all truly positive subjects. 

 Precision = TP / (TP + FP). Precision is the ratio of the correctly positive 
labelled subjects by our models to all positive labelled subjects. 

 F1 score = 2 * (Precision * Recall) / (Precision + Recall). It is the 
harmonic mean of the precision and recall. 

where: 

 TP – True Positive - event marked as FoG is really FoG, 

 TN – True Negative - event correctly marked as normal gait, 

 FP – False Positive – event marked as FoG, but is normal gait in reality, 

 FN – False Negative – event is predicted to be normal gait but is FoG in 
reality. 

The accuracy metric may be misleading for the unbalanced dataset. The freezing of 
gait (FoG) appears as a relatively short episode, interrupting the long duration of 
normal gait. Due to it, FoG datasets are strongly unbalanced. For practical 
application, the most crucial metric is recall. We considered as important to mark 
data batch as FoG also when it sometimes is marked as a false positive. In addition, 
we also considered precision and F1 score to take into account. The results showed 
significant differences between patients. Table 4 depicts personalized results for 
five selected patients from the dataset (who offer enough records). 

Table 4 

Personalized metrics of FoG class detection for every type of model. Bold marked numbers are the best 

results for five patients (S01-05). The results are considered for every batch of data separately. 

3xCNN recall precision F1 

S01 38% 62% 47% 

S02 62% 88% 73% 

S03 50% 72% 59% 

S05 39% 48% 43% 

S07 7% 27% 11% 
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CNN + LSTM recall precision F1 

S01 36% 63% 46% 

S02 63% 88% 73% 

S03 51% 73% 60% 

S05 21% 46% 29% 

S07 5% 40% 8% 

2xCNN+LSTM recall precision F1 

S01 51% 52% 52% 

S02 62% 90% 73% 

S03 61% 71% 66% 

S05 30% 46% 37% 

S07 12% 62% 20% 

Fourier + CNN recall precision F1 

S01 72% 40% 52% 

S02 44% 96% 60% 

S03 56% 68% 61% 

S05 57% 50% 53% 

S07 21% 32% 25% 

If we choose the same model architecture for all users, the average recall will be 
about 50%. However, if we use a personalized architecture and model with the best 
results for each user, we may achieve an average sensitivity of 55%. One of the 
problems with learning models and evaluation of results per batch is the small 
proportion of FoG events for patients in their data stream from the sensor. It varies 
from 5%-24%, where worse results are for the more imbalanced dataset because 5% 
means that only a small amount of batches had detectable events. It is especially a 
problem for S07 patient's data. For other patients, the average recall is better. While 
our solution shows lower sensitivity than other works, the deeper analysis showed 
some promising details: 

 Again, it is essential to mention that we use only one sensor compared to 
the three used in most other works. Therefore, we provide a cheaper 
alternative for detection combined with an eventual type of aid (acoustic 
or vibration-based). 
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 For more balanced streams of data in the learning process, from patients 
with more than 15% and/or higher number of events in general, average 
recall of their personalized models for FoG batch detection is at least 65%. 

 In a practical setup, FoG events in batches are not uniformly distributed 
but combined within one longer event (episode – more batches during 
some time). It means that there are more FoG batches in real life near each 
other, and with an average of 65% recall, it is possible to detect at least one 
FoG batch during the actual FoG event of a patient. 

Especially the last observation has an important impact on practical 
implementation, when the achieved sensitivity for particular batches may be 
sufficient for the final usability of the system. It is important to note that the 
algorithm evaluates many batches during a single real-life FoG event (e.g., 20 
batches for a 10 s FoG event). Figure 5 shows an example of five freezing events 
with a number of batches during every FoG event. One rectangle illustrates one 
batch as a one-second interval. The intervals overlap by 500 ms, increasing the 
number of batches and decreasing detection delay. 

 

Figure 5 

Test API calls for cueing with sample data from one of the patients for his FoG episodes. All rectangles 

are data batches recognized as FoG events by annotators. For every freezing event (even for their 

different length), our algorithm has several correct FoG detections, and API will start cueing the patient 

successfully. 

In practice, we need to detect at least one of the first few batches during the FoG 
event to help overcome it for a workable solution. To try the performance in real 
conditions, we tested the system by calling created API function with sample data 
from the dataset. We found out, that in all of the FoG events, more than a half of 
batches in the event have been marked as a FoG. The visualization for one of the 
patient and his five freezing episodes is available in Figure 5. Thanks to detection 
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of at least some of the batches from the start of the episode as FoG, our system will 
start cueing the patient after the first detection. Moreover, for most freezing 
episodes, the first detection is in one of the first batches, usually less than 1-2 
seconds. Therefore, the presented solution will help the patient during the FoG 
episode with the current technological setup and detection algorithm while 
providing a cheaper solution for the system's sensor and cueing parts. 

Conclusions 

We proposed the system combining smart and wearable devices for detection of 
freezing of gait events of Parkinson's disease patients and their cueing using simple 
acoustic or vibration aids. Our experiments have shown that we can significantly 
improve walkability for patients suffering from the freezing of gait symptoms and 
improve their quality of life. The proposed system is one of the solutions to make a 
practical system based on cheap devices, which took part of life for almost 
everyone. Our detection algorithm has some limits, but it can still detect freezing of 
gait episodes soon after starting with only one sensor in mobile devices. It is the 
more convenient solution for patients because they only need their mobile devices. 
The medical assistant, who helped us with the experiments with patients during the 
experiment, also provided us with his feedback on the potential of the proposed 
solution: "…in comparison of acoustic and vibration aids, acoustic aids were more 
convenient for application and more convenient for patients. In the future, I would 
welcome the opportunity to install the application on a mobile phone for every 
patient with a stronger freezing of gait to improve their quality of life." 
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