
Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 65 –

Coping with Security in Programming

Frank Schindler
Department of Applied Computer Science and Engineering
Faculty of Electrical Engineering and Information Technology
Slovak Technical University, Iľkovičová 3, SK-812 19 Bratislava, Slovakia
e-mail: frank.schindler@stuba.sk

Abstract: This article deals with importance of security issues in computer programming.
Secure software can only be designed with security as a primary goal. To achieve that we
would have to redesign our computer systems with security in our mind including entire
computer environment, e.g. hardware, programming languages and, of course, operating
systems. In software development process the quality of resulting computer code should be
the most important aspect during the whole program development process. Simplicity of the
code in computer programs always pays off. Extra options and features can result in
unmanageable complexity. For computer security purposes, program modularisation is of
a paramount importance and seems to be the only way how to properly cope with
complexity. Internal consistency of the whole program should be frequently checked via
assertions. They are the best way to check parameter validity coming from other program
units e.g. modules. Especially each module must distrust everything else coming from other
modules and/or from the user. Frequently used code optimisations are classically leading
to some sort of redundant code options and features and thus indirectly causing a useless
code complexity. Extensive testing of programs is necessary for finding possible bugs in
programs. However it does not locate security holes in the system. Standard software
implementation techniques are completely inadequate in the production of a secure code.
Consequently an introductory programming course as a college course should be taught in
parallel with introductory security of computer systems, since it is too late to teach it as an
elective at the end of computer science curriculum. In general, security of computer
systems and programming should not be separated as two different and separate
disciplines instead of it they should be integrated together.

Keywords: security of computer systems, principle of least privileges, lack of functionality,
module, module's specification, module's implementation

1 Introduction
Standard software development techniques are completely inadequate to create
secure software, since they only deal with correctness of software e.g. with its
specified functionality. If you press the key A, then action B will happen.

F. Schindler Coping with Security in Programming

 – 66 –

Consequently a correct program behaves exactly according to its specification. On
the other hand, secure software relates to a lack of functionality (see [3]). No
matter what the user (attacker) does, he cannot do action X. It is possible to test
the functionality of a program, but there is no known way to test the lack of it.

In real life situations, there are many different ways a computer program can be
made to fail or crash. Often this may be easily achieved when the user (attacker)
provides invalid input either on purpose or by an accident. Deliberate actions on
the side of the user could also include feeding the program with viscous data.
Programs react on such inputs in various ways. Some of them simply fail without
any error messages, others act incorrectly, and yet others crash the whole
operating system. A program that crashes the whole system is unacceptable above
all in the computer security area, because it may be possible leading to some sort
of security breach. Therefore development of secure software is sufficiently
different from programming other software applications. Common program's bugs
(e.g. buffer overflows) are the most serious security problems in today’s computer
systems. To be more specific the biggest problem in computer security is related
to the weakest link property. In old days of computing a programmer received a
task to be performed, went away and developed the whole program alone.
Nowadays programs for complex tasks are programmed by a team of many
different programmers that can produce millions of lines of code. The level of
output of such a typical programmer involved in the team is on average only 5 or
10 lines of code per day. Large programs require precise design documents
showing what each piece of code does and how it interacts with the rest of the
program. Bug-free code is duty for all developers on the team, therefore they have
to be involved in peer design reviews and peer code reviews. When a programmer
finishes a particular part of code other team members must make a complete walk-
through of the programmer's design and/or code. Basic principles of software
engineering advocate to write small, self-contained program units called modules.
Each module should be isolated from harmful effects of other modules. This can
be achieved via information hiding (encapsulation). Secure programming implies
that each program's (or subprogram's) actions must be contained in the program's
specification. To write safe and sound programs we should stick to three basic
principles: information hiding, defensive (robust) programming, and assuming the
impossible.

2 Information Hiding (Encapsulation)
A module often specifies and implements an abstraction (see [4]). The module’s
specification describes the behavior and properties of the abstraction, and the
module’s implementation contains the concrete realization in the program code.
Effective programming also takes advantage of reusing existing code libraries
and/or off-the-shelf (reusable) components. Each well-designed module should

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 67 –

encapsulate (group and hide) private/public data and the code bodies. Moreover
the module should provide well-defined interfaces through which the program can
access or modify module's data. Any undocumented, unspecified code options,
side effects or function definitions may result in a covert channel or trap door
(back door) through which data could either leak, or be changed or damaged and
thus they could pose a severe security problem. Most of these ideas are a direct
consequence of the "Principle of Least Privilege" and they form the basis for
program code integrity and security. During the whole process of the program
specification, design, implementation, testing and maintenance keep in mind that
simplicity always pays off.

3 Defensive Programming
It is based on the idea that the given program, being executed, should not depend
on anything that is not self-created in the program. Every time when a user
(attacker) is running the program the programmer must suppose that the user may
break it either intentionally or unintentionally by providing flawed input to it.
Therefore, insert into your code as many of assertions as possible to catch
erroneous data flowing from function (module) to the other function (module). By
no means: "garbage-in garbage out". That would be fatal. On the other hand the
programmer should never abuse the features of the given programming language
like pointers. Especially de-allocation of pointers is a very dangerous operation
often leading to dangling pointers. On the other hand, if a pointer is returned by a
function it allows illegal access to program's data (data leakage vulnerability).
Also the same holds for array indices. Another potential weakness may relate to
error codes returned from the functions. When they are left unchecked the values
returned from the function should not be used, because they could act as a
destructive trash when they are used as input for rest of the code. Avoid use of
cryptic code or extra features and options of the programming language that only
very few programmers know and use. Technique of defensive programming is
often referred to as "robust programming" (see [1]).

4 Assuming the Impossible
Module's specification should be used as a document against which the program
should be tested after it has been finished. Without it there is no rigorous way to
describe what has been accomplished in the program. Consequently it has to be
complete and up-to-date. Let me rephrase it. Anything that is not in there does not
have to be implemented in the code. Programmers first write a program and then
they test it to see if it functions correctly. Then, if any bugs are found they fix

F. Schindler Coping with Security in Programming

 – 68 –

them and try it again. This process cannot lead to a completely correct program,
since this way we are unable to show absence of bugs. Such a program usually
works fine in the most typical situations. To verify that a program is correct is way
over our capabilities today. Nevertheless we can try to do our best when we are
testing programs. Generally, two types of tests are needed. The first one should be
generic one made from the module's specification. The second set of tests should
examine module's implementation limits, e.g. buffer management errors. Perhaps,
designing, writing and testing of a secure computer program could be best
compared with driving the car on the busy highway. Programming language, we
are using, should never be misused the same way as the car. Defensive driving is a
counterpart of defensive programming in this case. Some features like pointers
should be used with caution the same way as when we are riding the car we must
anticipate that anytime there could be a cat or some other animal running from
behind the bush into our way. Therefore numerous assertions should be embedded
in the source code in order to improve the quality of code. Anytime in the program
there is a possibilities to check the internal consistency of the system you should
include an assertion. If it fails it can abort the program and report what was going
wrong. This way it is possible to catch up a lot of errors from which some of them
could lead to a serious security breach. Producing wrong answers in the program
can do a lot more harm. Do not allow garbage data to propagate freely through
your program! In order to illustrate some basic concepts, here I provide a few
short and simple examples concerning secure programming. Remember that most
computing errors happen exactly in cases like these.

5 Programming Examples

5.1 Buffer Overflows
int i = 0;

int a[10]; // Here, buffer is allocated as an array made of 10 integers

....

i = 11; // index i is set over the upper bound of the array

a[i] = 1;

....

// Buffer overflows cause about 50% of the security problems on the

// Internet (Ferguson, 2003). Algol 60 solved this problem!

// However C, C++ allow buffer overflows!

// Solution: Avoid any such language for secure applications!

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 69 –

5.2 Missing Initialization of Variables
#include <stddef.h> // for NULL

...

int *ptr; // int *ptr = NULL;

...

free(ptr);

// here a pointer is declared, that has not been allocated, but it is de-allocated. //
This leads to a typical situation in which operating system can crash.

5.3 Cryptic Code
char *p1, *p2;

...

while (*p1++ = *p2++)

 ;

// *p1++ is equivalent to:

// *(p1++) it is a unary operator...right to left

5.4 Program Ignoring Error Messages
const int NO_ERROR = 0;

....

int One_Function(char ch, char *ptr);

int err_Message;

char u, v;

....

err_Message = One_Function('?',&v);

u = v;

// it should be: if (err_Message == NO_ERROR) u = v;

5.5 Missing Null-Condition Restrictions
int a[5]; // stack is represented as an array made of 5 integers

int top = -1; // this condition means the stack is empty

...

F. Schindler Coping with Security in Programming

 – 70 –

i = pop(); // trying to pop the top element from an empty stack

// it always must be:

if (top != -1) // see if the stack is non-empty and then pop

 i = pop();

5.6 Dangling Pointers
#include <stddef.h> // for NULL

...

int *ptr1 = new int;

int *ptr2 = new int;

*ptr2 = 42;

*ptr1 = *ptr2;

delete ptr1; // avoid an inaccessible object

ptr1 = ptr2;

delete ptr2;

// Notice a missing assignment:

ptr1 = NULL; // avoid dangling pointer

5.7 Assertions
#include <assert.h>

// C++ standard library providing executable assertions

.....

double FindAverage (int sumOfScores, int studentCount)

// Precondition:

// sumOfScores is set

// studentCount > 0

// Postcondition:

// average = sumOfScores / studentCount

{

 double average = 0.0;

 assert (studentCount > 0);

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 71 –

 // this function halts the program if the expression is false

 average = sumOfScores / studentCount;

 return average;

}

5.8 Work with Library Functions
It seems to make a perfect sense to ask students to write a program calling some of
the standard input/output library functions in C. Their task is to feed them with
such an input, that will crash the whole operating system. When that happens they
should use debugger to see why the system collapsed.

Example:

char a, b, c, s[10];

int n;

double x;

scanf ("%c%c%c%d%s%lf", &a, &b, &c, &n, s, &x);

As a direct continuation of this assignment students should be asked to write a
robust scanf function in C of the same type.

Examples of this sort could be quite useful during the lab sessions associated with
the corresponding face-to-face lectures!

5.9 Paradoxes – Testing the Impossible (Variant of "Y2K
Bug")

An insurance company offers a life insurance to its clients based on their age. It
uses a program reading from a file a list of people consisting of the name and year
of birth per line. The year of birth is a two-digit item. Assume we are in 20th
century and today we have the first day of January 2000.

Age of the person born in 1925 can be obtained as:

"00" - "25" = -25 years.

Conclusion

Software manufacturers are used to sell their products with many known bugs and
therefore they disclaim any legal liability for using their merchandise in the
corresponding software license. For some applications like computer games this is
not a real problem. However computer programs are more and more used
everywhere in our lives. Standard implementation techniques are completely
inadequate to create robust software. Software security can be guaranteed only if

F. Schindler Coping with Security in Programming

 – 72 –

all program parts do their job. Low-quality code is the most common cause of real
world attacks, and should be avoided. A secure program may just be written by
the sound technique of defensive (robust) programming coupled along with
information hiding provided it has been tested thoroughly. The mission to test
large programs with millions of lines of code is almost impossible. Only
thousands (or millions) of users might test it exhaustively. In college
programming courses the special attention should be paid to the secure design,
implementation and testing of programs systematically. It is not enough when a
program runs satisfactorily for correct data only. Moreover secure programs
should not cause any unnecessary vulnerability such as information damage,
leakage or data diddling by strictly adhering to "Principle of Least Privilege" and
information hiding. Although this approach is not going to solve all security
problems lurking on us in our programs it could lead to programs that are better
structured, better tested, better thought of and at last more secure. The only
imaginable way to make secure software would be to redesign our entire computer
environment, including hardware, programming languages and operating systems
with security as a primary goal in our mind. And, that is time consuming and
costly.

References

[1] M. Bishop, D. Frincke: Teaching Robust Programming, IEEE Security and
Privacy, published by IEEE Computer Society, Vol. 2, No. 2, (2004) pp.
54-57

[2] M. Blaha: A Copper Bullet for Software Quality Management, Computer
published by IEEE Computer Society, Vol. 37, No. 2, (2004) pp. 21-25

[3] N. Ferguson, B. Schneier: Practical Cryptography, Wiley Publishing Inc.
Indianapolis, Indiana, (2003) ISBN 0-471-22357-3

[4] M. R. Headington, D. D. Riley: Data Abstraction and Structures with C++,
D. C. Heath and Company, Lexington, MA, (1994) ISBN 0-669-29220-6

[5] N. R. Mead: Who is Liable for Insecure Systems? COMPUTER published
by IEEE Computer Society, Vol. 37, No. 7, (2004) pp. 27-34

[6] S. Meyers: Effective C++: 50 Specific Ways to Improve Your Programs
and Designs, Addison-Wesley, Reading, Massachusetts (1997)

[7] C. P. Pfleger: Security in Computing, Prentice-Hall International, Inc.,
Upper Saddle River, NJ, (1997) ISBN 0-13-185794-0

[8] F. Schindler: Coping with Safe Programming, Proceedings of Conference
"I & IT 2004", Banská Bystrica, Slovakia, (2004) pp. 142-145, ISBN 80-
8033-017-7

