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Abstract: For students learning the simplex method of linear programming it is a well-
beloved occasion to solve the so-called transportation problem by the method of 
distribution. This method is simple to calculate and easy to follow. The simple way of 
solution suggests that its correctness may be proven by basic means. This paper has two 
main aims. One of them is to present the problem and to solve it by basic means. The other 
one is the analysis of the so-called array-bases defined for this reason. In case of a 
transportation problem m stores and n destinations are given, and the goods have to be 
taken from the stores to the destinations such that the cost of transporting has to be 
minimal. The unit costs of the transportation are given by an array. In the solution some 
routes (elements of the array) are chosen and the number of units to transport there is 
given. It will be proven that the routes for the optimal transportation compose a basis, and 
the solution is also achieved by those through the searches. (The basis of an m n×  array 
consists of 1m n+ −  elements such that they do not span a loop.) In the proof some 
characteristics of the bases are needed, for example that the number of them is finite. To 
prove this it is enough to give an easily calculated upper bound, the exact value is given in 
the appendix. As an extra result of this calculation some interesting formulas of 
combinatorics are also proven. 

Keywords: transportation problem, linear algebra, bases 

1 Basis 

When solving a transportation problem, a rectangular array of entries (elements) 
of size m×n (an m×n matrix) is used. In the course of setting up the initial 
program, we assign certain elements, then change some of the assigned elements 
by specified rules. The algorithm is a special, graphic version of the simplex 
method. We can thus find an explanation of the steps to be made by studying the 
simplex method. ([1], [2].) The rules, however, can be proved without the 
“simplex background”. The purpose of the present paper is to show this 
elementary proof. 
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The statements in the first chapter do not even need the definition of transportation 
problem (they make sense in themselves), but they seem to be useful in the 
following chapters. First of all, let us define some concepts. 

Definition 1.1: Two entries of an array are row-adjacent [or column-adjacent], if 
they are in the same row [or column]. In both cases they are adjacent.  
A sequence of entries is called a chain, if adjacent entries follow each other. A 
chain is closed, if its first and last entries are adjacent. 

Definition 1.2: A loop is a closed chain such that  
• it contains more than 2 entries;  
• consecutive entries are row- and column adjacent in turn;  
• there is no repetitive entry in it;  
• there is no repetitive row or column in it. 

Before the following statement we note that a closed chain can be specified by 
listing its elements in several ways, and any of its elements can be chosen as first. 
The lemma will be used in the present chapter. 

Lemma 1.3: Suppose that a closed chain is given such that its first element occurs 
only once in the chain, the second element is row-adjacent [column-adjacent], the 
last element is column-adjacent [row-adjacent] to it. Now by omitting some other 
elements of the chain, it can be reduced to a loop. 

Proof: Let us follow the next procedure. Go along the closed chain three times 
(always starting with the first element), and omit some elements every time 
according to rules I, II and III.  
I) If there are more than two row-adjacent [column-adjacent] consecutive entries, 
remove the middle ones and take the last one right after the first.  
II) If we return to a point where we have been before remove the piece in between. 
If we arrived to the repetitive entry from a row [column] for the first time and 
from a column [row] for the second time, omit the entry itself, and the row-
adjacent [column-adjacent] entry that preceded it for the first time has to be 
followed by the row-adjacent [column-adjacent] one that comes after it for the 
second time. As the first element occurs only once in the chain it cannot happen to 
be removed.  
III) If we return to a row [column] where we have been before, then the first entry 
of the first occurrence has to be followed by the second row-adjacent [column-
adjacent] entry of the second occurrence. The piece of the chain in between has to 
be removed. (Applying rule II assures that these entries are different.)  
Complying with the rules above assures that the remaining closed chain is a loop. 
When solving a transportation problem by distribution, we assign some routes to 
the initial program, and perform the transportation along these routes. The 
respective entries of the matrix are called tied elements. Thereinafter we are going 
to formulate and prove statements concerning tied elements. Let 2,2 ≥≥ nm  be 
integers. There is no distinguished role of rows and columns as compared to each 
other, thus every rule is valid by interchanging m and n. 
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Definition 1.4: A basis of an m×n array is 1−+ nm  tied elements such that they 
do not span a loop. 

Lemma 1.5: Every array contains a basis. 

Proof: We prove by induction.  
In an array of size 2×2, every 3 of the elements are suitable, obviously. 
If an array is of size k×g, an adequate choice contains 1−+ gk  tied elements. 
Insert a new row [a new column] somewhere, and attach an arbitrary element of 
the new row [column] to the tied elements. Now we have an array of size 

gk ×+ )1(  [ )1( +× gk ] with gk +  tied elements. These elements do not span a 
loop as the original elements had not spanned one, and the new element cannot be 
a part of any loop because it is not row-adjacent [column-adjacent] to any of the 
elements. Thus, by starting off from a 2×2 array, and inserting 2−m  rows and 

2−n  columns in arbitrary order, we obtain an array of size m×n with 1−+ nm  
tied elements. 

Definition 1.6: The critical number of an m×n array is 1−+= nmq , i.e. the 
number of tied elements needed for a basis. 

The basic properties of bases will be declared in the next lemma; it will be 
referred to later in this paper. 

Lemma 1.7: An m×n array and one of its bases are given. They have the 
following properties:  
1) There exists such a row or column which contains exactly one tied element, i.e. 
there is a “one-element” row or column; and there is no row and column without 
any tied element, i.e. there is no “empty” row or column.   
2) A chain along tied elements can be drawn between any two elements of the 
basis. 

Proof: 1) We prove first that there is such a row [column] which contains at most 
one tied element. Sum up the tied elements in every row and column. As any 
element occurs exactly in one row and in one column, the total will be 

222)1(2 −+=−+ nmnm . If every row and column contained at least two tied 
elements, the total would be greater than or equal to nmnm 222)( +=⋅+ . Thus 
there are (at least two) rows or columns which contain at most one tied element. 
Now we go on with proving the statement itself. In case of arrays of smaller size 
(e.g. of sizes 2×2, 2×3, i.e. if 4≤q ) it can be easily seen that it is true for the rows 
and columns of any basis: there is a one-element row or column, but there is no 
empty row or column among them. Suppose indirectly that the theorem is not 
always valid. Take a counter-example such that q has the smallest possible value, 
i.e. for any array that has a critical number less than this, the theorem is valid. 
Three cases have to be investigated. It cannot happen that the counter-example 
does not contain any row or column with less than two elements: it was shown at 
the beginning of the proof. If among the rows and columns of the counter-example 
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there is an empty one, as well as one that contains exactly one element, remove 
the latter (thus the critical number decreases by 1). The remaining elements form a 
basis for the remaining array, as they do not contain a loop and they are of a 
sufficient number. This is a contradiction, as we have constructed a basis 
containing an empty row in an array of such size where it is not possible according 
to our assumption. If among the rows and columns of the counter-example there is 
not any that contains one element, but there is an empty one, then there must be 
two empty rows or columns, according to the beginning of the proof. Now remove 
an empty row or column and an arbitrary element. Now we have got to a 
contradiction again as at least one empty row or column remains. It is important to 
note that in case of a counter-example of two rows [two columns] the imagined 
removal does not lead to an array of one row [one column] (we do not deal with 
these cases thus the indirect assumption does not apply to them). This can be 
explained by the fact that an array of two rows [two columns] must contain a 
column [row] with exactly one tied element otherwise there would be a 4-element 
loop, as 4≥q .  
2) We show first that every tied element is adjacent to at least one element. 
Suppose indirectly that there exists a tied element with no adjacent element. Now 
remove its row [or column, as you like]. The remaining tied elements form a basis 
for the remaining array, still, it has an empty column [row], namely the column 
[row] of the omitted element. This contradicts property 1.  
The proof is done by induction applied to the critical number of the array. In case 
of an array of size 2×2 and its 3-element bases (i.e. for 3=q ), it is obvious that 
the tied elements form a chain. Suppose that in case of rq = ( 3≥r ) a chain can 
be drawn between any two tied elements of the basis. Now take an array and a (q-
element) basis of it, for which 1+= rq . Remove temporarily one of its one-
element rows [columns], such that the number of rows and columns be at least 
two. (This is possible, as shown above.) The remaining tied elements form a basis 
for the array left, thus according to the induction hypothesis a chain can be drawn 
between any two tied elements of the basis. The removed tied element did not 
have a row-adjacent [column-adjacent] element, thus as shown above, it must 
have had a column-adjacent [row-adjacent] element, that is part of the new basis. 
Now put back the removed row [column]. It only has to be proved that there is a 
chain between the removed (then returned) tied element and any other tied 
element. This chain can be found by stepping to the column-adjacent [row-
adjacent] element from the removed (then returned) element, from there any 
further tied element can be reached along a chain, according to the above and to 
the induction hypothesis. 

The question may arise how much a basis is characterized by these properties, e.g. 
whether they are definitive or not. Property 1 is not sufficient for q elements to 
form a basis. (It is easy to find a counter-example: take the elements with the 
following indices of a 33×  array: )3,3(),2,2(),1,2(),2,1(),1,1( ). On the other 
hand, it is not true either, that there cannot be found less than q elements such that 
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this property holds. (Counter-example: take the elements with the following 
indices of a 33×  array: ))2,3(),2,2(),3,1(),1,1( . 

Definition 1.8: In an array, a set of assigned elements is dependent, if a chain can 
be drawn between any two elements; it is spanning if every row and column 
contain a member of the set. 

Theorem 1.9: If a set of q assigned elements of an m×n array is dependent and 
spanning, then these elements form a basis. 

Proof: In an array of size 2×2 (i.e. in case of 3=q ) any 3 of the elements form a 
basis, thus the existence of the two properties is sufficient. Suppose indirectly that 
the statement is not always valid. Take the counter-example where the value of q 
is minimal. In this case there is a loop along the assigned elements. Omit a one-
element row [or column], the existence of which was shown at the beginning of 
the previous proof (as there is no empty row or column because of the spanning 
property). The removed element cannot be part of a loop, thus the remaining 
elements still contain a loop. The contradiction lies in the following:   
• The remaining array does not contain an empty row or column (as the original 
did not either and the column [row] of the removed element contains an assigned 
element because of the dependency).  
• Every tied element can be reached from any other one, as the omitted element 
can be left out from the middle of any chain, because it was the only element in its 
row [column], and this means that its preceding column-adjacent [row adjacent] 
element can directly be followed by its succeeding column-adjacent [row 
adjacent] element.  
The properties are fulfilled, thus, as the critical number of the original array is 
minimal, the remaining elements would form a basis, though they contain a loop. 

Thus the condition given in the statement is necessary and sufficient for q 
elements to form a basis in the array. (The “loop-free” condition formulated in the 
definition is difficult to check.) The “spanning” property is very easy to check, 
and for checking the “dependent” property, notice that it is sufficient to reach all 
tied elements along chains starting from an arbitrary element. As neither of the 
two properties can be deduced from the other, the basis could be defined by them. 
A basis of an m×n array is a spanning and dependent set of 1−+ nm  tied 
elements. 

Using the two properties of a basis formulated in lemma 1.7 it is easy to prove an 
important theorem of this chapter, which will be applied when finding the optimal 
program by necessary changes. 

Theorem 1.10: An m×n array with a basis is given. There exists one and only one 
loop along tied elements starting from any free (i.e. not tied) element. 

Proof: Take an arbitrary free element. Both its row and column contain a tied 
element according to property 1. (If there are more than one, choose any of the 
adjacent tied elements for the time being.) Take the chain connecting these two 
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tied elements and close it with the free element. According to lemma 1.3, this 
closed chain can be reduced to a loop through the free element.  
It still has to be proved that this loop is unique. Suppose indirectly that there are 
two different loops along tied elements through this free element. Now a loop can 
be constructed along the tied elements of the basis by the following method, to 
provide a contradiction. Start from the free element along one of the loops in (e.g.) 
column-direction. If there are such, go on along the common tied elements of the 
two loops. Start listing the elements of the loop to be constructed with the first not 
common element, and continue it until the next common element (until the last 
element of the loop gone through at the latest). From this, turn back along the 
other loop and list its elements in reverse order until the point of separation. The 
connection of the parts of the two loops is adequate at both ends, thus the 
constructed closed chain is a loop. 

The above theorem and its two following consequences are to be applied in the 
third chapter. 

Lemma 1.11: If at least m+n elements are given in an m×n array, then they must 
contain a loop. 

Proof: Let us take the tied elements in an arbitrary order. At each step it is to be 
checked whether the set of elements already taken contains a loop. If it does, the 
proof is done, otherwise let us go on, until the number of elements is 

1−+= nmq . If the set still does not contain a loop, then the elements form a 
basis. In this case, according to the previous theorem, these elements, together 
with any other element, contain a loop. 

Lemma 1.12: If there are less then 1−+= nmq  loop-free tied elements in an 
m×n array, then these elements can be completed to form a basis. 

Proof: The proof is done by induction, applied to the critical number. In case of a 
2×2 array (i.e. when 3=q ) it is obvious that any one or two elements can be 
completed to a three-element basis. Suppose that the statement is true in case of 

rq =  ( 3≥r ). Let us take an array for which 1+= rq , and let us take less then q 
loop-free tied elements in it. Omit an empty or a one-element row [or column]. 
(There surely exists a row or column with at most one tied element. It can also be 
achieved for the remaining array to have at least two rows and columns.) The 
critical number of the array obtained is rq = , thus less then r loop-free tied 
elements can be completed to a basis in it. If one-element row [or column] was 
omitted, then the remaining tied elements in the remaining array can be completed 
to an r-element basis, as their number is less then r. Adding the omitted row [or 
column] with its omitted element, we get a basis for the original array. If the 
omitted row [or column] was empty, then the procedure is the same; insert back 
the omitted row [or column] with one of its elements made tied. (In this case it can 
happen that the in remaining array, there are r tied elements, thus the completion 
is unnecessary.) 
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In connection with bases it is important to note that in an m×n array there is a 
finite number of different bases, however their number can be quite large in case 
of big arrays. It is because the number of selections of 1−+= nmq  elements 
from nm ⋅  elements of an array is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⋅
1nm

nm
, 

and not all of the selections are loop-free. Hereunder we will use only the fact that 
the number of bases is bounded from above. (The precise number is given in the 
appendix.) 

2 The Initial Program 

In the followings the definition of a transportation problem is needed. 

Definition 2.1: In case of a transportation problem m stores and n destinations are 
given, and the goods have to be taken from the stores to the destinations such that 
the cost of transporting has to be minimal. The stocks of the stores, the demands 
of the destinations and the cost of the routes for a unit quantity of goods are 
known. 

Suppose the followings:  
• Solid goods are measured in loads and the cost has to be paid for each load. The 
model can also be used for the optimization of transportation of gas or liquid 
through run of pipes or transportation of energy.  
• The totals of stocks and demands are equal, thus all the stocks will be delivered 
and all the demands will be satisfied. (This condition can easily be released after 
solving the main task.) 

Formally the unit costs of the transportation (from here: transportation costs) are 
given by an m×n array, where rows represent stores, columns represent 
destinations. Stocks are written at the end of the rows, demands are written at the 
bottom of the columns. This set of data is called an m×n “transportation table”. In 
the solution the routes along which the transportation is made are framed, and the 
numbers of deliverable units are written above them.  
In the followings the mathematical model of the problem is given. (Instead of 
matrices we shall continue to use arrays.) 

Definition 2.2: In a transportation problem an m×n matrix is given whose entries 
are non-negative real numbers; there are also given positive numbers 
corresponding to each row and column (the “values” of the rows and columns), 
where the sum of the values of the rows is equal to the sum of the values of the 
columns. Let a real number be corresponded to each entry of the matrix such that 
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1) the sums of the numbers in the rows and the columns are the previously given 
value;  
2) the numbers are non-negative;  
3) the sum of the products of the entries of the matrix and their corresponding 
values is minimal. 

Out of the conditions 1) is called restrictive condition, 2) is called non-negativity 
condition, 3) is called optimising condition. Correspondences satisfying the first 
two conditions are called possible solutions; among them optimal solution is one 
that satisfies the third condition. The sum of the products drafted in condition 3 is 
called objective function; the problem involves the minimization of this.  
In the mathematical model, the corresponded numbers represent the deliverable 
units. Where there is no transportation, the corresponded number is 0. In a 
possible solution, those entries of the matrix, whose corresponded number is 
positive, are called tied elements; the others are called free elements. The values of 
the rows are the stocks, the values of the columns are the demands. The possible 
solutions are also called programs, as they give how much to transport from which 
store to which destination. 

The following theorem shows the connection between bases and possible 
solutions. The nonzero elements of the possible solution to be constructed (in 
some cases together with some additional zeros) make up a basis. 

Theorem 2.3: Every transportation problem has a possible solution. 

Proof: Let us construct a possible solution according to the followings: make an 
arbitrary element tied and correspond the value of its row or column to it, 
whichever is smaller, then omit the row [or column] whose value was 
corresponded. (If the two mentioned numbers are equal, then correspond this 
value to the tied element, and omit either its row or column, but only one of them.) 
As the values of the rows and columns are non-negative, the corresponded value 
to the tied element is also non-negative. Reduce the value of the remaining column 
[or row] by the corresponded value, so this result is surely non-negative. Continue 
the procedure with the remaining array. The value corresponded to the last tied 
element necessarily satisfies both its row and column, thus they both can be 
omitted. This arises from the fact that the sums of the rows and columns are equal. 
Finally let us correspond 0’s to the free elements. This method satisfies the 
restrictive condition and the non-negativity condition, too.  
(Tied elements can be chosen arbitrarily,as their number is exactly q and they do 
not span a loop.) 

We remark that it can happen in the above construction that 0 is corresponded to a 
tied element so it would turn to free. (This can happen if a common element of a 
row and column whose values are equal, is made tied. In this case a 0-valued row 
or column will remain.) Because of reasons detailed later these cases are called 
degenerated, and exceptionally 0-valued tied elements are allowed. 
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To solve a transportation problem by distribution, first an initial program is set up, 
which is improved step by step in order to find the optimal solution. It can be seen 
in the above proof that a possible solution built on a basis can be found very 
easily. The fact, that the algorithm allows much freedom, can be used to construct 
an initial program with a small-valued objective function so less improvement is 
necessary. Let the (arbitrarily chosen) tied element be the least possible in the first 
approach.  
Of course it is not evident why we need to make a basis (i.e. exactly q elements) 
tied to give a possible solution to a transportation problem. The explanation of this 
is given in the following chapter. 

3 Steps of Improvement 

Lemma 3.1: Suppose that a transportation problem has a possible solution such 
that the tied elements contain a loop. Now the solution can be reprogrammed such 
that the value of its objective function does not increase (in general it decreases). 

Proof: Only values belonging to the 2k-element-loop will be modified according 
to the following algorithm. Start from an arbitrary element and go round the loop, 
for instance in the direction of the chosen element’s row-adjacent. Let the entries 
of the array (i.e. the transportation costs) be: kk βαβαβα ,,,,,, 2211 … ; and the 
corresponding numbers in the given possible solution (i.e. the deliverable units) 
be: kk yxyxyx ,,,,,, 2211 … . Now the value of the objective function (i.e. the total 
cost of delivery) is 

∑∑
==

β+α+
k

i
ii

k

i
ii yxA

11
, 

where A is the contribution of the other tied elements to the objective function.  

Let ∑
=

α
k

i
i

1
denote α and ∑

=

β
k

i
i

1
 denote β.  

Suppose that β>α . Find the minimum of corresponded numbers kxxx ,,, 21 … , 
and chose a positive t not greater than this value. Decrease the number belonging 
to the starting element by t, then, according to the previous circle of the loop, 
increase and decrease the elements by turns, until we return. This method ensures 
that the values of every row and column are still satisfied, as the same number is 
subtracted from one of the terms, and added to the other term of the sum. Besides, 
by choosing the value of t it is ensured that none of the values turns to negative, 
they may be 0. Thus the new program is also possible. The value of the objective 
function is 
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As β>α , in case of a positive t, the value of the initial program has actually 
decreased.  
If β<α , then the value of t is chosen such that it is not greater than the minimum 
of numbers kyyy ,,, 21 … . In this case the value belonging to the starting element 
is increased, the next one is decreased, and the procedure is continued so by turns. 
Thus the value of the objective function is 
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which is less then the original one.  
If β=α , or if the value of t is exceptionally 0 in case of any relation (because this 
is the minimal value), then the value of the objective function does not change. 
Naturally in the latter case the program is not modified.   
It is important to note that if t is equal to the minimum of the examined numbers, 
then there will surely be one or more 0’s among the new corresponding values. 
These elements will be considered either free or tied, as expedient. 

There are two important applications of the above lemma. First it will be shown 
that it is sufficient to search for the optimal solution among possible solutions 
built on a basis. The next statement points at this fact. 

Theorem 3.2: Suppose that there is a possible solution of a transportation 
problem, which is not built on a basis. Now another possible solution can be 
constructed from this, such that it is built on a basis and the value of its objective 
function is not greater than the original. 

Proof: If there is a loop among the tied elements then one (or more) of its 
elements can be made free with the above procedure. (The actual value of t has to 
be chosen always as the minimum.) This has to be continued until there is no more 
loop. These steps do not increase the value of the objective function. According to 
lemmas 1.11 and 1.12, the number of the remaining loop-free tied elements is at 
most the critical number of the array and can be completed to form a basis. Let us 
correspond 0 to the new tied element (if they exist) but consider them as tied. With 
this the value of the objective function does not change. Thus a possible solution 
built on a basis is constructed, whose objective function-value is not greater than 
the original. 

We see that it is practical to allow such tied elements whose corresponded values 
are 0, so it is sufficient to examine the possible solutions built on a basis. It cannot 
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be excluded that the optimal solution itself is degenerated. From now on every 
possible solution will be built on a basis in this paper, otherwise we will mention. 
Using the same method, steps of improvement can be executed, which is called 
distribution. In the basic step of distribution we should examine all free elements 
whether they are worth taking in the given program so that a tied element is 
changed by them; at the end such a possible solution is obtained whose objective 
function-value is not greater than the original. Three cases can occur. The program 
is either improved (i.e. a solution is constructed whose objective function-value is 
less than the original), or it is not improved either by retaining the original 
solution or constructing a new solution whose objective function-value is equal to 
the original.  
In the first chapter it was proved (theorem 1.10), that there exists one and only one 
loop along tied elements for any free element. Build this loop to the examined free 
element then proceed according to the algorithm described in the proof of lemma 
3.1. Let the free element be chosen as starting element. If β>α , then during the 
re-programming, the value belonging to the starting element was decreased. This 
is not appropriate for the free element to be taken in, as the corresponded value is 
0, this can only be increased. (From now on we shall skip detailing the case when 

0=t  as it does not result in any changes in the program.) Thus the free element 
can be taken in the program if and only if β≤α . The value of t is chosen as the 
minimum of numbers kyyy ,,, 21 … ,  so it can be achieved that (at least) one 
value corresponding to a tied element is 0 in the new possible solution. This (or 
any one of these) changes to free, while the originally free element changes to 
tied. The objective function-value of the constructed possible solution is less than, 
or, in case of β=α , is equal to, the original.  
If none of the free elements is worth taking in, then the given possible solution 
cannot be improved locally (i.e. by changing a tied element). For the present it is 
not clear yet whether the examined program is optimal, or it is possible to find 
another possible solution with other tied elements, whose objective function-value 
is less. We shall answer this question in the next chapter. 

4 The Optimal Program 

If a possible solution is given, we should find a unique loop along tied elements 
for any free element, then after relation-check, the possible decrease of the 
objective function should be calculated. Finally the free element should be chosen 
and taken in the program with which the decrease is the greatest. However, in case 
of arrays of big size it is a long and tedious work to find the mentioned loop. This 
problem is simplified by the method of potentials. 

Definition 4.1: Let an m×n transportation table be given with a possible solution. 
Correspond a value u to any row and a value v to any column. Values 
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muuu ,,, 21 …  and nvvv ,,, 21 …  are called potentials belonging to the possible 
solution, if it is true for any tied element that it (i.e. the transportation cost) is 
equal to the sum of its row’s and its column’s potential. 

In the above definition the indices are not necessarily the same as the indices of 
the matrix. Potentials can belong to rows and columns, but (as it is seen in the 
following statement) also to tied elements. 

Lemma 4.2: Potentials can be constructed for every possible solution. 

Proof: It is going to be proved that starting from any tied element, potentials can 
be assigned. As shown in the first chapter, there is a chain between any two tied 
elements, thus any tied element can be reached along tied elements from the 
starting one (from the “root”). These chains starting from the root form a tree, with 
main-branches and possibly side-branches. Choose the potentials of the root (i.e. 
of its row and column) arbitrarily, according to the definition. First, assign the 
missing row- or column potentials to all elements along one of the main-branches 
such that it satisfies the conditions described in the definition. (One of them 
already exists, namely the one from where we got to the element.) This will be the 
potential of the given row or column. An element which has not come up yet, 
cannot have both of its potentials assigned, because this would mean a closed 
chain along tied elements. If we have gone along a branch, continue along another 
one from the connecting point of the previous one. Thus, finally every tied 
element is reached. As a result, a potential is assigned to every row and column, as 
the root gets two, every other element gets one, a total of nm + . 

Now let us see the use of potentials. It has been stated that a free element can be 
taken in, if and only if β≤α , and a program with lower cost can be obtained if 

β<α  (and 0>t ). Here 1α  is the free element and the others (now starting in 
row-adjacent direction) are the transportation costs of the tied elements of the 
corresponding loop, respectively. Consider an arbitrary free element and a 
corresponding 2k-element loop. Suppose that the row- and column potentials of 
the tied elements in this loop, starting from the free element in row-adjacent 
direction, are the following: ( ) ( ) ( ) ( )kk vuvuvuvu ;,,;,;,; 221211 … . (This can be 
obtained by rearranging indices. It was taken into consideration that the second 
loop-element is in the same column as the first, the third is in the same row as the 
second, and so on.) Now 

kkk vuvuvu +=β+=α+=β ,,, 122111 … . 

Thus 
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Using the above equalities β<α  holds if and only if 
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Notice that the free element with transportation cost 1α  is in the row of index 1 
and in the column of index k. (Here indices mean ones of the potentials.) Our 
result thus means that a free element has to be taken in the program if and only if 
its transportation cost is less than the sum of its row- and column potentials. 
Checking this for all free elements is much simpler and shorter than searching for 
loops. Assigning potentials has to be done only once and it is not laborious. 

Checking whether a possible solution can be improved has to be done as follows. 
Give an arbitrary potential-assignment of the program. This can be done by 
choosing the row-potential of an arbitrary tied element as 0, and the others are 
distributed according to the algorithm described in the proof. After this, construct 
an nm×  array, in which each transportation cost is decreased by the sum of its 
row- and column potentials. (Now of course, there are 0’s in place of the tied 
elements.) By taking the free elements in the program, in place of which there are 
non-negative numbers, the total transportation cost would not be decreased. Thus, 
if all elements are non-negative in this array, the program cannot be improved by 
distribution. We note that if there is such a 0 which stands in place of a free 
element, then another solution, whose cost is the same as the original’s, can be 
constructed by taking the free element in the program.  
If a decrease may be produced by the replacement of several free elements, then 
replace the element producing the largest decrease, i.e. the one for which the 
difference ( )α−βt  is the biggest. 

What guarantees that by basic steps of distribution, such an array can be obtained 
which cannot be further improved? Let us settle that in the stage of the algorithm 
when an optimal array is looked for, the existing program is only changed if the 
objective function-value of the program is less then the previous. (Finding 
programs with the same objective function-value has significance only when the 
program has to be modified, i.e. when alternative optimal programs are looked 
for.) Thus it can be stated that every array is different from the others (as their 
objective function-values are different). As an array has a finite number of 
different bases, it is not possible to construct infinite different possible solutions 
(built on bases), i.e. the improving procedure ends in finite steps. 

It is still to be proved that a program which cannot be improved locally is globally 
optimal. As much freedom is left when setting up the initial program, and the 
further progress is not unique, it is not trivial that the optimal solution is obtained 
when there is no more chance to improve. Is not it possible that there is an entirely 
different program with lower cost? (We have seen that in case of arrays there are 
quite a many bases.) 
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Theorem 4.3: If a possible solution cannot be improved by taking in any of the 
free elements then it is optimal. 

The short summary of the proof is the following. Let a possible solution (built on a 
basis) be given. Possible solutions are called adjacent if they are obtained from 
each other by changing a free element (irrespectively of improvement). We shall 
construct such possible solutions (not built on a basis) that are in some sense 
“close” to the given program. We mean by “closeness” that the delivered 
quantities are not very different in the two programs. We shall prove that if the 
adjacent solutions are all worse (or not better) than the initial program then none 
of the “close” programs can be better with respect to cost reduction. Thus we shall 
get to a contradiction, because it will be proved as well, that if there is a better 
solution than the initial one then there is a better “close” program too. The 
appropriate “close” programs will be constructed by combining the original 
program and one or more other solutions. 

The following lemma, which is significant itself too, will be used in the proof. 

Lemma 4.4: If values programmed on free elements of an arbitrary basis are equal 
in two possible solutions of a transportation problem then values programmed on 
tied elements of this basis are equal too (i.e. the two programs are identical). 

Proof: As seen in the first chapter (lemma 1.7), there exists such a row [or 
column] which contains exactly one tied element, thus the value programmed on 
this element is determined by the row- [column-] sum. By omitting this row 
[column] the procedure can be continued similarly until all tied elements are 
reached. Thus if the above condition is satisfied, then all values programmed on 
tied elements in the basis are uniquely determined. 

Let us now prove the theorem for the optimal program. 

Proof (of theorem 4.3): Denote the programs by block capitals (A, P etc.), and 
their total transportation cost by z(P). Factors λ are all non-negative. Let λP be the 
program which is obtained by multiplying every quantity in P by λ; let P+R be the 
program which is obtained by adding the appropriate delivered quantities. It is 
obvious that in the first case the row-sums, the column-sums and the total 
transportation cost will be the λ-multiple of the original; in the second case these 
quantities will be added. Because of the fact concerning row- and column-sums, if 

kPPP ,,, 21 …  are possible solutions of a transportation problem, then in case of 
121 =λ++λ+λ k… , their linear combination kk PPP λ++λ+λ …2211  is a 

possible solution too, because the row- and column-sums will be as specified. On 
the other hand 

( ) )()()( 22112211 kkkk PzPzPzPPPz λ++λ+λ=λ++λ+λ …… . 

Let P be a possible solution that cannot be improved by distribution. Let the 
adjacent programs be (according to an arbitrary order of free elements): 
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sRRR ,,, 21 … . (Now )1( −+−= nmmns  and siPzRz i ≤≤≥ 1),()( .) Suppose 
that sλλλ ,,, 21 …  are small positive real numbers (between 0 and 1, close to 0). 
Set up the program PRRRA sss )1( 12211 λ−−λ−+λ++λ+λ= …… , that is 
“close” to P. Its transportation cost is not less than P’s: 

≥λ−λ−+λ++λ+λ= )()1()()()()( 12211 PzRzRzRzAz sss ……
)()()1()()()( 121 PzPzPzPzPz ss =λ−−λ−+λ++λ+λ≥ …… . 

What are the deliverable quantities of this possible solution A? We will use the 
fact that an arbitrary free element in program P is free in all of its adjacent 
programs as well, except in the adjacent program which is obtained by taking this 
element in. Thus values programmed on the original free elements in A are 

ss hhh λλλ ,,, 2211 … , where shhh ,,, 21 …  are values programmed on the original 
free elements in sRRR ,,, 21 … .  
Now suppose indirectly that there exists a possible solution Q which is better than 
P, i.e. its transportation cost is less ( )()( PzQz < ). Construct program 

PQB )1( λ−+λ= , which is also “close” to P. Let λ be a small (between 0 and 1, 
close to 0) positive real number again. The transportation cost of B is less than that 
of P because 

)()1()()()1()()( PzzPPzPzQzBz =λ−+λ<λ−+λ= . 

Values programmed on the original free elements in B are sggg λλλ ,,, 21 … , 
where sggg ,,, 21 …  are values programmed on the appropriate elements in Q, 
respectively.  
We state that numbers sλλλ ,,, 21 …  and λ can be chosen such that A is identical 
with B. Let us make the values programmed on the free elements of P equal: 

sss ghgh λ=λλ=λ ,,111 … , i.e let 
s

s
s h

g
h
g λ

=λ
λ

=λ ,,
1

1
1 … . 

(For the time being we suppose that the divisions are sensible, i.e. 
sihi ≤≤≠ 1,0 .) If λ is small enough, then the obtained positive terms will be 

small enough for their sum to be small, or at least not greater than 1. According to 
lemma 4.4 it can be stated that programs A and B are identical and this leads to a 
contradiction because of the inequalities concerning transportation costs 
( )()()( BzPzAz >≥ ).  
The above proof does not work if 0=jh  for any j ( sj ≤≤1 ). This can happen if 
there is a degeneration in P, and when taking in the jth free element (call x), such a 
tied element gets out of the program whose corresponding value is 0. There is no 
problem if this free element of P is a free element in Q as well, because in this 
case the equality jjj gh λ=λ  can be made true by any jλ . But if this element is 
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tied in Q, the proof has to be modified. Let μ be an arbitrary positive number. 
Instead of possible solution jR  consider program jR′  in which the value 
programmed on x is μ, and along the loop belonging to x in P, values programmed 
on tied elements are decreased and increased by μ by turns. Thus jR′  satisfies the 
conditions concerning row- and column sums, but it is not a solution built on a 
basis. What is more, it is not a possible solution because of the decreases along the 
loop, as the corresponding value of one (or more) of the tied elements of P will be 
negative. The inequality )()( PzRz j ≥′  holds because jR′  (just like the other 
adjacent programs) was obtained from P by “worsening” along a loop. (P is 
locally optimal, thus cannot be improved along a loop.) Use jR′  instead of jR , 
and the proof will work in this degenerated case: because of μ=jh  the division is 
sensible. It will not cause a problem that there are negative corresponding values 
in jR′ , because the linear combination will remove them. Values programmed on 
the free elements of P are positive in program A, and they are equal to the 
appropriate values of B, thus the two programs are identical. As B is surely 
possible, A must be possible too. If more h values are zero, then the appropriate 
adjacent programs are exchanged in the proof as described here. 

Here we remark and interesting but not trivial observation, that has a practical 
background as well. Suppose that stocks and demands are integers in the 
transportation problem. This is quite natural when solid goods are transported in 
loads or when wagons have to be directed to other stations. In this case the 
delivered quantities of the optimal program are required, and will actually be 
received, as integers. This is explained by the fact that during setting up the initial 
program and during the improvement, a minimum of integers are looked for, or 
integers are added to, subtracted from, each other; thus integers, as results of these 
operations, are corresponded to the routes. As a result of these steps, the optimal 
program is obtained. 

5 Supplements 

In order to make the presentation of transportation problems complete, two more 
methods need to be shown, though these do not contain anything new as compared 
to the usual investigation.  
Especially in case of manual calculation, the reduction of transportation costs is 
useful. This method is based on the following statement. 

Lemma 5.1: The basis, offering an optimal solution of a transportation table, is 
not changed if each element of an arbitrary row or column is decreased by an 
arbitrary real number; being only careful that no negative value should appear. 
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Proof: Suppose that the value of the row [or column] is s. Let the values of the 
tied elements in the row [or column] be kδδδ ,,, 21 … , and the appropriate 
corresponding values be )(,,, 2121 swwwwww kk =+++ …… . The objective 
function-value is kkwwwAz δ++δ+δ+= …2211 , , where A is the contribution of 
the other tied elements to the objective function. If γ is subtracted from all 
elements of the row [or column] then the objective function-value of this possible 
solution in the new transportation table is =γ−δ++γ−δ+=′ )()( 11 kkwwAz …  

swwwA kk ⋅γ−δ++δ+δ+= …2211 , i.e. it differs from the original only in a 
constant (independent of the possible solution). This means that the same possible 
solution is the optimal, only the objective function-value is reduced by s⋅γ . 

Using the above method more times in succession it can be achieved that the 
transportation costs are much less and calculation is simplified. Go through each 
row then each column and reduce the transportation costs of the given row [or 
column] by its minimum. Thus there will be 0 in every row and column which, in 
case of smaller tables, can help us to find an optimal solution. (If we “notice” a 
basis, where all tied elements are 0, then this can obviously lead to an optimal 
solution, because in this case the value of the objective function is 0, and it cannot 
be less than that. It only has to be checked whether this solution is possible or not.) 
This method is called reduction and it can be done in arbitrary order. 

After defining the transportation problem, it was assumed that the total of the 
stocks is equal to the total of the demands. This fact was used during setting up the 
initial program, as the corresponding value of the lastly chosen element satisfied 
both the values of its row and its column. However, this assumption is too rigid 
when thinking of applications. Luckily, this problem can be solved easily. If the 
total of the stocks is more than the total of the demands, then the difference stays 
where it is, and naturally this does not increase transportation costs. Take up a 
fictive destination, i.e. a new column. Let its demand, i.e. the value of the column, 
be the difference; and let the transportation costs of the corresponding routes, i.e. 
the elements of the column, be 0. Thus it is achieved that the table satisfies the 
original conditions, and the optimal solution received by distribution also gives 
which stocks of goods have to be delivered to the fictive destination. (These will 
not be moved.) If the total of the demands is more than the total of the stocks, 
then, similarly, fictive stores are taken up, i.e. a new row. Of course, stocks 
arriving from the fictive stores mean unsatisfied demands.  
We note that if a fictive destination is taken up then reductions can only be made 
in columns, as there are 0’s in every row; or in case of fictive stores, reductions 
can only be made in rows. It is important, that during the solution, inserting fictive 
places has to be the first step, as later the equality of the sums of row- and column-
values is necessary. 
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6 Appendix: Number of Bases 

The number of bases of an nm×  array will be given in this chapter. The 
statements of the first chapter will be used and another property of bases will be 
needed as well. 

Lemma 6.1: If 1−+ nm  elements of an nm×  array are given with the next 
property, then these elements form a basis: rows and columns can be omitted one 
at a time, such that always a one-element row or column is removed (together with 
its element). 

Proof: It will be proved that the set of the elements cannot contain a loop. In the 
row and column of any element of a possible loop there is at least one more 
element, namely its adjacent in the loop, thus this element cannot be removed 
(neither its row nor its column), until the loop exists. The loop-adjacent of a loop-
element cannot be removed either, because this could only be done when its other 
loop-adjacent has been removed. And so on, going along the elements of the loop, 
it can be seen that a loop element can be removed only if it has already been 
removed, which is impossible. 

Lemma 6.2: In any basis of an nm×  array   
• in case of nm ≥  there are at least 1+− nm  one-element rows;  
• in case of mn ≥  there are at least 1+− mn  one-element columns. 

Before proving the lemma we note that in the special case of nm =  it states that 
the bases of quadratic tables contain one element rows and columns as well. 

Proof (of lemma 6.2): To prove the first statement, suppose that there are k one-
element rows and the other km −  rows contain at least two elements. Thus the 
number of elements is )(21 kmknmq −+≥−+= . From this we get 

1+−≥ nmk . It has to be emphasised that as 11≥+− nm , in case of nm ≥ , 
there must be at least one one-element row. The other statement can be proved by 
exchanging rows and columns (m and n). 

Theorem 6.3: In an nm×  array, there are 11 −− ⋅ nm mn  different bases. 

Proof: A one-to-one correspondence will be given between the bases of an nm×  
array and the  )1()1( −+− nm -element sequences whose first 1−m  elements are 
from the set { }n,,2,1 …  and the further 1−n  elements are from the set 

{ }m,,2,1 … . The number of such sequences is obviously 11 −− ⋅ nm mn . The first of 
the following methods uniquely corresponds such a sequence to every basis, the 
second uniquely corresponds a basis to every sequence. This means that the 
number of bases is also 11 −− ⋅ nm mn .  
The proof is only done for those arrays which have at least as many rows as 
columns. This can be done because the number of bases does not change if rows 
and columns of an array are exchanged (i.e. the equivalent matrix is transposed). 



Acta Polytechnica Hungarica Vol. 6, No. 2, 2009 

 – 35 – 

According to the previous statement, in case of nm ≥  there are at least 1+− nm  
one-element rows. The first step of the procedure is to remove the first nm −  one-
element rows according to their increasing row-indices and record the column-
indices of the omitted elements. Now a quadratic, nn×  array is obtained. (In case 
the original array is quadratic, the previous step has to be left out.) This must 
contain one-element rows, out of these remove the one with the least row-index, 
record its column-index after the previous recorded indices. The obtained array 
has one more columns than rows, thus it must contain one-element columns, out 
of these remove the one with the least column-index and record its row-index 
(apart from the column-indices). Now, again, a quadratic array is obtained, so the 
procedure is continued until the array is “consumed”. The last remaining element 
does not have to be recorded. We emphasise the followings:  
• If more than one rows [or columns] can be removed, always remove the one with 
the least row- [or column-] index.   
• Always record the other index, one after the other, keeping apart the two types. 
• The removed elements do not have to be taken into consideration, when one-
element rows and columns are looked for, but the indices are recorded according 
to the original array, not to the reduced one.   
Finally write the row-indices of the removed columns after the column-indices of 
the removed rows. As the last element is left in its place, 1−m  rows and 1−n  
columns are removed altogether. The column-indices are from the set { }n,,2,1 … , 
the row-indices are from the set { }m,,2,1 … , thus the sequence we get is indeed of 
the required form. The steps are unique according to the rules in case of any basis, 
thus the correspondence is unique.   
Now it will be shown how it is possible to “find” the basis for an arbitrary 
sequence of this type, to which it was corresponded, i.e. how it is possible to find 
the pair of the recorded indices, and finally the indices of the remaining element. 
First the order of removal of elements is prepared. Write the first nm −  column-
indices at the beginning, then (continued with a column-index) the column- and 
row-indices, by turns. Leave space for the appropriate index-pairs, and for the 
remaining element with unknown indices at the end. As, together with the row of 
the remaining element, all rows were removed, the missing row-index pairs of the 
column indices and the row-index of the remaining element are a permutation of 
elements m,,2,1 … . According to the previous procedure it is obvious that if a 
row has been removed then its row-index cannot appear later (among the row-
indices of the removed columns). Distribute the missing row-indices starting from 
the beginning, such that always write the least out of the ones that have not been 
distributed yet and not appearing later, and write the last two remaining indices in 
increasing order at the end. Similarly, distribute the missing column-indices of the 
row-indices that are the permutation of elements n,,2,1 … . It has to be proved that 
the obtained elements form a basis and the sequence corresponded to this basis is 
the one we started with. The procedure shown at the beginning of the proof can be 
performed on the obtained elements, thus they would be removed exactly in the 
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given order (together with their rows or columns). The reason for this is that when 
a row is to be removed, then we are exactly at such an element which is alone in 
its row, and among these, whose row-index is the smallest, as the column-indices 
were distributed so. The same is true when the next step is the removal of a 
column. As these removals satisfy the conditions of the first statement, thus these 
elements form a basis. 

The above result can be formulated in two, apparently different forms, which take 
us to the areas of linear algebra and graph theory. 

Theorem 6.4: Consider the set of )( nm + -element vectors over the field of real 
numbers. The number of maximal linearly independent vector sets, that can be 
chosen out of vectors 
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is 11 −− ⋅ nm mn . 

Proof: Let us make a correspondence between the (i;j)-indexed element of an 
nm×  array and vector jι,a . It will be shown that in case of this correspondence a 

set of vectors is linearly independent if and only if the corresponding set of 
elements does not contain a loop. The formulated statement follows from this.  
The proof exactly will show that a set of vectors is linearly dependent if and only 
if the corresponding set of elements contains a loop. Vectors corresponded to the 
elements of a loop are dependent as their sum taken with alternating signs is 0. 
Thus, vectors corresponded to a set of elements containing a loop are dependent 
too, as this set is an extension of the previous case. To prove the other direction, 
let a dependent set of vectors be given, and also a linear combination of them 
resulting in 0. Take an element 

11 j,ia  of the set of vectors whose coefficient is 
positive. Now there must be an element

21 j,ia  with a negative coefficient in order 

that the 1i th component of the linear combination be 0. But in this case there must 
be an element 

22 j,ia  with a positive coefficient in order that the 2jm + th 
component of the linear combination be 0. If we take the elements one after the 
other this way, there will come an element that has appeared before as the set is 
finite. Consider the elements of this closed “circle”. (Elements taken before the 
closure of the circle can be omitted.) The elements of the array, corresponding to 
the vectors, form a closed chain whose elements are not in one row or column. 
Thus the chosen set of elements is not loop-free. 

Theorem 6.5: Let a bipartite graph be given whose partitions are vertices 
{ }m,;2;1 …  and { }n′′′ ,;2;1 … . The number of its different spanning trees is 

11 −− ⋅ nm mn . 
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Proof: Let us make a correspondence such that the m rows of the nm×  array are 
corresponded to the upper partition of the bipartite graph, the n columns of the 

nm×  array are corresponded to the lower partition of the bipartite graph, and the 
elements of the array are corresponded to the edges connecting the vertices 
representing the appropriate rows and columns. This correspondence is one-to-
one. Bases of the array are exactly corresponded to the spanning trees of the 
graph, as these graphs are acyclic and every vertex is an endpoint of one or more 
edges. A cycle would represent a loop, a vertex with a zero degree would mean an 
empty row or column. 

Starting the proof of the theorem giving the number of bases in a different way, 
we can find interesting relationships using the final result. This is shown in the 
following statement. (This time algebra and combinatorics are touched.) 

Theorem 6.6: Let m, n be positive integers, 2+> nm . Now 
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This statement gives a relationship between powers of the same exponent whose 
bases are successive integers. E.g. in case of 3,10 == nm  we get: 

33333 5461572081010 ⋅−⋅+⋅−⋅= . 

Proof (of theorem 6.6): The number of bases is to be determined by mathematical 
induction. Consider only arrays which have more rows than columns. i.e. nm > . 
In this case there is a one-element row in any basis, and it is also true that there is 
such a row in bases of arrays with one less rows. Construct all the bases of an 

nm ×+ )1(  array by inserting a one-element row somewhere before the first one-
element row of the nm×  array. Thus all the bases of the nm ×+ )1(  array are 
obtained exactly once from that basis of the nm×  array which can be obtained by 
omitting the first one-element row of the previous one; and insert the appropriate 
one-element row to the appropriate place. The new row has to be inserted before 
the first one-element row because there can be more than one one-element rows in 
a basis, and thus we can avoid counting some “constructions” more than once. In 
this case, however, it is necessary to determine the number of such bases of an 

nm×  array in which the first one-element row stands at a given place.   
Denote by ),( nmP  the number of bases of an nm×  array, and 1),1( =nP . Those 
bases of an nm×  array which have a one-element first row can be obtained by 
inserting a one-element row as first in the bases of an nm ×− )1(  array. Thus their 
number is ),1( nmPn −⋅ , as the new element can stand at n places. Similarly, 
those bases of an nm×  array which have a one-element second row can be 
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obtained by inserting a one-element row as second in the bases of an nm ×− )1(  
array. But in this case, those bases are counted as well, whose first and second 
rows are one-element, thus the number of these has to be subtracted, as we want to 
count only the ones, whose first one-element row is the second row. The 
subtrahend is determined by inserting two one-element rows as first and second in 
the bases of an nm ×− )2(  array, and by counting these. Thus the number of bases 

whose first one-element row is the second one is: ),2(),1( 2 nmPnmnPn −⋅−−⋅ . 
Similarly, and using the logical sieve, the number of bases of an nm×  array, 
which have a one-element row first at the kth place, is: 
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The last place where the first one-element row can stand is the nth row because 
there are at least 1+− nm  of them. The number of these bases is: 
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A one-element row can be inserted before the kth row in nk ⋅  ways, by choosing 
the place of the new row and of the new element. Finally, the number of bases of 
the nm ×+ )1(  array is: 
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Suppose, by suspicion, that 11),( −− ⋅= tn ntntP  for any mt ≤ . For 1=t  the 
equality 1),1( =nP  is true. Substituting the induction hypothesis we get 

( ) ++−−−⋅⋅+−⋅=+ −−− …111 )2()1(2)1(),1( nnmnm mmnmnnmP

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−±−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+−−−−⋅+ −−−− 1111 )()3(

2
1

)2)(1()1( nnnnm nmm
n

mnmnn …  

Taking the common multiplier mn  out of the parentheses, arrange the sum 
according to identical powers. Power 1)( −− nkm  appears first in the kth term, its 
multiplier is the following with a negative or positive sign (depending on the 
parity of k): 
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As 
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the multiplier of power 1)( −− nkm  is 
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Finally we get 
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We would like to prove that mn nmnmP ⋅+=+ −1)1(),1( . Compared to the 
previous, it should be proved that 

±+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
⋅⋅−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
⋅−=+ −−− …

3
1

2)2(
2

1
)1()1( 111 n

m
n

mm nnn

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

⋅⋅−± −

1
1

)( 1

n
n

nnm n . 

As statement mn nmnmP ⋅+=+ −1)1(),1(  was already shown in the proof of 
theorem 6.3, the above identity is necessarily true. Replace m by 1−m  and n by 

1+n , thus we get the formula specified in the statement. (During the induction 
proof it was supposed that nm > , and n is at least 2; conditions are obtained by 
reformulating these.) 

The previous result leads to some nice identities of combinatorics. 

Theorem 6.7: Let 3≥n  be a positive integer. Now  
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Statements (2)-(n+1) can be summarized as follows.  
Vector 
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is perpendicular to any of the vectors ( )ttt n;;3;2 … , where 21 −≤≤ nt . 

Proof (of theorem 6.7): Replace 2+n  by n in theorem 6.6, thus 2−n  gets to the 
place of n. (As n was greater than or equal to 1 ( 1≥n ), now 3≥n .) Decompose 
the powers of the right hand side (using the binomial theorem), and compare the 
coefficients of powers 032 ,, mmm nn …−− . Now, dividing by a binomial 
expression, we get the identities formulated above, respectively. 

Conclusions 

Hopefully the paper was useful for students and teachers dealing with operation 
research. Nevertheless the aim was also to give an example for a possible bridge 
over higher and elementary mathematics. (Other similar possibilities are shown at 
[3].) 
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