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Abstract: We propose a constructive heuristic approach for the solution of the permutation 

flow-shop problem. The objective function of all algorithms is the minimization of the 

makespan. Our approach employs Johnson’s rule to give a good initial solution for the 

improvement heuristic, also known as metaheuristics. The proposed heuristic algorithm, 

named MOD, is tested against four other heuristics that are well-known from the open 

literature, namely, NEH, Palmer’s Slope Index, CDS and Gupta’s algorithm. The 

computational experiment itself contains 120 benchmark problem data sets proposed by 

Taillard. We compare our results to the solutions represented by NEH outputs. The 

computational experiment shows that the proposed algorithm is a feasible alternative for 

practical application when solving n-job and m-machine in flow-shop scheduling problems 

to give relatively good solutions in a short-time interval. 
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1 Introduction 

Many manufacturing industries meet with the problem of how to effectively 

commit resources between varieties of possible orders in the current competitive 

environment. The searching for an optimal allocation of resources to performing a 

set of jobs within each work order is the main role of scheduling, which has 

become a necessity decision-making process in manufacturing. The main 

problems in scheduling of jobs in manufacturing are, according to Wight [24], 

“priorities” and “capacity”. Hejazi and Saghafian [4] characterize the scheduling 

problem as an effort “to specify the order and timing of the processing of the jobs 

on machines, with an objective or objectives.” 

In this paper, we focus on an environment where all jobs have to follow the same 

route in the same order and where machines are assumed to be set up in a series, 
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which is also referred to as a flow shop. We consider general flow-shop 

scheduling with unlimited intermediate storage, where it is not allowed to 

sequence changes between machines. In this flow shop, referred to as permutation 

flow shop, the same job sequence of jobs is maintained throughout. 

Although we limited our attention to only permutation schedules with constant 

setup times that are included in processing times and to availability of all jobs at 

zero time, these kinds of algorithms can be used to improve logistic chains of 

container transport as well [16]. 

The general flow-shop problem with a makespan (Cmax) objective can be denoted 

as an n/m/F/Cmax that involves n jobs where each requiring operations on m 

machines, in the same job sequence. The solution of such problem is represented 

by the optimal job sequence that produces the smallest makespan, assuming no 

preemption of jobs. The general flow-shop problem is also assumed as NP-hard 

for m>2. 

We propose a constructive heuristic approach, based on application of Johnson’s 

algorithm for the solution of the NP-hard flow-shop problem. Our approach uses a 

pair-splitting strategy to create a two-machine problem. We provide empirical 

results for Taillard’s problem, instances demonstrating the efficacy of the 

approach in finding a good initial speed. 

Common algorithms to solve NP-hard problems are heuristics giving solutions 

that do not necessarily have to be close to the optimum. However, they give good 

initial solutions in a reasonable time. Based on the literature, there are two well-

known types of heuristics: constructive and improvement heuristics. The 

constructive heuristic starts without a schedule or job sequence and adds one job 

at a time. The most popular constructive heuristics are CDS [1] and NEH [11]. 

Improvement heuristics use as a initial position a schedule, mostly represented by 

the result of constructive heuristic, and they try to find a better “similar” schedule, 

referred to as improved solution. These iterative approaches, referred to as meta-

heuristic approaches, are inherently local search techniques, such as, for example, 

tabu search (TS), simulated annealing (SA), genetic algorithms (GA), etc. 

We test our approach on a dataset including 120 benchmark problems of Taillard 

[20]. We compare the results of four constructive heuristics, namely MOD, CDS, 

Gupta’s algorithm and Palmer’s slope index algorithm, with the well-known NEH 

algorithm set as a reference algorithm. 

The next section covers a review of the relevant literature of the flow-shop 

scheduling heuristics. Section 3 analyzes the formal description of the MOD 

approach. In Section 4, we provide a discussion of computational experiment and 

results. Section 5 reports a summary of the paper and discusses possible future 

research ideas. 
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2 Literature Review 

The scheduling literature provides a rich knowledge of the general flow-shop 

scheduling problem to get permutation schedules with minimal makespan. It can 

be stated that this is a very popular topic in scheduling circles. 

Taylor [21] and Gantt [2], the inventor of well-known Gantt charts that are still 

accepted as important scheduling tools today, give the first scientific consideration 

to production scheduling. Pinedo [17] is a superior reference for all types of 

scheduling problems, including flow-shop environment together with tutorials, 

and scheduling systems. Vieira et al. [23] present a framework for rescheduling 

when differences between the predetermined schedule and its actual realization on 

the shop floor effect of disturbances in the performance of the system. 

Production scheduling systems that emerged later were mostly connected to shop 

floor tracking systems and were dispatching rules to sequence the work [5]. 

Similar scheduling systems are today implemented in ERP systems that were 

performed in the early 1990s. 

Modrak [10] discusses manufacturing execution systems (MES) with integrated 

scheduling systems in the role of a link interface between a business level and 

shop floor. 

Heuristic solutions for the permutation flow-shop scheduling problem range from 

constructive heuristics, such as CDS and the NEH algorithm, to more complex 

approaches, known as meta-heuristics, namely branch and bound, tabu search, 

genetic algorithms and the ant colony algorithm. 

Johnson [6] first presented an algorithm that can find the optimum sequencing for 

an n-job and 2-machine problem. The concept of a slope index as a measure to 

sequence jobs was firstly introduced by Page [14]. Later on, Palmer [15] adopted 

this idea and utilized the slope index to solve job sequencing for the m-machine 

flow-shop problem. Gupta [3] argued that the sequencing problem is a problem of 

sorting n items to minimize the makespan. He proposed alternative algorithm for 

calculating the slope index to schedule a sequence of jobs for more than two 

machines in a flow-shop scheduling problem. 

Campbell et al. [1] proposed a simple heuristic extension of Johnson’s algorithm 

to solve an m-machines flow shop problem. The extension is known in literature 

as the Campbell, Dudek, and Smith (CDS) heuristic. 

Nawaz et al. [11] proposed the NEH algorithm, which is probably the most well-

known constructive heuristic used in the general flow-shop scheduling problem. 

The basic idea is that a job with the largest processing time should have highest 

priority in the sequence. Results obtained by Kalczynski and Kamburowski [7] 

have also given proof that many meta-heuristic algorithms are not better than the 

simple NEH heuristic. The proof is also supported by famous “No Free Lunch” 
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(NFL) theorem, which points out that all algorithms equal to the randomly blind 

search if no problem information is known [25]. The solution quality greatly 

depends on the technique selection, which does not necessarily need to perform as 

well on other types of problem instances if it fits a specific type of problem 

instances. 

The most emphasized names among the contributors of meta-heuristic approaches 

are as follows: Ogbu and Smith [13] with their simulated annealing approach; 

Nowicki and Smutnicki [12], who implemented tabu search to solve the flow-shop 

scheduling problem; And Reeves and Yamada [18], who applied the genetic 

algorithm for PFSP. The new accession to the family of meta-heuristic scheduling 

algorithms is a water-flow like algorithm [22]. The Hybrid algorithm, based on the 

genetic algorithm, was applied in order to find optimal makespan in an n-job and 

m-machine flow-shop production, see [19]. 

In this paper, we focus on using Palmer, Gupta, CDS and NEH heuristics against 

MOD approach. For details on these heuristics, see [1], [3], [8], [11] and [15]. 

3 Constructive Heuristic MOD 

In this section we formally explain the steps of the constructive heuristic approach 

used to obtain a good initial solution. Further details of this heuristic are referred 

to in [9]. The general idea is that we adopt the Johnson’s rule in the last step of our 

proposed algorithm to get the minimum makespan. We use the difference between 

the sums of processing times for each machine as a pair-splitting strategy to make 

two groups of the matrix of n-job and m-machine. We further explain our 

approach mathematically. 

3.1 Notation 

The following notations were used: 

J set of n jobs {1, 2, …, n} 

M set of m machines {1, 2, …, m} 

Mp set of two pseudo machines {1, 2} 

G set of 2 clusters {I, II} 

k number of k machines 

l number of m-k machines 

I cluster of k machines  

II  cluster of m-k machines 
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pij processing time of ith job on jth machine, i  J and j  M 

Pj sum of processing time of n jobs on jth machine 

Pg total sum of processing time of n jobs on machines in gth group, g  G  

it well-fitting iteration number 

DIFit difference between groups I and II 

Cmax makespan 

Cj completion time 

s splitting ratio  

smax max splitting ratio 

3.2 MOD Algorithm 

Step 1: Calculate the sum of processing time 





n

i

ijj MjJipP
1

,   (1) 

Step 2: Compute the total sum of the processing time for each cluster 

 Calculate IP , IIP  of cluster I and II as follows: 
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Step 3: Compute the splitting ratio and apply the pair-splitting strategy  

 Compute the splitting ratio for this iteration given by: 
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Apply the pair-splitting strategy: 

a. If sk is the maximum ratio so far, save the current k as well-fitting 

iteration (it) and the ratio as the maximum ratio (smax). 

b. If k = m then go to Step 5. 

c. If sk  = 1, go to Step 5. 
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Step 4: Next iteration 

 Increment k by one and go back to Step 2. 

Step 5: Compute the completion time for each cluster and create two pseudo 

machines 

Calculate the completion time Cj of ith job for both clusters according to 

following formulas (k = it): 

a. Cluster I: 

  kjjj ppkpkC  21 1  (5) 

b. Cluster II: 

  ljjj pplplC  21 1  (6) 

Tabulate these values into two rows to get two pseudo machines (Mp1, 

Mp2). 

Step 6: Apply Johnson’s rule on the two pseudo machines 

Apply Johnson’s rule on the two pseudo machines of n jobs to get the job 

sequence. 

Step 7: Display the solution 

 The Cmax of particular job sequence from Step 6 is the solution. 

3.3 Pair-Splitting Strategy and Parameters 

In Step 3 of Section 3.2, there are two splitting parameters, namely the splitting 

ratio (s) and well-fitting iteration number. We explain each of these parameters 

next. 

3.3.1 Splitting Ratio 

The splitting ratio is one of the parameters that control the degree of similarity of 

two created clusters. The pair of clusters with the highest rate is used for further 

computation. The splitting ratio ranges from 0 to 1, where 1 indicates the same 

size of two clusters and vice versa. 

3.3.2 Well-fitting Iteration 

We also build a parameter to backtrack the best pair of clusters created from the n-

job and m-machine mechanism matrix. The well-fitting iteration parameter also 

indicates the number of machines for the cluster I. 
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4 Computational Experiments 

We ran our experiment with objective of minimizing the makespan on Taillard’s 

benchmark problem datasets, which has 120 instances, 10 each of one particular 

size. Taillard’s datasets range from 20 to 500 jobs and 5 to 20 machines. The 

outputs of the NEH algorithm were used as reference solutions for comparison 

purposes. 

4.1 Platform and Parameters 

We coded the MOD, NEH, CDS, Palmer’s Slope Index and Gupta’s algorithms in 

PHP script, running on a PC with a 3.06 GHz Intel Core and 2GB of RAM. All 

PHP-coded algorithms have a user-friendly interface with the possibility to select 

whether to run each heuristic individually or altogether. It has also an option to 

draw a Gantt chart with a legend. 

4.2 Performance Measures 

We used a relative percent deviation (RPD) and an average relative percent 

deviation (ARPD) as performance measures for comparing the solutions of each 

algorithm to the reference solutions. 

The relative percent deviation and average percentage relative deviation is given 

by: 

%100



i

ii

i
RS

RSHS
RPD   (7) 




I

i
i

RPD
I
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1

1
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where:  I number of problem instances, 

 HSi heuristic solution of problem instance i, 

 RSi reference solution of problem instance i, 

 RPDi percentage relative deviation of problem instance i. 

4.3 Results 

In the computational experiment, we use the problem instances described earlier. 

The summary results for Taillard’s 120 instances are shown in tables 1 to 4. Each 

of the summary tables displays the results for MOD, CDS, Gupta’s algorithm, 
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Palmer’s Slope Index and the NEH alone. The computational experiment takes the 

performance indicators of the algorithms to be the solution quality (Cmax) and 

runtime (CPU). Tables 1 to 3 show the computational results of makespans and 

RPDs for each algorithm and for each problem instance. 

Table 1 

Makespans and RPDs for Taillard’s 20-job and 50-job benchmark-problem datasets 

 

Problem 

instance 

NEH 

(Reference 

makespan) 

MOD   CDS   Gupta   Palmer  

Cmax RPD  Cmax RPD  Cmax RPD  Cmax RPD 

20x5             

1 1299 1322 1.8  1436 10.5  1400 7.8  1384 6.5 

2 1365 1433 5.0  1424 4.3  1380 1.1  1439 5.4 

3 1132 1136 0.4  1255 10.9  1247 10.2  1162 2.7 

4 1329 1475 11.0  1485 11.7  1554 16.9  1420 6.8 

5 1305 1355 3.8  1367 4.8  1370 5.0  1360 4.2 

6 1251 1299 3.8  1387 10.9  1333 6.6  1344 7.4 

7 1251 1366 9.2  1403 12.2  1390 11.1  1400 11.9 

8 1215 1312 8.0  1395 14.8  1410 16.0  1290 6.2 

9 1284 1371 6.8  1360 5.9  1444 12.5  1426 11.1 

10 1127 1235 9.6  1196 6.1  1194 5.9  1229 9.1 

20x10             

1 1681 1789 6.4  1833 9.0  2027 20.6  1790 6.5 

2 1766 1802 2.0  2021 14.4  1960 11.0  1948 10.3 

3 1562 1621 3.8  1819 16.5  1780 14.0  1729 10.7 

4 1416 1575 11.2  1700 20.1  1730 22.2  1585 11.9 

5 1502 1714 14.1  1781 18.6  1878 25.0  1648 9.7 

6 1456 1607 10.4  1875 28.8  1650 13.3  1527 4.9 

7 1531 1650 7.8  1826 19.3  1761 15.0  1735 13.3 

8 1626 1799 10.6  2056 26.4  2084 28.2  1763 8.4 

9 1639 1731 5.6  1831 11.7  1837 12.1  1836 12.0 

10 1656 1917 15.8  2010 21.4  2137 29.0  1898 14.6 

20x20             

1 2443 2787 14.1  2808 14.9  2821 15.5  2818 15.3 

2 2134 2331 9.2  2564 20.1  2586 21.2  2331 9.2 

3 2414 2598 7.6  2977 23.3  2900 20.1  2678 10.9 

4 2257 2541 12.6  2603 15.3  2670 18.3  2629 16.5 

5 2370 2615 10.3  2733 15.3  2868 21.0  2704 14.1 

6 2349 2439 3.8  2707 15.2  2722 15.9  2572 9.5 

7 2383 2465 3.4  2684 12.6  2796 17.3  2456 3.1 

8 2249 2467 9.7  2523 12.2  2612 16.1  2435 8.3 

9 2306 2550 10.6  2617 13.5  2701 17.1  2754 19.4 

10 2257 2557 13.3  2649 17.4  2690 19.2  2633 16.7 

50x5             

1 2729 2839 4.03  2883 5.64  2820 3.33  2774 1.65 

2 2882 3152 9.37  3032 5.20  2975 3.23  3014 4.58 

3 2650 2850 7.55  3010 13.58  3071 15.89  2777 4.79 

4 2782 2925 5.14  3179 14.27  3102 11.50  2860 2.80 

5 2868 2882 0.49  3188 11.16  3114 8.58  2963 3.31 
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Table 2 

Makespans and RPDs for Taillard’s 50-job and 100-job benchmark-problem datasets 

 

Problem 

instance 

NEH 

(Reference 

makespan) 

MOD   CDS   Gupta   Palmer  

Cmax RPD  Cmax RPD  Cmax RPD  Cmax RPD 

50x5             

6 2835 2959 4.37  3175 11.99  3104 9.49  3090 8.99 

7 2806 3021 7.66  3005 7.09  3109 10.80  2845 1.39 

8 2700 2827 4.70  3189 18.11  3091 14.48  2826 4.67 

9 2606 2783 6.79  3171 21.68  3211 23.22  2733 4.87 

10 2801 2827 0.93  3224 15.10  3092 10.39  2915 4.07 

50x10             

1 3175 3468 9.23  3671 15.62  3672 15.65  3461 9.01 

2 3073 3174 3.29  3645 18.61  3577 16.40  3313 7.81 

3 2994 3191 6.58  3677 22.81  3670 22.58  3335 11.39 

4 3218 3417 6.18  3707 15.20  3645 13.27  3511 9.11 

5 3186 3417 7.25  3664 15.00  3499 9.82  3427 7.56 

6 3148 3340 6.10  3584 13.85  3559 13.06  3318 5.40 

7 3277 3539 8.00  3784 15.47  3723 13.61  3457 5.49 

8 3170 3407 7.48  3744 18.11  3746 18.17  3382 6.69 

9 3025 3422 13.12  3518 16.30  3561 17.72  3414 12.86 

10 3267 3370 3.15  3913 19.77  3699 13.22  3404 4.19 

50x20             

1 4006 4347 8.51  4759 18.80  4645 15.95  4272 6.64 

2 3958 4370 10.41  4414 11.52  4354 10.01  4303 8.72 

3 3866 4265 10.32  4469 15.60  4485 16.01  4210 8.90 

4 3953 4360 10.30  4793 21.25  4773 20.74  4233 7.08 

5 3872 4218 8.94  4642 19.89  4649 20.07  4376 13.02 

6 3861 4320 11.89  4505 16.68  4714 22.09  4312 11.68 

7 3927 4138 5.37  4758 21.16  4665 18.79  4306 9.65 

8 3914 4295 9.73  4609 17.76  4577 16.94  4318 10.32 

9 3970 4277 7.73  4465 12.47  4543 14.43  4547 14.53 

10 4036 4222 4.61  4556 12.88  4488 11.20  4197 3.99 

100x5             

1 5514 5929 7.53  5602 1.60  5765 4.55  5749 4.26 

2 5284 5436 2.88  5669 7.29  5697 7.82  5316 0.61 

3 5222 5323 1.93  5638 7.97  5531 5.92  5325 1.97 

4 5023 5310 5.71  5287 5.26  5269 4.90  5049 0.52 

5 5261 5424 3.10  5584 6.14  5535 5.21  5317 1.06 

6 5154 5278 2.41  5203 0.95  5200 0.89  5274 2.33 

7 5282 5530 4.70  5557 5.21  5434 2.88  5376 1.78 

8 5140 5230 1.75  5509 7.18  5504 7.08  5263 2.39 

9 5489 5538 0.89  5821 6.05  5901 7.51  5606 2.13 

10 5336 5593 4.82  5740 7.57  5670 6.26  5427 1.71 

100x10             

1 5897 6208 5.27  6749 14.45  6549 11.06  6161 4.48 

2 5466 5745 5.10  6285 14.98  6238 14.12  5889 7.74 

3 5747 6043 5.15  6648 15.68  6359 10.65  6119 6.47 

4 5924 6368 7.49  6848 15.60  6908 16.61  6329 6.84 

5 5672 6025 6.22  6399 12.82  6499 14.58  6070 7.02 

6 5395 5852 8.47  6136 13.73  6154 14.07  5870 8.80 

7 5717 6359 11.23  6417 12.24  6535 14.31  6442 12.68 

8 5752 6300 9.53  6513 13.23  6425 11.70  6168 7.23 

9 6016 6304 4.79  6356 5.65  6386 6.15  6081 1.08 

10 5937 6287 5.90  6835 15.13  6816 14.81  6259 5.42 
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Table 3 

Makespans and RPDs for Taillard’s 100-job, 200-job and 500-job benchmark-problem datasets 

 

Problem 

instance 

NEH 

(Reference 

makespan) 

MOD   CDS   Gupta   Palmer  

Cmax RPD  Cmax RPD  Cmax RPD  Cmax RPD 

100x20             

1 6520 7092 8.77  7584 16.32  7668 17.61  7075 8.51 

2 6550 7194 9.83  7615 16.26  7600 16.03  7058 7.76 

3 6621 7350 11.01  7526 13.67  7628 15.21  7181 8.46 

4 6589 7226 9.67  7909 20.03  7802 18.41  7039 6.83 

5 6697 7057 5.38  7681 14.69  7628 13.90  7259 8.39 

6 6813 7234 6.18  7582 11.29  7832 14.96  7109 4.34 

7 6578 7156 8.79  8125 23.52  7892 19.98  7279 10.66 

8 6791 7425 9.34  7902 16.36  8098 19.25  7567 11.43 

9 6679 7017 5.06  7668 14.81  7687 15.09  7271 8.86 

10 6680 7267 8.79  7947 18.97  7557 13.13  7305 9.36 

200x10             

1 10949 11631 6.23  12151 10.98  12220 11.61  11443 4.51 

2 10677 11236 5.24  12088 13.22  12170 13.98  10986 2.89 

3 11080 11575 4.47  12378 11.71  11948 7.83  11336 2.31 

4 11057 11397 3.07  11730 6.09  11676 5.60  11265 1.88 

5 10615 11202 5.53  11634 9.60  11604 9.32  11125 4.80 

6 10495 11438 8.99  11854 12.95  11592 10.45  10865 3.53 

7 10950 11554 5.52  12436 13.57  12055 10.09  11333 3.50 

8 10834 11361 4.86  11801 8.93  12088 11.57  11275 4.07 

9 10565 11230 6.29  12197 15.45  12189 15.37  11184 5.86 

10 10808 11436 5.81  11758 8.79  11893 10.04  11355 5.06 

200x20             

1 11638 12750 9.55  13446 15.54  13724 17.92  13042 12.06 

2 11678 12494 6.99  13129 12.43  13132 12.45  12813 9.72 

3 11724 12799 9.17  13578 15.81  13651 16.44  12846 9.57 

4 11796 12734 7.95  13297 12.72  13608 15.36  13061 10.72 

5 11670 12559 7.62  13004 11.43  13132 12.53  12827 9.91 

6 11805 12491 5.81  13583 15.06  13233 12.10  12381 4.88 

7 11876 12511 5.35  13110 10.39  13175 10.94  12584 5.96 

8 11824 12561 6.23  13799 16.70  13929 17.80  12824 8.46 

9 11801 12886 9.19  13289 12.61  13407 13.61  12523 6.12 

10 11890 12862 8.17  13709 15.30  13720 15.39  12615 6.10 

500x20             

1 26774 28551 6.64  30650 14.48  29851 11.49  28246 5.50 

2 27215 29031 6.67  30838 13.31  29804 9.51  29439 8.17 

3 26941 28432 5.53  30532 13.33  29960 11.21  28073 4.20 

4 26928 28342 5.25  30208 12.18  30372 12.79  28058 4.20 

5 26928 28286 5.04  29917 11.10  29540 9.70  27768 3.12 

6 27047 28428 5.11  29866 10.42  29868 10.43  28516 5.43 

7 26820 28116 4.83  30428 13.45  29955 11.69  27878 3.94 

8 27230 28293 3.90  30073 10.44  30021 10.25  28294 3.91 

9 26541 27892 5.09  29120 9.72  30065 13.28  27745 4.54 

10 27103 28979 6.92  30232 11.54  30498 12.53  28313 4.46 

ARPD   6.88   13.54   13.36   7.10 

 

The final line of Table 3 gives the overall average RPD values over all problem 

instances. 
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The solutions of developed algorithm and those of CDS, Gupta’s algorithm, and 

Palmer’s Slope Index algorithm are compared with the NEH optimal solutions for 

problems with a size up to 20 machines and 500 jobs. 

From the results we can also make the following observations. Overall, the MOD 

heuristic performed better than any of tested algorithms with the exception of the 

NEH algorithm that was used as reference heuristic for this study. MOD’s average 

RPD for all 120 Taillard’s problems came at 6.88%. The cost of computing time 

was insignificant, in contrast to other three tested algorithms. 

For Taillard’s 20-job problems, i.e., 20x5, 20x10 and 20x20 size problems, MOD 

found the closest match to the reference solutions for 19 of the 30 problems. The 

average RPD of the MOD approach for the 20-job problems came at 8.06%. Thus, 

MOD performed very well on the 20-job Taillard’s problems. For 50-job 

problems, i.e., 50x5, 50x10 and 50x20 size problems, MOD’s average relative 

percentage deviation was 6.97%, which is the smallest ARPD of all four 

algorithms. For the 100-job problems, MOD’s varied by the overall size of the 

problem. The 100x5 problems were solved to within an average RPD of 3.57%, 

while the 100x20 problems came at an average RPD of 8.28%. 

Instead of displaying the times for each problem individually, we grouped the 

average computational times for each size of the problem. The average 

computational times (CPU) are summarized for each size of the problem and 

depicted in Figure 1. The CPU times, as can be seen from the graph, vary by the 

size of the problem. For example, MOD took between 153 and 157 milliseconds 

for 500-job problems. CDS took from 86 to 90 milliseconds and NEH from 

617248 to 640114 milliseconds for 500x20 problems. 

 

Figure 1 

Average CPU times for each group of the problems 
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Conclusions 

In the presented study, a constructive heuristic based on Johnson’s rule is 

presented for the sequencing problem with sequence-dependent jobs, which is a 

quite common problem in many industries. The approach uses pair-splitting 

strategy and tries to find the minimal makespan. Based on the tested problems 

involving multiple jobs and machines, the proposed approach proved that is 

capable of good results. The proposed algorithm gave the best performance of all 

four approaches. The average RPD from the reference algorithm was 6.88% for all 

Taillard’s problems. 

The MOD approach was used to give a better solution than three other heuristics, 

namely Palmer, CDS and Gupta. For all three heuristics, the MOD algorithm 

showed significant improvements and compared well with the best-known NEH 

heuristic. Empirical testing on 120 benchmark problems drawn from Taillard 

produced some very good results. 

We thus make an important contribution by proposing a new constructive heuristic 

for solving the permutation flow-shop scheduling problem with the objective of 

minimizing the makespan. The MOD algorithm finds near-optimal solutions for 

many benchmark problems in a reasonable time. 

Future research could address this approach to more difficult flow-shop problems 

involving sequence-dependent setup times. Different objective functions can also 

be tested. Larger problems could be attempted with this approach. Future research 

can further try to find better pair-splitting strategies. 
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