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Abstract: K-means is the best known clustering algorithm, because of its usage simplicity, 
fast speed and efficiency. However, resultant clusters are influenced by the randomly selected 
initial centroids. Therefore, many techniques have been implemented to solve the mentioned 
issue. In this paper, a new version of the k-means clustering algorithm named as ImpKmeans 
shortly (An Improved Version of K-Means Algorithm by Determining Optimum Initial 
Centroids Based on Multivariate Kernel Density Estimation and Kd-tree) that uses kernel 
density estimation, to find the optimum initial centroids, is proposed. Kernel density 
estimation is used, because it is a nonparametric distribution estimation method, that can 
identify density regions. To understand the efficiency of the ImpKmeans, we compared it with 
some state-of-the-art algorithms. According to the experimental studies, the proposed 
algorithm was better than the compared versions of k-means. While ImpKmeans was the most 
successful algorithm in 46 tests of 60, the second-best algorithm, was the best on 34 tests. 
Moreover, experimental results indicated that the ImpKmeans is fast, compared to the 
selected k-means versions. 
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1 Introduction 
Clustering algorithms are unsupervised approaches, that separate data into groups, 
that are called clusters, according to included similarities and dissimilarities [1] [2]. 
Clustering approaches aim to maximize as much as possible both the similarities 
among the data in the same group and also the dissimilarity among the data in the 
different groups. In general terms, clustering algorithms are divided into five parts 
which are partitioning-based methods, hierarchical methods, density-based 
methods, grid-based methods, and model-based methods; and DBSCAN [3], 
OPTICS [4], k-means [5], Affinity Propagation [6], Agglomerative Clustering [7], 
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HDBSCAN [8], and MCMSTClustering [9] are some examples of clustering 
algorithms. Some of the application areas of clustering are pattern recognition [10, 
11], machine learning [12] [13], bioinformatics [14] [15], data mining [16] [17], 
web mining [1] [18], stream mining [12] [19], etc. 

Basic k-means clustering was proposed by Stuart Lloyd in 1957 as a technique for 
pulse-code modulation to define linearly separable clusters. It is one of the 
partitioning-based clustering algorithms that divides the dataset into k clusters over 
randomly selected initial centroids. Although k-means is efficient and easy to use, 
it encounters problems if the dataset is not linearly separable. The main problems 
related to k-means are as follows: 

• The final clusters are dependent on randomly selected centroids. As shown 
in Figure 1, if the randomly selected centroids are not located optimal, it 
fails while defining clusters. 

• K-means clustering assumes that the shape of the clusters to be found is 
spherical. However, a minority of the datasets are spherical, and majorities 
are arbitrary in real-life. 

• K-means cannot handle outliers because it partitions the data into k clusters 
without searching for outliers. 

• It encounters some problems if the sizes of clusters are different. 
• If the clusters are not linearly separable or overlapped, k-means encounters 

some issues. 

Since the basic k-means clustering algorithm was proposed, many variants of it have 
been proposed to deal with mentioned issues that are given above [20]. Kernel k-
means has been proposed to overcome the problem of identifying clusters that 
cannot be linearly separated [21] [22]. By using kernel methods, kernel k-means 
can define non-spherical clusters. However, kernel k-means run-time complexity is 
high, and its time complexity is high. On the other hand, to meet the need for 
selecting optimal initial centroids, many advanced versions of k-means were 
proposed, like k-means++ [22], and algorithms like Fuzzy C-Means, to 
automatically determine the number of clusters [23] [24]. In k-means++, cluster 
centers are chosen more innovatively to avoid complete randomness. Centroids are 
chosen step by step according to the centroids selected before to minimize the cost. 
This approach makes k-means++ better than basic k-means. However, this approach 
is not easy to perform. Fritzke proposed K-means-u*, an improved version of k-
means++, to improve the limits of k-means++ [25]. But, used operations increase 
the complexity of the algorithm significantly. Another version of k-means to 
overcome the issue of selection of initial centroids was proposed by Zhang et al. 
[26]. In their study, although the accuracy of clustering results improved, it is 
unsuitable for big datasets because the algorithm's time complexity is high. Zhang 
et al. [27] proposed an advanced version of k-means based on density canopy to 
feed the k-means with the best initial centers. They used the canopy algorithm to 
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find the best values for k and initial centroids for k-means clustering. Although it 
effectively improves clustering quality, their method increases the algorithm's time 
complexity. As understood from explained versions of k-means clustering 
algorithm, we need a new k-means-based clustering algorithm that can cluster the 
dataset more accurately and quickly. 

This study proposes a novel approach that uses multivariate kernel density 
estimation to find optimum initial centroids for k-means. Since kernel density 
estimation is a nonparametric probability density function (KDE), we use it to find 
denser regions to select them as initial centroids. It can find denser regions and the 
degree of density in any data distribution. The main contributions that this article 
has and state-of-the-art algorithms do not have are summarized as follows: 

• The accuracy of k-means clustering algorithms increases thanks to using 
kernel density estimation to detect centroids of clusters. 

• Because the detected centroids are also the final centroids, our approach 
does not need an iterative procedure to reach final clusters. Final clusters 
are formed in the first iteration. This method makes our approach very fast, 
when compared with existing methods. 

Figure 1 
Final clusters of basic k-means according to randomly selected initial centers 

The rest of the paper is organized as follows. In the 2nd section, related methods are 
explained, while in the 3rd section, the problem is stated. Then in the 4th section, 
details about the proposed algorithm are provided. Then, details of the experimental 
study are shared in the 5th section, while the work is concluded in the 6th section. 
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2 Preliminaries 

2.1 Basic K-means 
K-means clustering is based on the partitioning approach and is the basic clustering 
algorithm of clustering techniques. Its procedure is simple and effective if the 
shapes of clusters are spherical and there are no outliers. It uses an iterative approach 
over randomly selected initial centroids to reach the final cluster. But, just as an 
example is illustrated in Figure 2, initial centroids affect the final clusters directly. 
The main objective of iterations is to minimize the standard deviation of the dataset. 
The objective function of k-means is given in Equation (1). 

𝐽𝐽 = 𝑚𝑚𝑚𝑚𝑚𝑚∑ ∑ �𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗�
2

𝑥𝑥𝑖𝑖∈𝐶𝐶𝑖𝑖
𝑘𝑘
𝑗𝑗=1                  (1) 

where k is the number of clusters, µj is the centroid of the jth cluster, x is a data point, 
�𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗�

2
 is the distance from the data point 𝑥𝑥𝑖𝑖 to the cluster center, which is 𝜇𝜇𝑗𝑗 of 

the jth cluster. Let X be the data points that construct the dataset; the pseudo-code of 

k-means is given in Algorithm 1. 

2.2 Kernel Density Estimation (KDE) 
In the literature, two types of density estimation methods are commonly used. These 
methods are parametric and nonparametric approaches. Parametric methods like the 
Gaussian method assume all the data distribution is uniform and most data is 
gathered around the center in the circle with a standard deviation radius. In contrast, 
nonparametric methods assume there may be more than one denser area among the 
data. Namely, according to the parametric methods, there is only one peak on the 
curve; nonparametric methods assume there may be more than one peak.  
The probability density function of the univariate normal distribution with mean µ 
and variance σ2 is given in Equation (2). 
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where the value of x is in -∞ < x < ∞ interval. On the other hand, in addition to 
assuming that there may be more than one peak on the curve, nonparametric 
distribution estimation methods may not be uniform. Let 𝑋𝑋 = [𝑋𝑋1, … ,𝑋𝑋𝑛𝑛]𝑇𝑇 be an n-
dimensional vector of multivariate Gaussian distribution of n-dimensional mean 
vector 𝜇𝜇𝜇𝜇𝑹𝑹𝑛𝑛 and ∑ the covariance matrix of n x n dimensions. Therefore, the 
multivariate kernel distribution equation will be Equation (3) [28]. 

𝑝𝑝(𝑥𝑥, 𝜇𝜇, Σ) = 1
�(2𝜋𝜋)𝑛𝑛|Σ|

exp(−1
2

(𝜋𝜋 − 𝜇𝜇)𝑇𝑇Σ−1(𝑥𝑥 − 𝜇𝜇))    (3) 

Figure 2 
Two examples of the effect of randomly selected centroids on final clusters in standard k-means 

As a nonparametric method, kernel density estimation tries to estimate where any 
new incoming data to locate according to existing data. Owing to this ability, KDE 
is used in many areas like machine learning, healthcare systems, stock markets, etc. 
[2]. As we mentioned earlier and as in the example in Figure 3, there can be multiple 
density peaks on the curve, and there are many types of KDE functions, known as 
smoothing functions, as given in Figure 4. Then, KDE is calculated as given in 
Equation (4), where K(.) is one of the functions in Figure 4. 

𝑃𝑃𝑛𝑛� (𝑚𝑚) = 1
𝑛𝑛ℎ
∑ 𝐾𝐾 �𝑋𝑋𝑖𝑖−𝑥𝑥

ℎ
�𝑛𝑛

𝑖𝑖=1        (4) 

3 Problem Statement 
The most important problem related to k-means is centroid initialization. Since the 
initial centroids are selected randomly in standard k-menas, both final clusters and 
the accuracy might be affected directly in a negative way. Although many advanced 
versions of k-means have been proposed, the time complexities of these algorithms 
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are very high. There is still a need for new k-means versions that can determine the 
best initial centroids and have low time complexity. In this study, we propose a new 
version of k-means to overcome the mentioned issues. 

Figure 3 
The relationship between histograms and peaks in KDE 

Figure 4 
Types of kernel density estimation curves 

Figure 5 
Example of the initial centroid and the radius used to determine the ignorance area on the Aggregation 

dataset 
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4 The Proposed Algorithm 
This section describes the details of the proposed algorithm. In this study, we 
propose a new version of k-means clustering to overcome the issue of initial 
centroids determination. We try to detect peak points in the dataset to reach the goal. 
To find peak points, we used multivariate kernel density estimation. The purpose of 
finding peak points is to select determined peak points as initial centroids for k-
means. Namely, the points with high KDE are candidates for initial centroids. 
Therefore, we select k points as initial centroids. However, as shown in Figure 5, 
selected k points with the highest values may be too close to each other. If these 
points were chosen as the initial centroids, the accuracy of the final clusters would 
be reduced. Therefore, in ImpKmeans, we use one more predefined parameter: 
ignorance radius. When searching for a new initial centroid using kd-tree and range 
search, we ignore data around previously selected centroids that are inside the radius 
of ignorance. Now, let's give more details and define the parameters used in 
ImpKmeans. 

4.1 Definitions 
Definition 1 (ignorance radius - ignorance_r): The ignorance radius determines the 
ignorance area around each selected centroid. This approach makes it possible for 
our algorithm to overcome local maxima. As given in Figure 5, if we didn’t use this 
approach, all initial centroids would be selected from the same denser regions. This 
approach makes it possible to select initial centroids from different denser regions. 

Definition 2 (the number of clusters  - k): The number of clusters is the predefined 
number of clusters the user enters. However, this does not necessarily mean that 
there will always be k final clusters. In ImpKmeans, the formed clusters may be less 
than the selected k value. 

Definition 3 (MultiKDE): As processed data is multidimensional, in ImpKmeans, 
we calculate the multivariate kernel density estimation value for each data.  
In addition to applying KDE to univariate data, we can apply it to multivariate 
datasets. To adapt the KDE to process multivariate datasets, we should use a kernel 
constructed by a product kernel or a radial basis function to process 
multidimensional datasets. Let's handle a 2-dimensional dataset. Let 𝑋𝑋 =
(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … ,𝑋𝑋𝑑𝑑)′ be a sample of multivariate random variables with the density 
of  f(x) defined on 𝑅𝑅𝑑𝑑 and  {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 … , 𝑥𝑥𝑛𝑛} be an independent sample taken from 
f(x). Then the multivariate kernel density estimation is calculated by Equation (5), 
where K(.) is a multivariate kernel function, and h is a positive bandwidth matrix. 

𝑓𝑓ℎ�(𝑥𝑥) = 1

𝑛𝑛|ℎ|−
1
2
∑ 𝐾𝐾(ℎ−

1
2(𝑥𝑥 − 𝑋𝑋𝑖𝑖))𝑛𝑛

𝑖𝑖=1      (5) 

Definition 4 (kd-tree-based rangesearch): Figure 6 shows that kd-tree is a tree data 
type that can process multidimensional datasets. While placing the data into the tree, 
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it evaluates one dimension in each step. On the other hand, a rangesearch operation 
is an operation that is performed on any kd-tree to find the data inside a circle of 
radius of r. The reason to use this approach in our algorithms is that the kd-tree and 
the rangesearch have low computational complexity 

Figure 6 
Decomposition of the kd-tree dataset 
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4.2 Algorithm 
As we explained above, the main contributions of ImpKmeans are that it can detect 
the best initial centroids for k-means and does not need an iterative search method 
to reach final clusters. As an example, illustrated in Figure 5, KDE makes it possible 
to find the denser areas, and ignorance radius makes it possible to find the initial 
centroids in different regions. ImpKmeans algorithm is divided into two parts: 

• In the initial stage, kernel density estimation finds peak points in the 
dataset. k points that minimize the cost are selected as initial centroids. 

• In the second stage, initial centroids proposed by kernel density estimation 
are given to basic k-means as initial centroids, and the dataset is clustered 
according to these centroids in only one iteration. 

According to the abovementioned equations and explanations about our method, 
the pseudo-code of ImpKmeans is given Algorithms 2 and 3. 

4.3 Time Complexity 
Let n be the number of vectors of d-dimensions, k be the number of clusters in the 
dataset, and i be the number of iterations needed to be converged; the comparison 
of the time complexity of the proposed algorithm with the state-of-the-art algorithm 
is given in Table 1. Because we use kd-tree construction and range search on it, the 
time complexity of our algorithm is the summation of O(dn logn) for constructing 
the kd-tree and O(𝑑𝑑𝑚𝑚1−

1
𝑑𝑑+𝑘𝑘) for reangesearch operation. In addition, O(nkd) is the 

complexity of assigning the data to selected initial centroids. Therefore, the allover 
time complexity of our algorithm is O(dn logn + 𝑑𝑑𝑚𝑚1−

1
𝑑𝑑+𝑘𝑘 +  nkd). This complexity 

could be simplified as O(𝑑𝑑𝑚𝑚1−
1
𝑑𝑑+𝑘𝑘). As our algorithm does not use an iterative 

approach, it is expected to be faster, compared with the other algorithms. 

Table 1 
Time complexity comparison of algorithms 

Algorithm Complexity 
k-means O(nkdi) 
k-mediods O(n2kdi) 
k-means++ O(n2k2di) 
FCM O(nkdi) 
ImpKmeans O(nkd) 
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5 Experimental Study 

5.1 Development Environment 
In this study, to measure the efficiency of our algorithm, we tested it on synthetic 
and real datasets in the Anaconda environment by using Python programming 
language with the needed libraries. To measure its clustering accuracy and speed, 
we compared it with some state-of-the-art algorithms like k-means, kmeans++, k-
medoids, and Fuzzy C-Means. All experimental studies were performed on a 
computer with 16 GB RAM, an Intel i7 processor, and Windows 11 operating 
system installed. 

5.2 Experimental Setup 
To be sure that each data is in the same range and to select parameters easily, the 
data were normalized with the min-max normalization. The equation of min-max 
normalization is given in Equation (6).  

            𝑧𝑧𝑖𝑖𝑗𝑗 =
𝑥𝑥𝑖𝑖𝑖𝑖−𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖

max𝑥𝑥𝑖𝑖−min𝑥𝑥𝑖𝑖
                    (6) 

Additionally, we used ARI (Adjusted Rand Index), Purity, and Silhouette Index to 
evaluate and compare the clustering quality of the algorithms. Equations about these 
indices are given in Equations (7), (8), and (9), respectively, where nij, ai, bj, be 
values obtained from the contingency table, k the number of clusters, and c and t 
are the maximum count of data in the related clusters. 

𝐴𝐴𝑅𝑅𝐴𝐴 =
∑ �𝑛𝑛𝑖𝑖𝑖𝑖2 �−�∑ �𝑎𝑎𝑖𝑖2 �𝑖𝑖 ∑ �𝑏𝑏𝑖𝑖2 �𝑖𝑖 �/�𝑛𝑛2� 𝑖𝑖𝑖𝑖

1
2�∑ �𝑎𝑎𝑖𝑖2 �+𝑖𝑖 ∑ �𝑏𝑏𝑖𝑖2 �𝑖𝑖 �−�∑ �𝑎𝑎𝑖𝑖2 �𝑖𝑖 ∑ �𝑏𝑏𝑖𝑖2 �𝑖𝑖 �/�𝑛𝑛2�

                  (7) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃 = 1
𝑁𝑁
∑ 𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗�𝑐𝑐𝑖𝑖 ∩ 𝑃𝑃𝑗𝑗�𝑘𝑘
𝑖𝑖=1                    (8) 

𝑆𝑆𝐴𝐴 = 1
𝑛𝑛
∑ ∑ 𝑏𝑏(𝒙𝒙)−𝑎𝑎(𝒙𝒙)

𝑚𝑚𝑎𝑎𝑥𝑥 (𝑎𝑎(𝒙𝒙),𝑏𝑏(𝒙𝒙))𝒙𝒙∈𝐶𝐶𝑖𝑖
𝑘𝑘
𝑖𝑖=1                    (9) 

where a(x) is the average distance to all the data of the cluster that x is in, and b(x) 
is the average distance to all the data of the closest cluster that x is not in. 

5.3 Used Datasets 
Synthetic and real datasets were used in the experimental study to compare the 
success of our algorithm with the state-of-the-art algorithms. Since the main 
purpose of our approach is to improve the accuracy of k-means and reduce the time 
complexity, the selected datasets are spherical in general. On the other hand, to 
measure the efficiency of our algorithm on the imbalanced dataset, we select some 
imbalanced datasets like Outliers, Aggregation, and Thyroid. Details of the datasets 
used in the experimental study are given in Table 2. 
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Table 2 
Used datasets 

Dataset  Type # of Features # of data # of class Reference 
Outliers  Synthetic 2 700 4 [29]    
Corners  Synthetic 2 2000 4 [29]    
Iris  Real 4 150 3 [30] 
Breast Cancer  Real 8 699 2 [30] 
Aggregation  Synthetic 2 788 7 [31] 
Thyroid  Real 4 215 2 [30] 
Xclara  Synthetic 2 3000 3 [32] 
Twenty  Synthetic 2 1000 20 [33] 
2d-10c  Synthetic 2 2990 10 [33] 
2d-20c  Synthetic 2 1517 20 [33] 
2d-3c  Synthetic 2 625 3 [33] 
2d-4c  Synthetic 2 1260 4 [33] 
D31  Synthetic 2 3100 31 [34] 
R15  Synthetic 2 600 15 [34] 
Diamond9  Synthetic 2 3000 9 [33] 
Sizes1  Synthetic 2 1000 4 [33] 
DS-850  Synthetic 2 850 5 [33] 
Fourty  Synthetic 2 1000 40 [33] 
S-set1  Synthetic 2 5000 16 [33] 
St900  Synthetic 2 900 9 [33] 

5.4 Experimental Procedure and Parameter Setting 
In the experimental study, we used a random search method with randomly selected 
parameters to reach the best results for each algorithm. We run each algorithm on 
each dataset 100 times with randomly selected parameters of each algorithm for 
each index (ARI, Purity, and SI). The highest obtained value of each index on each 
dataset was the best value for the selected algorithm. Similarly, the parameters 
enabling us to reach this value were the best. On the other hand, we also compared 
the speed of algorithms on selected datasets. 

5.5 Results on Both Synthetic and Real Datasets 
We used the procedure explained in Section 5.4 to find the best parameters for each 
algorithm and clustering results. Obtained results are shown in Tables 3, 4 and 5. 
The ARI values of ImpKmeans, k-means, k-medoids, FCM, and k-medoids are 
shared in Table 3. Additionally, visual results are provided in Figure 7. According 
to the results, it is obvious that our algorithm is more successful on 16 datasets over 
20 datasets. On the other hand, k-means, k-means++, k-medoids, and FCM were 
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the best on 9, 12, 6 and 8 datasets over 20 datasets, respectively. Iris, D31, Sizes1, 
and DS-850 were the datasets in that our algorithm was not the most successful. But 
the ARI values that our algorithm achieved were very close to the best values. 
Therefore, we can say that our algorithm is the best in datasets by the aspect of ARI. 

Regarding Purity, our algorithm was the most successful on 15 datasets over 20, 
while k-means, k-means++, k-medoids, and FCM were the best on 11, 7, 5 and 12 
datasets over 20 datasets, respectively. When we examined our algorithms' results 
on the datasets in which it was not the best; its Purity values were very close to the 
best. So, in Purity, our algorithm is very competitive compared to the other 
algorithms. As for SI, it was seen that our algorithm was the most successful on 15 
datasets over 20 with k-means++, while k-means, k-medoids, and FCM were the 
most successful on 9, 6 and 8 datasets. As real datasets, we tested the algorithms on 
Iris, Breast Cancer, and Thyroid. Our algorithm was more successful in Breast 
Cancer and Thyroid. As for Iris, our algorithm is very close to the best values. 
Consequently, as presented in Table 6, our algorithm appears to be more successful 
when compared with the other algorithms. 

Figure 7 
Cont. 
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Figure 7 
Cont. 
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Figure 7 
Visual clustering results (ARI values) of algorithms on the synthetical datasets 

Table 3 
ARI evaluation 

 FCM 
Lloyd’s  
k-means k-means++ k-medoids ImpKmeans 

Outliers 0.8463 0.703 0.8463 0.8464 1 
Corners 1 1 1 1 1 
Iris 0.7287 0.7163 0.7163 0.743 0.7163 
Breast Cancer 0.8178 0.8391 0.8391 0.8284 0.8391 
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Aggregation 0.7762 0.7927 0.7906 0.7719 0.8239 
Thyroid 0.6927 0.6283 0.6283 0.2055 0.8434 
Xclara 0.9929 0.9929 0.9929 0.9929 0.9929 
Twenty 1 0.9736 1 0.7734 1 
2d-10c 0.9967 0.9967 0.9967 0.804 0.9967 
2d-20c 0.8325 0.8207 0.8358 0.6509 0.8377 
2d-3c 0.7565 0.7638 0.7638 0.7638 0.7638 
2d-4c 0.9983 0.9983 0.9983 0.7862 0.9983 
D31 0.5254 0.5553 0.57 0.5244 0.5489 
R15 0.9928 0.9928 0.9928 0.8919 0.9928 
Diamond9 1 1 1 0.9977 1 
Sizes1 0.9558 0.9558 0.9558 0.9578 0.9558 
DS-850 0.8841 0.8904 0.8904 0.9042 0.8904 
Fourty 0.9006 0.8869 1 0.5428 1 
S-set1 0.995 0.995 0.995 0.8504 0.9954 
St900 0.8398 0.8313 0.8313 0.7877 0.8313 

Table 4 
Purity evaluation 

 FCM 
Lloyd’s  
k-means k-means++ k-medoids ImpKmeans 

Outliers 1 1 1 1 1 
Corners 1 1 1 1 1 
Iris 0.98 0.96 0.9667 0.9667 0.9733 
Breast Cancer 0.9671 0.97 0.97 0.9742 0.9742 
Aggregation 0.9949 0.9962 0.9949 0.9962 0.9949 
Thyroid 0.9488 0.9628 0.9535 0.9023 0.9628 
Xclara 0.9997 0.9987 0.999 0.9977 0.9997 
Twenty 1 1 1 0.8 1 
2d-10c 0.9997 0.9993 0.9993 0.8013 0.9997 
2d-20c 0.8471 0.8154 0.8451 0.6711 0.8457 
2d-3c 0.9902 0.9944 0.993 0.993 0.9944 
2d-4c 1 1 1 1 1 
D31 0.4835 0.4835 0.4823 0.4777 0.4835 
R15 0.9967 0.9967 0.9967 0.9317 0.9967 
Diamond9 1 1 1 0.999 1 
xxSizes1 0.984 0.986 0.983 0.983 0.985 
DS-850 0.9953 0.9988 0.9988 0.9918 1 
Fourty 0.95 0.925 1 0.475 1 
S-set1 0.9976 0.9976 0.9976 0.869 0.9978 
St900 0.9256 0.9211 0.9211 0.9033 0.9211 
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Table 5 
SI evaluation 

 FCM 
Lloyd’s  
k-means k-means++ k-medoids ImpKmeans 

Outliers 0.6128 0.5173 0.6136 0.6119 0.6136 
Corners 0.5697 0.5534 0.5698 0.4693 0.5699 
Iris 0.618 0.6295 0.6295 0.6295 0.6295 
Breast Cancer 0.597 0.5966 0.5966 0.5968 0.5966 
Aggregation 0.5279 0.5365 0.5365 0.5385 0.5365 
Thyroid 0.5382 0.5755 0.5852 0.1909 0.5852 
Xclara 0.6945 0.6945 0.6945 0.6945 0.6945 
Twenty 0.738 0.6993 0.738 0.5472 0.738 
2d-10c 0.8368 0.8368 0.8368 0.724 0.8368 
2d-20c 0.6133 0.5967 0.6172 0.5374 0.6171 
2d-3c 0.5517 0.5557 0.5557 0.5557 0.5562 
2d-4c 0.8738 0.8738 0.8738 0.7184 0.8738 
D31 0.4606 0.4821 0.4832 0.4483 0.4791 
R15 0.7528 0.7528 0.7528 0.6843 0.7528 
Diamond9 0.5487 0.5487 0.5487 0.5486 0.5487 
xxSizes1 0.5934 0.5934 0.5934 0.5934 0.5934 
DS-850 0.5635 0.5646 0.5646 0.5652 0.5646 
Fourty 0.6082 0.6206 0.6852 0.4324 0.6852 
S-set1 0.7116 0.7116 0.7116 0.6116 0.7116 
St900 0.4417 0.4436 0.4436 0.4201 0.4436 

Table 6 
Overall cluster quality comparisons of the algorithms 

Algorithms ARI Purity SI Total 
k-means 9 11 9 29 
m-medoids 6 5 6 17 
k-means++ 12 7 15 34 
FCM 8 12 8 28 
ImpKmeans 16 15 15 46 

5.6 Speed Analysis 
As we explained in Table 1, our algorithm is expected to be fair regarding run-time 
complexity. Because our algorithm does not use any iterative approach. In our 
approach, the time-consuming stage is the initial stage, in which the kernel density 
estimation based on initial centroids is determined. Experimental studies also 
support our idea, as seen in Figure 8. On the other hand, in some datasets, like 
Twenty, in which the number of clusters is high compared to the others, the 
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consumed time in the ImpKmeans is slightly higher. In other words, we can say that 
the higher the number of clusters, the higher the run-time complexity for 
ImpKmeans. 

Figure 8 
Time comparison of the algorithms on some of the used datasets 

Conclusion and Future Work 

In this study, we proposed a new advanced version of k-means, named 
“ImpKmeans”, shortly to overcome the issues of initial centroid determination and 
the time complexity, that the other versions of k-means face. Our approach gets its 
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power from using multivariate kernel density estimation, to find the denser regions 
among the data. Eligible k number of peaks, are selected as initial centroids, 
according to density. This approach makes our algorithm superior to the compared 
algorithms, in terms of clustering quality. Moreover, since the selected initial 
centroids are also the final cluster centroids, our algorithm produces the final 
clusters, in only one iteration. This approach makes our algorithm both, more 
effective and faster. 

A significant experimental result was observed while testing algorithms on Outliers 
and Thyroid datasets. Our algorithm reached 100% and 84.34%, while the second-
best algorithm reached 84.64% and 69.27% clustering quality, respectively. As the 
experimental studies also support, our algorithm has both successful clustering 
quality and low time complexity. 

In the future, plans to examine various studies, addressing datasets with arbitrary-
shaped clusters, will be conducted. 

Code availability  

Python implementation of the proposed clustering algorithm is shared on GitHub 
(https://github.com/senolali/ImpKmeans). 
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