
Acta Polytechnica Hungarica Vol. 19, No. 10, 2022 

 – 61 – 

An Input-weighted, Multi-Objective 
Evolutionary Fuzzy Classifier, for Alcohol 
Classification 

Shahnaz N. Shahbazova1 and Dursun Ekmekci2,* 

1 Department of Computer Technologies and cybersecurity, Azerbaijan Technical 
University, shahbazova@aztu.edu.az 
Azerbaijan National Academy of Sciences, Institute of Control System, 
shahbazova@isi.az; Baku, Azerbaijan; ORCID ID: 0000-0002-9898-6829 
2 Department of Computer Engineering, Faculty of Engineering, Karabuk 
University, Karabuk, Turkey, E-mail: dekmekci@karabuk.edu.tr  

* Corresponding Author; ORCID ID: 0000-0002-9830-7793 

Abstract: The success of the evolutionary computational methods in scanning at problem's 
solution space and the ability to produce robust solutions, are important advantages for 
fuzzy systems, especially in terms of "interpretability" and "accuracy". Many techniques 
have been introduced for multi-objective evolutionary fuzzy classifiers by considering this 
advantage. However, these techniques are mostly fuzzy rule-based methods. In this study, 
instead of designing an optimal rule table or determining optimal rule weights, the inputs 
are weighted, and no rules are used. The average of the degrees of membership obtained 
with their Membership Function (MF) is calculated as the "input membership degree 
(μInp)" for each input. The μInps are then weighted, and a single coefficient is generated to 
be used for the output. With the output, results are obtained for different objective 
functions. The weights of the inputs and the MFs parameters of all variables (inputs and 
outputs) are optimized with NSGA-II. The performance of the method has been tested for 
alcohol classification. As a result, it has been proven that the method can generate designs 
that can classify at shallow error levels with different sensors at different gas 
concentrations. In addition, it has been observed that the proposed method produces more 
successful solutions for alcohol classification problems when compared to other MOEFC 
techniques. 
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1 Introduction 

One of the main issues to be considered in Fuzzy Systems design is optimizing the 
balance of “interpretability” and “accuracy” which generally conflict with each 
other. Evolutionary computational methods have been proposed in many studies 
for this delicate balance. The success of Evolutionary Algorithms (EAs) for 
designing the architectures of single-output fuzzy systems has also inspired Multi-
Objective Evolutionary Fuzzy Classifiers (MOEFCs). In this context, MOEFC has 
a hybrid structure that combines the approximate reasoning capability of fuzzy 
logic with the robust adaptation performance of EAs, for complex classification 
problems. Within the scope of MOEFCs, EAs are applied to Fuzzy Rule-Based 
Systems (FRBSs) for rule tuning, mining, selection, weighting and are applied to 
Fuzzy Inference Systems (FISs) for parameter tuning. EAs can also easily 
incorporate prior knowledge into the system [1]. During the evolutionary design 
process, models are widely used to approach classification problems as they are 
characterized by a good balance between their accuracy and their level of 
interpretability [2]. 

The two main components that determine the performance of a Fuzzy Classifier 
(FC) are the adequate structure and the determination of the parameters. While 
constructing the structure of an FC, choosing the adequate variables, assigning 
enough Membership Functions (MFs) for each variable, and designing a practical 
fuzzy rule table are essential for the model's performance. In addition to these 
tasks, setting the MFs' parameters will become highly complex due to its vast 
search space, especially when considering high-dimensional problems. This 
challenge in the FC design is examined in detail in [3]. To overcome this problem, 
although different heuristic techniques are suggested today, the Genetic Algorithm 
(GA) was primarily preferred in the first examples [4]-[5]. EA-based FCs are 
generally rule-based systems. Ishibuchi et al. [4] used a method to minimize the 
number of fuzzy rules on the one hand and increase accuracy on the other. 
Gorzalczany and Rudzinski [6] applied their proposed multi-objective GA method 
in the technical field of glass identification in forensic science as decision support. 
In [7], fuzzy sets are not tuned, but prior knowledge of the distribution of fuzzy 
sets is required. Ducange et al. [8] tested their proposed MOEFC method on two 
Internet traffic datasets obtained from real-world networks. They applied cross-
validation and cross-testing on the datasets. In both cases, they achieved 
successful low complexity and high interpretability results. Pietari et al. [9] 
proposed a different approach for FRBS design. True positive and false positive 
rates were determined instead of the commonly used misclassification rate as 
accuracy measures. The model also has interpretability, which is then allowed to 
be adjusted. The method used the Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) [10] method to balance objectives. 

The convergence performance of the model is low in approaches that randomly 
generate the initial population [11]. Also, some methods use aggregate fitness 
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functions [12] [13]. Vaishali et al. [14] aimed to improve the accuracy of existing 
diagnostic procedures in predicting Type 2 Diabetes. In the initialization phase, 
they selected the essential features with GA from the dataset they used and applied 
MOEFC on the features. In the method, they achieved the maximum rate of the 
classifier with the minimum number of rules. 

When literature studies are examined, it is seen that MOEFC methods are mainly 
based on FRBSs. In most studies, the number of fuzzy rules and the resulting error 
were considered objectives for balancing accuracy and interoperability. Unlike the 
classical FRBSs, this study uses the weighted-input approach, thus eliminating the 
need for effective rule design or optimal rule weighting. Another advantage of the 
method is that it can provide information about the relative importance of the 
inputs for all objectives in the problem. The average of the membership degrees 
obtained with its MFs is calculated as "the input membership degree (μInp)" for 
each input. Then, μInps are weighted, and a single coefficient is produced to be 
used for the output. With the output, results are obtained for different objective 
functions. The weights of the inputs and the MFs parameters of all variables 
(inputs and outputs) are optimized with NSGA-II. The performance of the 
proposed method has been tested on the alcohol classification problem. Using five 
Quartz Crystal Microbalance (QCM) sensors with different structures, 
measurements have been obtained in environments with different gas 
concentrations. The objective is to design a fuzzy classifier that can classify five 
different types of alcohol by evaluating the measurements of a QCM sensor.  
In this context, the main idea of the study is to design a MOEFC that can make the 
best classification for all sensors. Experimental results have proven that the 
method can successfully classify five different types of alcohol with a single 
solution vector. In [15], a coding scheme using accuracy and diversity and an 
entropy-based diversity criterion are proposed in evolutionary multi-objective 
optimization algorithms for MOEFC. 

The remainder of the paper is designed as follows: In Section 2, a background of 
the study is explained. First, the concept of Multi-Objective Optimization (MOO) 
is emphasized. Then, the NSGA-II method, which can be successfully applied to 
Multi-Objective Optimization Problems (MOOP), is explained with its main steps 
and basic procedures. Finally, the proposed method is introduced in the section.  
In Section 3, first, the experiments for alcohol classification and the data set 
designed according to the results of the experiments are described. Then, the 
implementation of the method to the problem is explained and finally, the results 
are shared and interpreted in detail. Section 4 concludes this work. 



Sh. N. Shahbazova et al. An Input-weighted, Multi-Objective Evolutionary Fuzzy Classifier,  
 for Alcohol Classification 

 – 64 – 

2 The Background of the Proposed Method 

From the MOEFC perspective, the basic approach of MOO methods is to search 
for a set of non-dominated fuzzy systems with different trade-offs between 
accuracy and complexity. For an effective MOEFC design, accuracy 
maximization is as crucial as complexity minimization. Within the scope of the 
study, the MOEFC method, which aims for optimal classification by the same 
solution vectors, has been proposed for these conflicting objectives. The NSGA-II 
algorithm is preferred for parameter tuning of MFs, and optimal input weights in 
the proposed method. Therefore, this section examines the concept of MOO, and 
the NSGA-II algorithm is explained. Finally, the proposed method is introduced in 
detail. 

2.1 Multi-Objective Optimization 

The MOOP can be formally expressed as in [16]: finding an n-dimensional 
possible solution vector x = (x1, x2, x3,…, xn,)T of decision variables that will 
satisfy many constraints and optimizes the vector function f(x)=[f1(x), f2(x), 
f3(x),…, fr(x)] and D ⊆ Rn is an n-dimensional bounded decision space. R 
represents the objectives. The constraints define the objective space ℱ, containing 
all the admissible solutions. Since it is challenging to optimize conflicting 
objectives simultaneously, a set of Pareto optimal solutions is generated instead of 
a single optimal solution. Pareto optimal solutions present objective function 
values of a multi-objective optimization model. None of the objective functions 
can be increased in value without decreasing some of the other objective values in 
this set of solutions [17]. 

Without loss of generality, this study adopts the following basic concepts of 
MOO: 

• Pareto dominance: Feasible solutions x ≺ y if and only if fi(x) ≺ fi(y) 
(∀ і=1, 2, 3,…, m) and fj(x) ≤ fj(y) (∃ j ∊ {1, 2, 3,…, m}) 

• The Pareto optimal set (or non-dominated set) is defined as PS = {x 
∈ D| x is Pareto optimal} and the Pareto optimal front is defined as 
PF* = {f(x)| x ∈ PS} 

• External archive: A solution matrix saves the non-dominated 
solution vectors achieved so far 

Although many GA-based techniques have been developed for MOOP, NSGA-II 
is more advantageous than its counterparts in terms of computation time [18]. Deb 
et al. [10] showed that NSGA-II could produce more successful solutions than 
many other MOO techniques in finding an alternative set of solutions and 
converging to the actual Pareto-optimal set. Moreover, in their comprehensive 
survey on the controller tuning problem in intelligent control systems, Rodríguez-
Molina et al. [19], emphasized that NSGA-II is the popular choice compared to 
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other meta-heuristic methods. Therefore, in this study, the NSGA-II method was 
preferred. 

2.2 Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

The first EA-based methods proposed for MOOP were generally developed based 
on GA [1]. NSGA [20] initially developed for real parameter optimization in 
multi-objective constrained optimization problems, is one of the first famous 
examples of these methods [2]. However, NSGA has been criticized for its high 
computational complexity, lack of elitism, and the necessity of determining the 
sharing parameter, and its improved versions are presented [21]. In this context, 
the NSGA-II [10] is a significantly revised version of NSGA. The NSGA-II 
includes three basic procedures: fast non-dominated sorting (for the entire 
population [14]), crowding distance assignment, and the main loop. 

Formally, the NSGA-II can be briefly summarized as following steps [22]. 

Initialize solutions: Generating initial solutions considering the lower and 
upper bounds. 

Non-dominated sorting: Sorting the initial solutions according to the criteria 
of non-domination. 

Crowding distance: Once the sorting is complete, the crowding distance value 
is assigned to the front. Solutions are selected according to rank and crowding 
distance. 

Selection: The selection of solutions is carried out using a binary tournament 
selection with the crowded-comparison operator (≺n). 

Genetic operators: New solutions are produced by crossover and mutation 
operations. 

Recombination and selection: Old and new solutions are combined, and the 
solutions to be used in the next cycle are determined by selection. Solution 
selection continues for each objective until the number of populations exceeds 
the number of solutions available. 

2.3 Proposed Method: An Input-weighted Multi-Objective 
Evolutionary Fuzzy Classifier 

MOEFCs are the techniques in which fuzzy approach and multi-objective EAs are 
hybridized. Therefore, in this section, the proposed method is introduced from the 
side of both main components. 
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2.3.1 Fuzzy Logic Side 

The proposed MOEFC technique differs from the classical fuzzy logic system.  
In the method, all MFs of the input and output variables are of type “Gaussian 
combination membership function (gauss2mf)” [23]. Compared to other MFs, in 
many studies, better solutions have been obtained with the gauss2mf [24] [25]. 

gauss2mf calculates the membership degrees using a combination of two Gaussian 
MFs given in (1). 

2

2
( )
2( ); ,
x c

f ex c σσ
− −

=                                                                                           (1) 

where σ represents the standard deviation, and c represents the mean for the 
Gaussian function. Membership value is computed for x. 

gauss2mf can be used on the MATLAB platform, as given in (2) [26]. 

1 1 2 2y = gauss2mf(x, [σ  c  σ  c ])                                                                           (2) 

 
Figure 1 

gauss2mf with the parameters σ1=2, c1=6, σ2=1, c2=5 

Figure 1 shows the gauss2mf plotted with parameters σ1=2, c1=6, σ2=1, c2=5. 
Each Gaussian function defines the shape of one side of the MF. The left curve is 
drawn using the parameters σ1 and c1 for (1). The parameters σ2 and c2 are used for 
(3), and the right curve is drawn. 
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In addition, “the input membership degree (μInp)” is determined for each input. 
The membership value of μInp1 with n MFs for x is computed by (4). 

1
1( ) ( 1. ( )) /

n

i
i

Inp x Inp MF x nµ µ
=

= ∑                                                                     (4) 

Then, all the inputs are weighted. Using these weighted inputs, the coefficient z is 
calculated with (5). 
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In (5), wi is the randomly assigned weight for μInpi. The output is the average of 
the membership values calculated with the MFs of the output variable for the 
coefficient z. For output with n MFs, the μOut is calculated by (6). 

1
( ) ( . ( )) /

n

i
i

Out z Out MF z nµ µ
=

= ∑                                                                       (6) 

In the fuzzy system design described, the NSGA-II method is used to optimize the 
parameters of the MFs of all variables, the weights of the inputs, and the output 
that determines the system results for different objectives. 

2.3.2 NSGA-II Side 

In the proposed method, the number of weights to be optimized is equal to the 
number of inputs. MFs in both input and output variables are of the gauss2mf 
type. As shown in (2), gauss2mf is a function that has 4 parameters. Accordingly, 
the number of parameters to be optimized for MFs will be 4 times the total 
number of MFs. Thus, the number of dimensions (D) in each solution vector is 
calculated with (7). 

( ) 4* (   var )D count Input count MFs of iables= +                                   (7) 

The output takes values in the range [0, 1]. In this context, lower bound and upper 
bound points are determined in the range of [0, 1] for each class. In the proposed 
method, the aim is to bring the outputs closer to the center of the targeted class. 
Therefore, for each class, the center point must be calculated. Table 1 shows the 
classes' lower bound, upper bound, and center points for a classification problem 
with c classes. 

Table 1 
The lower bounds, upper bounds, and center points calculated for c classes 

 Class 1 Class 2 … Class m 
Lover bound 0 1/m  m-1/m 
Upper bound 1/m 2/m  1 
Center 1/(2*m) 3/(2*m)  (2*m-1)/(2*m) 

The absolute value of the difference between the output produced by the system 
and the center point of the targeted class is measured as the error (e), as given in 
(8). 

e Out center= −                                                                                                (8) 
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The errors are calculated for all patterns in the data set, and the total error (E) is 
determined by (9). 

1
i

i
E e

=

=∑                                                                                                               (9) 

The objective function of the proposed method, given in (10), is to minimize the 
classification error obtained for each objective with the same solution vector. 

1 2 3( ) min( ( ),  ( ),  ( ),...,  ( ))rf E f E f E f E f E=                                              (10) 

3 Experimental Study 

The performance of the proposed method is tested on a dataset used in [27] and 
shared in the UCI database, designed with data from five different sensors for the 
alcohol classification problem and can be found at 

https://archive.ics.uci.edu/ml/datasets/Alcohol+QCM+Sensor+Dataset 

The method was coded in the MATLAB R2017b platform and run on a computer 
having the Intel(R) Core (TM) i7-4710MQ 2.50 GHz processor with 8 GB RAM 
and Windows 8 operating system. 

This section introduces the selected MOOP, and the experiments for the dataset 
used are explained. Then, the proposed MOEFC method implementation to the 
problem is presented, and the obtained results are discussed in detail. 

3.1 Selected MOOP and Dataset 

Within the scope of the study, the alcohol classification problem is selected as an 
example of MOOP. The problem is one of the popular classification problems, 
which has been studied for years and offers solutions with different techniques. 

3.1.1 Alcohol Classification Problem 

Recognition and classification of chemical compounds play an essential role in 
determining the compound's usage areas and harmful effects. In this regard, 
alcohols are many chemical compounds in the cosmetic and hygiene industry [27]. 
One of the sensors that can detect types of alcohol is a Quartz Crystal 
Microbalance (QCM) [28]. The QCM is essentially an electromechanical 
oscillator and has the characteristics of a sensitive piezoelectric effect [29]. It is 
widely used as a gas sensor in cases where chemicals in gases have different 
densities according to their types. However, precise detection in a sensor cannot 
be classified all at once [30]. Therefore, using these sensors with artificial 

https://archive.ics.uci.edu/ml/datasets/Alcohol+QCM+Sensor+Dataset
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intelligence techniques is less costly. Thus, an informed decision about many 
chemical products can be made automatically. 

3.1.2 Data Background 

In this study, 5 different types of alcohol are classified as 1-octanol, 1-propanol, 2-
butanol, 2-propanol, and 1-isobutanol, with 5 different QCM sensors, as in [27]. 
Each of the QCM sensors has two different channels: the channel including 
“molecularly imprinted polymers (MIP)” and the channel including “nanoparticles 
(NP)”. The MIP and NP ratios used in the sensors are: 1-1, 1-0, 1-0.5, 1-2, and 0-
1, respectively. The gas sample is passed through each sensor at five different air-
gas concentrations, and the measurements obtained are saved in the data set.  
The ratio of air and gas concentrations in ml is presented in Table 2. 

Table 2 
Air-gas concentrations in experiments 

 Air ratio Gas ratio 
1 0.799 0.201 
2 0.700 0.300 
3 0.600 0.400 
4 0.501 0.499 
5 0.400 0.600 

3.1.3 Dataset Design 

25 experiments were performed with each QCM sensor at the specified MIP and 
NP channel ratios and in the environments presented in Table 2, that is, for a total 
of 50 different scenarios. Therefore, there are 1250 samples in the data set. 

The data set values obtained for each scenario are normalized in the range to [0 1] 
with (11). xi represents the number to be normalized, xmin and xmax represent the 
minimum and maximum values in the respective scenario, respectively. 

min

max min

i
i

x xx
x x

−
=

−
                                                                                               (11) 

60% of the samples (15 samples) in each scenario were used for training and 40% 
(10 samples) for testing. These training and testing samples are selected randomly 
in each scenario. 

3.2 Implementation of the Proposed Method to the Problem 

In the main structure of the system, measurements in different gas concentrations 
are included as inputs to the system, and the obtained output membership degree 
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(μOut) is used for classification with each sensor. In the study, equal numbers of 
MFs are used in the variables (1 to 4). Figure 2 illustrates a design for training the 
proposed method with 2 MFs in each variable. 

When equations (3), (4), and (5) are used with the design parameters given in 
Figure 2, the μOut of the system can be calculated. The produced μOut value is 
evaluated separately for each sensor. The system's training aims to get the μOut 
values closer to the class centers. Thus, the main objective is to design a model 
that obtains minimum error for all sensors [31]. 

 
Figure 2 

Proposed MOEFC model that has 2 MFs in its variables 

Since the system will produce μOut value in the range of [0, 1], the lower and 
upper bounds and center points are assigned in the range of [0, 1] for alcohol 
classes. Accordingly, the determined values are shown in Table 3. 

Table 3 
The lower bounds, upper bounds, and center points assigned for the alcohol classification 

 1-octanol 1-propanol 2-butanol 2-propanol 1-isobutanol 
Lover bound 0 0.2 0.4 0.6 0.8 
Upper bound 0.2 0.4 0.6 0.8 1 
Center 0.1 0.3 0.5 0.7 0.9 

The performance of the system is determined by reference to the values in Table 
3. Accordingly, the error (E) on n samples is calculated by (12) for each sensor. 

1
| |n

i ii
E Out Centerµ

=
= −∑                                                                              (12) 

In terms of genetic operators, the length of each artificial chromosome is 
determined by selected variable numbers. The weights to be assigned are equal to 
the number of inputs, and considering Eq. (2), 4 parameters are required for each 
MF. Accordingly, for the 1, 2, 3, and 4 MFs numbers used in the experiments, 
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solution vectors with 29, 53, 77, and 101 items are required, respectively.  
The artificial chromosome structure designed for the system shown in Figure 2 is 
presented in Figure 3. 

As seen in Figure 3, the first 5 items in the solution vector are the weights 
assigned to the inputs randomly. The following 4 items are the parameters set to 
the gauss2mf (σ1, c1, σ2, c2) type MF of Inp1. Since each variable has 2 MFs, 8 
parameters are required for all variables. 

 
Figure 3 

Detail of a solution vector for the model that has 2 MFs in its variables 

The parameter settings for the NSGA-II are shown in Table 4. The maximum 
cycle number (MCN) is set to 10000 in each trial. The algorithm has been run 3 
times independently for each scenario. 

Table 4 
Parameter setting for the NSGA-II 

Parameter Value 
Population size 50 

Crossover fraction 0.8 
Mutation fraction 0.1 

Pareto front population 50 

3.3 Results and Discussion 

The results obtained with the proposed MOEFC method are shared and discussed 
in detail in this section. The results are evaluated in 4 categories based on the MF 
numbers used. 
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The results obtained in the experiments are presented in Figures 4-7, with graphs 
drawn for different goals. Graphs "a" in the figures: error values calculated based 
on sensors at the end of the training process, graphs "b": number of 
misclassifications for training data, based on sensors, graphs "c": weights assigned 
to inputs, and graphs "d": number of misclassifications obtained for test samples, 
based on sensors. 

3.3.1 Scenarios That Have 1 MF in Each Variable 

The proposed method's results by using only one MF in each variable are 
examined. This experiment is essential to analyze the interpretative ability of the 
technique. 

 
Figure 4 

The results obtained for the scenario where each variable of the proposed method has 1 MF 

Looking at graph “a” in Figure 4, it is seen that QCM6 and QCM7 can make more 
successful classification than with other sensors for the MOEFCs designed with 
the obtained solutions. Graph “b” shows that with 2 solutions in the set of Pareto 
optimal solutions, correct classification can be made with QCM6 in the model to 
be designed at all gas concentrations. The “c” graph shows that the environment 
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with a gas concentration of 0.201 is more effective on the solutions because the 
weights assigned for measurements made in this environment are at a higher level. 
The “d” graph shows that QCM6 can also produce successful solutions for test 
samples, and with the proposed method, error-free classification can be made in 2 
design samples. 

3.3.2 Scenarios That Have 2 MFs in Each Variable 

Figure 5 shows the results obtained at the end of training and testing for MOEFC 
with 2 MFs in each variable. 

 
Figure 5 

The results obtained for the scenario where each variable of the proposed method has 2 MFs 

Figure 5 graphs show that the optimal solutions in the Pareto set are generally 
successful in favor of QCM6 and QCM7. The error levels obtained for these 
sensors and the classification errors are lower than other sensors' results. For the 
training dataset, error-free classification can be made by QCM6 in 3 different 
designs. In addition, by QCM6 and QCM7, 1 classification error can be obtained 
in 1 and 2 different MOEFC designs, respectively. Regarding the test dataset, by 
QCM6 and QCM7, 1 classification error can be obtained in 1 and 9 different 
designs, respectively. When the weights are examined, the weights determined for 
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the 0.201 and 0.600 gas concentration inputs are increased significantly compared 
to the results obtained with 1 MF in many examples. In contrast, the weights 
determined for the 0.300 and 0.499 gas concentration inputs are decreased. 

3.3.3 Scenarios That Have 3 MFs in Each Variable 

Figure 6 presents the experimental results obtained for the MOEFC model with 3 
MFs in each variable. 

 
Figure 6 

The results obtained for the scenario where each variable of the proposed method has 3 MFs 

Figure 6 graphs show that the error rates obtained for the sensors are reduced to 
the 0.5-3.0 range compared to the results with 1 and 2 MF. In optimal, multi-
objective solutions, better results are obtained in favor of the QCM6 sensor. Note 
that QCM12 errors are significantly higher, while the errors obtained with other 
sensors are low. On the other hand, in classifications made with other sensors, 
misclassifications are higher than QCM12. This contrast can be interpreted as the 
μOut values obtained with the QCM12 do not approach the cluster centers. In 6 
different MOEFC designs, all the training data can be classified correctly by the 
QCM6. Also, all samples can be classified correctly by QCM7 in 1 design. 
However, in test samples, QCM7 is more successful. Error-free classification can 
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be made in 3 different designs by QCM7 and 2 by QCM6. When the weights are 
examined, it is seen that the weights of 0.201 gas concentration are superior to the 
others. An interesting result is that the weights cluster at specific intervals. 

3.3.4 Scenarios That Have 4 MFs in Each Variable 

Final experiments within the scope of the study are for MOEFCs with 4 MFs in 
each variable. In these experiments, it is expected that the accuracy is increases 
compared to the previous ones, but the interpretation ability of the model is 
expected to decrease. The obtained results are presented in Figure 7. 

 
Figure 7 

The results obtained for the scenario where each variable of the proposed method has 4 MFs 

From Figure 7, it is seen that optimal, multi-objective solutions focus on the 
QCM6 and QCM7 sensors, like previous experiments. Most solutions that achieve 
low error levels achieve minimal error rates by these two sensors. The results are 
not different in terms of classification errors. However, although in many 
experiments, lower error rates are obtained by QCM3 compared to QCM12, the 
number of classification errors obtained with QCM3 is higher. In the classification 
made for the test dataset, the best success is achieved with 4 different designs that 
make 2 misclassifications. In 3 of these, the best classification can be made by 
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QCM7 and in one by QCM6. Weights are similarly in favor of 0.201 gas 
concentration. At a gas concentration of 0.300, the minimum weight coefficients 
are obtained. 

3.4 Comparisons 

In this section, the classification results of the proposed method for different 
sensors are evaluated. The classification results of the method with different 
parameter sets are examined, and its performance is compared with other MOEFC 
methods in the literature. Selected comparison algorithms are the Multi-Objective 
Differential Evolution Algorithm-based Fuzzy Clustering (MODEFC) [32], the 
NSGA-II-based Fuzzy Clustering (MOGAFC) [33], and Multi-Objective 
Modified Differential Evolution based Fuzzy Clustering (MOMoDEFC) [34] 
methods. 

For each scenario, the solutions with the smallest total error (ESUM) obtained for 
the objectives among the 50 optimal solutions in the Pareto solution set are given 
in Table 5 (ESUM = EQCM3 + EQCM6 + EQCM7 + EQCM10 + EQCM12). 

Table 5 
Solutions with the smallest total error obtained for each scenario 

  E1 E2 E3 0.201 0.300 0.400 0.499 0.600 

1 MF 

QCM3 1.6652 3 5 

0.9598 0.4710 0.6490 0.7905 0.7537 
QCM6 0.3350 0 5 
QCM7 0.8267 4 6 
QCM10 0.8272 2 6 
QCM12 2.8977 6 6 

2 MFs 

QCM3 1.4323 3 6 

0.9918 0.3812 0.3207 0.3612 0.7520 
QCM6 0.6795 0 2 
QCM7 0.8464 3 2 
QCM10 0.9572 2 6 
QCM12 2.7784 6 5 

3 MFs 

QCM3 1.4411 1 2 

0.9993 0.1759 0.1710 0.3274 0.6475 
QCM6 0.5080 0 1 
QCM7 0.8708 1 2 
QCM10 0.9562 2 2 
QCM12 2.7622 3 3 

4 MFs 

QCM3 1.6263 2 2 

0.9701 0.1694 0.2657 0.5740 0.5175 
QCM6 0.7825 3 3 
QCM7 0.5850 2 2 
QCM10 1.3804 3 4 
QCM12 2.7257 5 3 
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The columns in Table 5 contain the following information: 

E1: The error levels of the sensors, at the best classification, obtained by Eq. 
(11) for 50 samples 

E2: Misclassification numbers of sensors for the training dataset for 50 
samples, at the best classification 

E3: Misclassification numbers of sensors for test dataset for 50 samples, at 
best classification 

Columns 0.201, 0.300, 0.400, 0.499 and 0.600 show the error levels of the 
sensors obtained by Eq. (11) at these gas ratios. 

When the results given in Table 5 are examined, it is seen that the classification 
success of the design with 3 MFs in each variable is higher than the other designs. 
Therefore, the algorithms model MOEFC with 3 MF in each variable in the 
comparison. For a fair comparison, the parameter settings for all algorithms have 
been assigned as in Table 4. The MCN is 10000 in each trial, and the algorithm 
has been run three times independently. 

Table 6 
Air-gas concentrations in experiments 

 
E1 E2 E3 0.201 0.300 0.400 0.499 0.600 

MODEFC 

QCM3 16.582 1 4 

0.9375 0.3001 0.2788 0.3912 0.6963 
QCM6 0.531 1 4 
QCM7 0.898 2 4 
QCM10 0.817 3 5 
QCM12 26.421 3 6 

MOGAFC 

QCM3 14.715 2 2 

0.9807 0.2189 0.2091 0.3964 0.7007 
QCM6 0.662 0 1 
QCM7 0.883 2 3 
QCM10 0.871 3 3 
QCM12 25.458 3 3 

MOMoDEFC 

QCM3 15.090 1 2 

0.9468 0.2013 0.199 0.3117 0.6817 
QCM6 0.554 1 1 
QCM7 0.937 2 3 
QCM10 0.859 1 2 
QCM12 28.796 4 5 

iwMOEFC 

QCM3 14.411 1 2 

0.9993 0.1759 0.171 0.3274 0.6475 
QCM6 0.508 0 1 
QCM7 0.871 1 2 
QCM10 0.956 2 2 
QCM12 27.622 3 3 
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The best results of the proposed method and other MOEFC methods are compared 
in Table 6. In Table 6, the proposed method is shortly named "iwMOEFC". While 
MODEFC and MOGAFC make a total of 10 misclassifications for the samples in 
the training dataset, MOMoDEFC makes 9, and iwMOEFC makes 7. However, 
the misclassification numbers of the algorithms for the test set are as follows: 
MODEFC=23, MOGAFC=12, MOMoDEFC=13 and iwMOEFC=10. It can also 
be seen from column E1 that iwMOEFC can classify values closer to the 
classification centers. In the E1 column, the distances of the classification values 
to the class centers are given. Accordingly, iwMOEFC has the minimum 
classification errors for the QCM3, QCM6 and QCM7 sensors. Moreover, 
iwMOEFC has produced minor error levels than other MOEFC methods at 
different gas ratios. 

It has been observed that the solutions in the Pareto optimal set are generally 
successful in favor of the QCM6 sensor. In terms of weights, it is seen that more 
successful classifications can be made in an environment with a gas concentration 
of 0.201, and this environment is more effective in the general classification. 
However, measurements in an environment with a gas concentration of 0.300 have 
the lowest effect on classification. 

Conclusions 

The balance of accuracy and interpretability, one of the fundamental criteria in 
fuzzy system design, is particularly influential in system design and performance. 
EAs can successfully scan the problem's solution space by focusing on efficient 
solution regions in numerical optimization problems. These algorithms also 
provide adaptive training in many multi-objective fuzzy classifier methods, as 
they are not trapped in local optimal solutions. In this study, multi-objective EA is 
used for MOEFC design, but instead of a rule table, the weighted-input approach 
is applied for input-output interaction on the fuzzy logic side of the system. In this 
way, it can obtain information about the relative importance of the inputs for each 
objective in the problem. 

The proposed method was used for alcohol classification. Alcohols were classified 
by evaluating the results obtained with different gas sensors in environments with 
different gas-air densities. 

When the classification results are examined, it is proven that the proposed 
method can make successful classifications for many sensors simultaneously, with 
negligible error levels, even in environments with different gas-air densities.  
In addition, compared to other MOEFC methods, the performance of the method 
is more effective and provides superior solutions. 
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