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Abstract: The use of multiple autonomous robots to accomplish a complex task is a highly 
relevant topic for intelligent systems and collective robotics. In this paper, a game-theoretic 
framework for the self-organization of a group of heterogeneous self-interested robots is 
described. The proposed approach enables both the tasks allocation and dynamic reward 
distribution to maximize the expected total gain, which ensures the effectiveness of multi-
robot coalitions. The solution is based on the theory of fuzzy cooperative games with core. 
The precision farming scenario is used as an example of a complex task. In this scenario, 
several robots belonging to two different classes interact with each other to distribute field 
processing tasks to meet the given marginal cost of each task, corresponding to the 
coalitions’ payoffs. Simulation results show the convergence of the solution when searching 
for the coalition structures capable of providing a given payoff. That allows to assert the 
applicability of the theory of fuzzy coalition games for the self-organization in collective 
robotics. 

Keywords: collective robotics; self-organization; coalition formation; fuzzy cooperative 
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1 Introduction 

Organization of multi-robot teams is one of the most relevant areas of research in 
the field of collective robotics. This is due to the development of robotic systems, 
in which robots can perform rather complex operations and independently make 
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decisions about further actions. It is a common knowledge that universal robots 
capable of performing a large number of operations highly increase the cost of their 
development and operation [1]. Economically feasible scenario also improving the 
quality of individual operations is the use of specialized robots joined together to 
solve a complex task. In this case, the winnings are distributed among the robots 
(and, accordingly, among their owners) in accordance with the task assignments and 
the contribution of each of them. 

Swarm, flock and coalition interaction schemes are most frequently considered in 
collective robotics [2, 3]. In swarm models, all robots are equipped with the same 
equipment. The tasks are executed in parallel by several robots coordinating their 
actions with each other. When using the flock model of interaction, a leader stands 
out among the robots, who coordinates the subordinate robots. The coalition model 
of interaction is the most complex since each of the robots is independent from the 
others and is equipped with unique tools for performing a specific task. Such a 
model requires decomposition of a complex task, allocation of subtasks among self-
interested robots according to their capabilities, and reward distribution according 
to the expected gains. The coalition in this case can be considered a union of self-
interesting agents, which in the negotiation process make a decision on a joint 
solution to the problem and the distribution of the gain [1]. 

The difficulty of forming a coalition of autonomous robots lies in the need to 
consider many parameters when choosing individual robots to join a coalition. 
Furthermore, the problem is to allocate in a fair way the payoff of the grand coalition 
among the players. In collective robotics, it is usually impossible to accurately 
assess (at the moment of coalition formation), what part of the work should be 
performed by the robot and what benefit the robot can gain from participating in the 
coalition and decisions have to be made under uncertainty [4]. Such intrinsic 
fuzziness of the problem adds additional complexity to coalition formation task. 

In the proposed framework, tasks are dynamically assigned to coalition participants 
during the coalition game with fuzzy core obtaining efficient coalition structures 
based on participants’ fuzzy expectations. As a case study illustrating the proposed 
approach, precision farming is considered [5]. The choice of this area is due to the 
development of autonomous agricultural machinery and the growing demand by 
farmers for a lease or pay-as-you-go rental schemes based on the precise estimation 
of equipment ordering since the cost of buying a property is often economically 
impractical for small farms [6]. 

The rest of the paper is organized as follows. The following section provides an 
overview of existing coalition-formation methods. The third section describes the 
formulation of the problem and a general description of the approach. The fourth 
section contains the formulation of a cooperative game with fuzzy core and a 
solution method using a genetic algorithm. Section five contains the results of the 
simulation experiment. The last section presents a discussion over the experiment 
results and conclusions. Thus, this approach is developed in this paper. 
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2 Related Work 

The distribution of tasks between a group of robots is a time challenge, as evidenced 
by quite a few studies on this topic. The proposed approaches depend upon the 
number of robots, types of robots used to solve the problem, specific tasks, time 
constraints, structural features of the interaction of robots, to mention few. One can 
consider the distribution of tasks between robots by assigning one task to one robot, 
several tasks to one robot, or several tasks to several robots. To solve tasks in the 
most beneficial way, robots can form groups [7, 8]. This process is called coalition 
formation. Forming several coalitions for solving several problems is the most 
general type of coalition formation [1, 9]. 

Three groups of methods for forming coalitions can be considered: centralized, 
based on self-organization and auction. In the centralized approach, one agent 
collects all available information about the state of the environment and robots and 
centrally decides on the coalition structure. Coalition formation tasks, task ordering 
and allocation, paths planning are often solved by linear programming methods and 
genetic algorithms and computationally are very expensive [1, 3, 10, 11]. 

An example of a coalition self-organization is the swarm intelligence. Its main 
feature is the absence of a leader [12]. All coalition members are equal and 
coordinate their actions only with respect to the closest members of the coalition.  
A problem of this type of organization is the poor awareness of the coalition 
members about the current state of the task solution and the common goal.  
It significantly complicates the solution of complex tasks that require decisions 
regarding the general context of the task, not just the local contexts of coalition 
members. 

Finally, the auction approach is based on the use of communication between robots 
in the process of negotiating the distribution of tasks and the results of their 
execution between all members of the coalition [9, 13]. The methods used in this 
approach include machine learning (e.g., support vector regression), negotiations 
algorithms, as well as cooperative games [14, 15]. Their advantage is the absence 
of a single point of failure since the decision is made in a distributed manner, based 
on information received from the participants. However, decision making requires 
more time and energy consumption compared to centralized systems and more 
complex communication algorithms compared to swarms. 

The game-theoretic approach to task allocation and coalition formation among self-
organizing robots have been studied recently in [16-18]. Hedonic coalition games 
have been applied to homogeneous and heterogeneous robotic swarms [16, 17]. 
Coalition formation is considered a partitioning problem optimizing individual 
utilities in non-overlapping coalitions. The authors prove their partitioning being 
Nash-stable. Closely related to the hedonic coalition games, the approach proposed 
in [18], is also based on the independent decision making procedures of individual 
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robots, which repeatedly revise their task selections and obtained rewards in 
changing environment conditions. 

The payoff distribution should guarantee the stability of the coalition structure when 
no one player has an intention to leave a coalition because of the expectation to 
increase its payoff. The predictions or recommendations of payment distribution are 
embodied in different solution concepts, the Shapley value, the core, and the kernel, 
being the former the most popular approach [19]. Games with core belong to the 
class of games with a solution set and represent a mechanism for analyzing the 
possible set of stable outcomes of cooperative games with transferable utilities.  
The concept of a core is attractive since it tends to maximize the sum of coalition 
utilities in the so-called C-stable coalition structure. 

The definition of the core may be crisp or fuzzy. The crisp core has two associated 
problems, which made it quite unpopular for practical applications [20]. Firstly, the 
computational complexity of finding the optimal structure is high since for the game 
with n players at least 2𝑛𝑛 − 1  of the total 𝑛𝑛

𝑛𝑛
2  coalition structures should be tested. 

Secondly, for particular classes of the game and real-world situations, a core can be 
empty. Since the benefit distribution among the coalition members has proved to be 
fuzzy, uncertain, and ambiguous, the concept of fuzzy cooperative games with core 
was introduced [24, 39]. In fuzzy cooperative games (FCGs), the uncertainty can 
be processed by means of the introduction of a fuzzy benefit concept through the 
bargaining process to the conclusion about the corresponding fuzzy distribution of 
individual benefits among the coalition members [23, 24]. The introduction of the 
fuzzy core helped solve the main problems of the games with crisp core. 

The advantage of the core compared to the hedonic games, mentioned above, is the 
way payoff distributions are analyzed to guarantee the stability of the game. In the 
above cases, the robots construct a dominance relationship and try to improve their 
gain by analyzing different options until finding a Nash stable partition. The core 
itself is the set of outcomes forming the equilibrium states. The search for a solution 
is thus reduced to choosing from the number of possible imputations forming the 
C-core that provide the maximum possible gains for robots included in the effective 
coalitions structure at the maximum degree of membership. 

3 Theoretical Background 

3.1 Basic Concepts of a Cooperative Game 

A cooperative game is a variable-sum game, in which players are allowed to discuss 
their strategies before the game and agree to act together [23]. In other words, 
players can form coalitions. The main task in the game is to divide the overall 
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payoffs between the coalitions and their members. Cooperative game theory offers 
results showing the structure of possible interaction and the conditions, under which 
it is achieved. In many cases, there is a wide class of achievable interaction models 
and finite payoff distributions, and it is important to choose the best or most 
unbiased ones [19].  

A cooperative game (Robot, v) is defined by a) the set of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  {1,2, … ,𝑛𝑛}, 
where each subset of Robot is called a coalition K, and b) a characteristic function 
𝑣𝑣: 2𝑛𝑛  → ℝ, defined on the set of real values and giving each coalition its expected 
payoff (the so-called coalition gain). The value of the coalition v(K) is interpreted 
as the net gain from the cooperation of robots. The empty set (∅) and the set Robot 
are also called an empty and grand coalitions, respectively. The set of all subsets 
Robot or coalitions of agents is an exponent set (Boolean or degree set): 

℘: 2𝑛𝑛 = ,1,2, … ,𝑛𝑛, 1,2, … ,𝑛𝑛 − 1,𝑛𝑛, 1,2,3, … , ,𝑛𝑛 − 2,𝑛𝑛 − 1,𝑛𝑛, … , ,1,2, … ,𝑛𝑛 (1) 

The structure S of coalitions 𝐾𝐾1, … ,𝐾𝐾𝑚𝑚 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐾𝐾𝑗𝑗 ⊂ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑗𝑗 = 1,2, … ,𝑚𝑚, is 
defined as a set 𝑘𝑘 =  {𝐾𝐾1, … ,𝐾𝐾𝑚𝑚}, for which in case of non-overlapping coalitions 
𝐾𝐾1 ∪  …∪  𝐾𝐾𝑚𝑚 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐾𝐾𝑖𝑖  ∩  𝐾𝐾𝑗𝑗 =  ∅, i ≠ j. In other words, the structure of 
coalitions S consists of a complete mutually exclusive partition of the set Robot into 
subsets. 

The solution of a cooperative game with transferable utility is a coalition 
configuration (S, x) formed by partitioning S of the Robot set into coalitions and an 
effective distribution of payoffs x, which assigns to each robot in the Robot a certain 
benefit from the gain of the coalition, whose member she is in a given coalition 
structure S. It is usually assumed that any coalition can be formed, either singular 
or complete (including all robots from Robot). It should be noted, however, that due 
to the combinatorial complexity of decision search, many methods involve limiting 
the number or size of coalitions in order to guarantee, for example, the polynomial 
complexity of the decision search process [20]. The set of payments 𝑋𝑋 =
 (𝑥𝑥𝑖𝑖)𝑖𝑖∈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∈ ℝ𝑛𝑛 is called sharing. In a game with transferable utility (when 
winnings can be transferred between players) the following condition is fulfilled: 

 ∀𝐾𝐾 ⊂ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 <=>  ∑ 𝑥𝑥𝑖𝑖 ≤ 𝑣𝑣(𝐾𝐾) 𝑖𝑖∈𝐾𝐾 . 

To reduce the admissible set of partitions, various dominance criteria can be 
considered. Such a criterion can be defined by means of the notion of the 
accompanying "core" of the game. This class of cooperative games is called games 
with core [7]. The set of payoff distributions, known as a core, with respect to a 
given structure of coalitions S is the set of configurations of coalitions with not 
necessarily unambiguous distributions of payoffs, which ensures that any subgroup 
of robots is not motivated to abandon the given coalition structure. 
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3.2 Basic Notions of a Cooperative Game with Core 

In the following, we will use the basic definition of the core of the cooperative game 
(Robot, v) given in [25] by M. Mareš: 

𝐶𝐶 = {𝑋𝑋 = (𝑥𝑥𝑖𝑖)𝑖𝑖∈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 : ∑ 𝑥𝑥𝑖𝑖𝑖𝑖∈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑣𝑣(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅),∀𝐾𝐾 ⊂ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: ∑ 𝑥𝑥𝑖𝑖𝑖𝑖∈𝐾𝐾 ≥ 𝑣𝑣(𝐾𝐾)} (2) 

The core is the set of all non-dominated partitions. The first argument of the set C 
indicates that the sum of all payments does not exceed the value of the game I.  
The second argument determines the property of rationality of the robots. 
Individually rational distributions of the total payment attribute to each agent at 
least the profit he can make without cooperation in any coalition. In turn, if the value 
of the total gain of the players is equal to the gain of the coalition, it indicates group 
rationality. In coalition configurations with the so-called pareto-optimal distribution 
of payoffs, no agent will get more payoff in any other possible distribution for a 
given game and coalition structure. It follows from the definition of the core that 
the set of distributions included in the core satisfies the coalitional rationality 
condition. In turn, this condition includes more particular conditions of individual 
rationality (when subsets of individual players are considered) and group rationality 
(when a subset is a grand coalition uniting all players). The principle of optimality 
in cooperative games is closely related to the concept of stability. In games with 
core, a set of payoff distributions where no agent has an incentive to leave its 
coalition K from S because of the assigned payment 𝑥𝑥𝑖𝑖 is called a C-stable solution. 
Only those coalition structures are C-stable that maximize the welfare of all: 

𝑆𝑆∗ = arg max
𝑆𝑆={𝐾𝐾1,…,𝐾𝐾𝑚𝑚}

∑ 𝑣𝑣(𝐾𝐾)𝐾𝐾∈𝑆𝑆       (3) 

A coalition is called C-stable if it has a non-empty core [26]. Coalition structures 
that fully distribute the gains of a grand coalition are called efficient. 

The choice of the above definition of the core is due to the following advantages for 
collective robotics: 

• Allows considering the results of robots’ interactions as a utility function. 
• Considers a fuzzy membership function of coalition payments, whereas in 

traditional coalition games, introduced by Aubin [23], the fuzzy nature of 
the game is the fuzzy membership of the players. 

• The convexity property of the game guarantees a non-empty solution set 
[25]. 

• Reduces the high computational cost of interactions between agents, 
typical for distributed negotiation-based models. 

The generalized model of the game was proposed by the authors, which helped 
solving the problems of the computational complexity of finding the optimal 
structure and of the empty core, and enabled its use in practical applications of 
supply chains partner selection [32]. Unfortunately, it can´t be used as is for the 
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problems where payoff distributions depend upon task allocations. During the 
game, robots must dynamically check different possible task allocations since the 
further payoff distributions explicitly depend upon the current allocation. So, we 
can consider the task allocation problem to be dynamic, though this definition 
differs from the traditional one, in which the assignment of robots to sub-tasks is 
continuously adjusted in response to changes in the task environment or group 
performance [27]. 

4 Cooperative Game Model with Fuzzy Core with 
Task Assignments for Precision Farming 

There are many application areas that require the use of a coalition of robots to solve 
a complex task, including disaster medicine, precision farming, remote and local 
explore of space objects [28]. Robots, participating in the task execution, receive a 
reward. To decide whether participate or not in a task, the robots analyze if the 
amount of the reward meets their expectations. Below, a cooperative game model 
with fuzzy core for task allocation is proposed, illustrated by the use case of 
precision farming. The main distinctive feature of coalition formation in this context 
is that payment distribution in the game depends on task assignments to each robot. 

4.1 Precision Farming as a Fuzzy Coalition Formation 
Problem 

The problem of precision farming is described in [29]. There is a field with various 
geological and ecological characteristics of soils, suitable for growing several crops 
that require different growth conditions. The goal is to get the best possible gain 
from the field within certain time and financial constraints. The field is processed 
by several types of robots (scouts, planters, tractors, transports) equipped with 
devices for plowing, loosening, planting, watering, fertilizing, and harvesting crops. 
Robots’ capabilities are functions of specific parameters (cruise velocity, 
cultivator’s length), which define their productivity for each task (hectares per 
hour). The robots belong to different owners who are willing to provide them for 
processing the field in exchange for a reward (Figure 1). 

In general, the processing of the field can be divided into three stages: i) exploration 
of the field to determine its condition, ii) preliminary processing and fertilization of 
the field, followed by planting crops suitable for the parameters of the field, iii) 
harvesting. Processing the field has the fixed cost. For illustrative purposes, we 
consider the second stage in this paper. The task itself consists in plowing and 
seeding the field, for which two types of robots are used: a tractor and a planter. 
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The coalition of all robots involved in the task processing is called grand coalition. 
In this case, the field processing is defined as a problem of coalition formation with 
task allocation, where each task assignment can be seen in terms of hectares to be 
processed (using specific robot’s capability) within each subtask. The purpose of 
the game is to find a task allocation strategy that provides a mutually beneficial 
payoffs distribution. In other words, we are looking for the efficient and stable 
coalition structure to process a field under temporal and financial constraints. 

In the general case of coalition formation with dynamic task allocation, a coalition 
can be understood as a group of robots, joined together to perform the subtask Ti of 
task T. A robot’s strategy is defined as a binary variable 𝜑𝜑, such that: 

𝜑𝜑(𝑇𝑇𝑖𝑖 , 𝑘𝑘, 𝑗𝑗) =  �1, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

The coalition’s utility 𝑣𝑣�𝐾𝐾𝑇𝑇𝑖𝑖� is distributed between the coalition members 

according to the vector of payment distribution 𝑥𝑥𝑇𝑇𝑖𝑖 = �𝑥𝑥𝑇𝑇𝑖𝑖�{𝑥𝑥𝑇𝑇𝑖𝑖
1 , … , 𝑥𝑥𝑇𝑇𝑖𝑖

�𝐾𝐾𝑇𝑇𝑖𝑖�}, where 

𝑥𝑥𝑇𝑇𝑖𝑖
𝑗𝑗  – is a payment to robot 𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, and 𝑥𝑥𝑇𝑇𝑖𝑖

�𝐾𝐾𝑇𝑇𝑖𝑖� is a payment to the coalition. 
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Figure 1 
Structural diagram of the coalition formation for precision farming (based on [30]) 

4.2 Definition of a Fuzzy Cooperative Game with Dynamic 
Task Assignments 

In the case of multi-robot teams with task allocation, the fuzzy payments for each 
robot depend on the solution of the allocation problem. A FCG is defined as a pair 
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑤𝑤), where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is nonempty and finite set of players; subsets of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
joining together to fulfil a task 𝑇𝑇𝑖𝑖  are called coalitions K, and w is called a 
characteristic function of the game, being 𝑤𝑤: 2𝑛𝑛 → ℜ+ a mapping connecting every 
coalition 𝐾𝐾 ⊂ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  with a fuzzy quantity 𝑤𝑤(𝐾𝐾) ∈ ℜ+, with a membership 
function 𝜇𝜇𝐾𝐾:𝑅𝑅 → [0,1]. A modal value of 𝑤𝑤(𝐾𝐾) corresponds to the characteristic 
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function of the crisp game 𝑣𝑣(𝐾𝐾): max 𝜇𝜇𝐾𝐾�𝑤𝑤(𝐾𝐾)� = 𝜇𝜇𝐾𝐾�𝜈𝜈(𝐾𝐾)�. For an empty 
coalition 𝑤𝑤(∅) = 0. A fuzzy core for the game (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑤𝑤) with the imputation 𝑋𝑋 =
�𝑥𝑥𝑖𝑖𝑖𝑖�𝑖𝑖∈𝐼𝐼,𝑗𝑗∈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

∈ ℜ+ is a fuzzy subset 𝐶𝐶𝐹𝐹 of ℜ+: 

𝐶𝐶𝐹𝐹 = �𝑥𝑥𝑖𝑖𝑖𝑖 ∈ ℜ+ ∶ 𝜈𝜈 = �𝑤𝑤(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅),∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼,
𝑗𝑗∈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

� , min
𝐾𝐾𝑖𝑖∈𝑘𝑘

𝑗𝑗∈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

�𝜈𝜈 =

�∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖𝑖𝑖 ,𝑤𝑤(𝐾𝐾𝑖𝑖)𝑗𝑗∈𝐾𝐾𝑖𝑖 �� �  ,      (4) 

where 𝑦𝑦𝑖𝑖𝑖𝑖 is the assignment of a task Ti to a robot j, 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑦𝑦𝑖𝑖𝑖𝑖) is the fuzzy 
payment of a robot j participating in a coalition 𝑖𝑖,  𝑖𝑖 =  1, 2, … , 𝐼𝐼, 𝑗𝑗 =  1, 2, … ,𝑁𝑁,
𝑘𝑘�  =  [𝐾𝐾1,𝐾𝐾2, … ,𝐾𝐾𝑙𝑙] is the ordered structure of effective coalitions; =  is a fuzzy 
partial order relation with a membership function 𝜈𝜈 = :𝑅𝑅 × 𝑅𝑅 → [0,1], and ϕ𝑖𝑖𝑖𝑖  is 
a binary variable such that: 

𝜑𝜑𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖;
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  

This variable can be considered a result of some robot’s strategy on joining a 
coalition. A fuzzy partial order relation is defined as follows (for more details see 
[31]). Let a, b be fuzzy numbers with membership functions 𝜇𝜇𝑎𝑎 and 𝜇𝜇𝑏𝑏 respectively, 
then the possibility of partial order 𝑎𝑎 =  𝑏𝑏 is defined as 𝜈𝜈 =  (𝑎𝑎, 𝑏𝑏) ∈ [0,1] as 
follows: 

𝜈𝜈 =  (𝑎𝑎, 𝑏𝑏) = sup
𝑥𝑥,𝑦𝑦∈𝑅𝑅
𝑥𝑥≥𝑦𝑦

�min�𝜇𝜇𝑎𝑎(𝑥𝑥), 𝜇𝜇𝑏𝑏(𝑦𝑦)��.     (5) 

The core 𝐶𝐶𝐹𝐹 is the set of possible distributions of the total payment achievable by 
the coalitions, and none of coalitions can offer to its members more than they can 
obtain accepting some imputation from the core. The first argument of the core 𝐶𝐶𝐹𝐹 
indicates that the payments for the grand coalition are less than the characteristic 
function of the game. The second argument reflects the property of group rationality 
of the players, that there is no other payoff vector, which yields more to each player. 
The membership function 𝜇𝜇𝐶𝐶𝐹𝐹:𝑅𝑅𝑛𝑛 → [0,1], is defined as: 

𝜇𝜇𝐶𝐶𝐹𝐹(𝑥𝑥) = min�𝜈𝜈 = �𝑤𝑤(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅),∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼
𝑗𝑗∈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

� , min
𝐾𝐾𝑖𝑖∈𝑘𝑘

𝑗𝑗∈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

�𝜈𝜈 =

�∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖𝑖𝑖 ,𝑤𝑤(𝐾𝐾𝑖𝑖)𝑗𝑗∈𝐾𝐾𝑖𝑖 ���      (6) 

With the possibility that a non-empty core 𝐶𝐶𝐹𝐹 of the game (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑤𝑤) exists: 

𝛾𝛾𝐶𝐶𝐹𝐹(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑤𝑤) = sup�𝜇𝜇𝐶𝐶𝐹𝐹(𝑥𝑥): 𝑥𝑥 ∈ ℜ𝑛𝑛� (7) 
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The solution of a cooperative game is a coalition configuration (𝑆𝑆, 𝑥𝑥) which consists 
of (i) a partition 𝑆𝑆 of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, the so-called coalition structure, (ii) the task 
assignment for each S member yij, and (iii) an efficient payoff distribution x, which 
assigns each robot in Robot its payoff out of the utility of the coalition it is a member 
in the given coalition structure S. As previously shown in [32], any real argument, 
like 𝑦𝑦𝑖𝑖𝑖𝑖  in this case, can be included in the fuzzy set of solutions, such that all the 
definitions and theorems proved for the game are also fulfilled for the core defined 
by (4). In the following theorem it is proved that the fuzzy set of coalition structures 
forming the core is a subset of the fuzzy set formed by the structure of effective 
coalitions. 

Definition 1. A coalition K is called effective if it cannot be removed from the 
coalition structure by a sub-coalition 𝐿𝐿 ⊂ 𝐾𝐾. The possibility that a coalition K is 
effective is defined as: 

sup𝑥𝑥∈𝑅𝑅𝑛𝑛(min (𝜇𝜇𝑘𝑘(𝑥𝑥), 𝜇𝜇𝑙𝑙∗(𝑥𝑥): 𝐿𝐿 ⊂ 𝐾𝐾)).     (8) 

Theorem. Let (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑤𝑤) be a fuzzy coalition game. Then, for some structure of 
effective coalitions its possibility is at least equal to the possibility of forming a 
core. 

Proof. From (6), when all φij are equal to 1, we have a coalition structure belonging 
to the core; otherwise, we have a coalition structure corresponding to the 
generalized model. In addition, 𝜈𝜈 = �∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑗𝑗∈𝐾𝐾𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖𝑖𝑖  𝑗𝑗∈𝐾𝐾𝑖𝑖 � is satisfied 
with a positive possibility, and, therefore, the possibility of the structure of effective 
coalitions for the generalized model is higher than for the basic model. 

The algorithm of fuzzy number summation for obtaining coalition membership 
functions represents an important element of the model. The sum operation is based 
on Zadeh extension principle [33] for fuzzy numbers а and b (which are convex sets 
normalized in R): 

𝜇𝜇𝑎𝑎(∗)𝑏𝑏(𝑍𝑍) = sup
𝑧𝑧=𝑥𝑥∗𝑦𝑦

min�𝜇𝜇𝑎𝑎(𝑥𝑥), 𝜇𝜇𝑏𝑏(𝑦𝑦)�     (9) 

where * can designate the sum ⊕ or the product • of fuzzy numbers. Each fuzzy set 
is decomposed into two segments, a non-decreasing and non-increasing one.  
The operation * is performed for every group of n segments (one segment for each 
fuzzy set) that belong to the same class (non-decreasing or non-increasing one). 
Thus, a fuzzy set is generated for every group of n segments. The summation result 
is derived as superposition of these sets, which gives the membership function as 
the sum of n fuzzy numbers. 

4.3 Solution of the FCG Model with Core 

A genetic algorithm (GA) in the context of fuzzy logic has been used. This is 
equivalent to the binary coding of a fuzzy C-core with a target function of the upper 
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minimum of the membership functions. The algorithm is based on a population of 
chromosomes, each one serving as a feasible solution of the game. A chromosome 
consists of an array of real numbers representing robot assignments, payments to 
the robots and coalitions, binary variables defining participation of each robot in a 
coalition and payment possibilities (Figure 2). 

 
Figure 2 

A chromosome representation with real encoding, where m – number of tasks, n – number of robots, k 
– number of coalitions 

The fitness function is set by the core of the game and fuzzy expectations of the 
robots and minimizes the difference between the gain of the game and the sum of 
individual payments to the robots, according to Eq. 3 and fulfilling the productivity 
constraints: 𝑦𝑦𝑖𝑖𝑖𝑖  ≤ 𝑏𝑏𝑗𝑗𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and the following strict area constraints: 
 ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 =  𝑌𝑌𝑖𝑖𝑗𝑗∈𝐾𝐾𝑖𝑖 , where i ∈ I, 𝑌𝑌𝑖𝑖 is the plot corresponding to the 𝑇𝑇𝑖𝑖 . To guarantee the 
feasibility of the solution in terms of area constraints, the normalization can be used 
in this case: 𝑦𝑦�𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖/∑ 𝑦𝑦𝑖𝑖𝑖𝑖 ∗  𝑌𝑌𝑖𝑖𝑗𝑗∈𝐾𝐾𝑖𝑖 , where 𝑌𝑌𝑖𝑖 is the plot corresponding to the 𝑇𝑇𝑖𝑖 . 

The problem with such solution is that productivity constraints initially considered 
on the chromosome level, should be included in the fitness function as another hard 
constraint. 

For the unconstraint problem, the following quadratic penalty functions are defined: 

a) Area constraints penalty:  𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 = (∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖𝑖𝑖 −  𝑌𝑌𝑖𝑖)𝑗𝑗∈𝐾𝐾𝑖𝑖
2, 

b) The first part of the core constraint penalty: 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐 = (∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖𝑖𝑖 −𝑖𝑖∈𝐼𝐼
𝑗𝑗∈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑤𝑤(𝐾𝐾𝑖𝑖))2 

c) Productivity constraints 𝑦𝑦𝑖𝑖𝑖𝑖  ≤ 𝑏𝑏𝑗𝑗𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 are considered on the 
chromosome level and thus, are excluded from the fitness function 

Calculation of fitness involves several steps according to the Algorithm 1 
(unconstraint problem). The GA used heuristic initialization and applicable genetic 
operators following the elitist strategy. The solution algorithm was implemented 
using R language. The following packages have been used: genalg implementing 
the GA, forcats - for levels identification of the categorical variables, compositions 
- for compositional data analysis, fuzzyreg - to calculate the fuzzy sum of the 
coalition payments, and animation - for visualization of the fitness function. 
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Algorithm 1: Pseudo-code of the fitness function of the GA (with penalty 
functions) 

# N – wheat and rye fields’ dimensions (equal area plots) 

Input: Chromosome (Figure 2) 

Fitness: According to Eq. (4) with penalty functions defined above 

Output: current_solution # list including vector of payments 𝑥𝑥𝑖𝑖𝑖𝑖 , job assignments 
𝑦𝑦𝑖𝑖𝑖𝑖, payment possibilities and fitness 

1) Extract vectors of payments and assignments from the chromosome 

2) For (i in 1: cnum) { 

a. Normalize assignments: ni,j= field.seed/∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗  (j⊂F), for each 
coalition i and all tasks 

b. Check for area constraints and calculate  𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 

c. if (!feasible_solution) return(w(GC)*2N)  

} #end for 

3) Add vector of assignments to current_solution 

4) Calculate payments using assignments 

5) For (i in 1: cnum) { 

a. Calculate payments for the coalition 

b. Check for coalitional core constraint and calculate  𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐  

6) Add vector of payments to current_solution 

7) Calculate fitness according to (4) with penalty functions 

8) Check the constraint for grand coalition: N*w(GC)≥∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼,
𝑗𝑗∈𝐽𝐽

 

9) if (!feasible_solution) return(w(GC)*2N) else return(fitness) 

5 FCG for Precision Agriculture Case 

The case study to illustrate the coalition formation with fuzzy cooperative game is 
formulated as a subset of general agricultural settings described above (Section 3). 
Let us suppose that field’s exploration and plowing have already been done, 
resulting in two fields of equal area (200 hectares), the former to be sown with wheat 
and liquid fertilizers and the latter, with rye and solid fertilizers. Thus, a task is 
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composed of two subtasks corresponding to the stage two of the described precision 
farming problem and can be solved by two coalitions of robots. Transport 
operations will be considered constraints and thus, transport robots will be excluded 
from the coalitions. Suppose the task should be finished within 20 hours. 

5.1 Experimental Settings 

Provided experiments pretended to pursue several objectives: 

• To analyze the applicability of the proposed approach in the test settings 
close to the real ones. 

• To study the shapes of applicable membership functions and their 
influence on the resulting solution. 

• To study the convergence of the proposed solution algorithm both for the 
case of hard constraints and unconstrained problem with penalty function. 

• To study the computational complexity of the solution algorithm. 

Due to the space limits, below we describe the case with twelve robots. No one 
robot can fulfill the task alone and thus, they must form coalitions. On the other 
hand, their excessive capabilities mean that several robots can be left behind (Table 
1). Robots have different productivities defined as hectares per hour for tractors and 
planters [34]. Area and productivity constraints for the fitness function are defined 
based on case study basic parameters (robots’ productivities and field dimensions) 
as follows:  

1 Area constraints: 

Y1,1 + Y2,1 = 200, Y3,2 + Y4,2 = 200, Y5,1 + Y6,1 = 200, Y7,2 + Y8,2 = 200 

2 Productivity constraints: 

Y1,1 <= 128, Y2,1 <= 96, Y3,2 <= 128, Y4,2 <= 96, Y5,1 <= 128, Y6,1 <= 96, 
Y7,2 <= 128, Y8,2 <= 96. 

In the conditions of the task, the size of the field, the cost of renting robots per hour 
of work, their productivity and payment that robots will receive for completing the 
task are fixed. As a solution to the problem, the composition of the coalition is taken, 
which ensures the distribution of the payoff when performing the task in accordance 
with the contribution of each robot. 

It can be easily transformed to S and Z membership functions with the right spread 
outside the function’s definition area in the former case, whereas with Z-shaped 
membership functions, left spread is outside the definition area. The membership 
functions for robots and coalitions were defined based on the market average values. 
The triangular type of function means that a robot expects the best possibility (1.0) 
to receive the mean payment, while the less payment is not very desirable for it and 
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the greater payment may not be granted by the coalition. The values of left and right 
spread define the min and max constraints for the payments to look for. MFs of  
z- shape and s-shape follow different logics. In case of the z-shape, the less is the 
payment (from the acceptable range), the more is the possibility to receive it.  
On the contrary, the s-shape reflects the robot’s expectations to be granted the 
largest possible payment. We consider this latter case to be the most appropriate for 
the precision agriculture case. 

Table 1 
Distribution of the robots’ properties, coalitions and membership functions for twelve robots 

 
In Table 1, we assign a consecutive number for each robot, consider the case of non-
overlapping coalitions and use piecewise linear versions of the hat (triangular), z-
shape and s-shape membership functions (MF) for payments. A symmetric 
triangular-shaped membership function describes a grade of membership as 
follows: 

𝜇𝜇𝑖𝑖(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

0,            𝑥𝑥 < 𝑎𝑎
𝑥𝑥−𝑎𝑎
𝑚𝑚

,            𝑎𝑎 ≤ 𝑥𝑥 < 𝑚𝑚

1 − 𝑥𝑥−𝑏𝑏
𝑚𝑚

,   𝑚𝑚 ≤ 𝑥𝑥 < 𝑏𝑏
0,            𝑥𝑥 ≥ 𝑏𝑏  ⎭

⎪
⎬

⎪
⎫

,                (10) 

where m is a central value, a and b are left and right spreads. 
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5.2 Experimental Results 

In the first experiment, hard area and productivity constraints were used to solve the 
problem, which resulted in empty core for 10,000 iterations. For the rest of 
experiments, constraints were included in the penalty function as explained in 
Section 4.4. Table 2 shows an excerpt of the experimental results with different 
setting. We can observe the convergence of the method with a high probability of 
coalition formation. The starting parameters for this case also included 10,000 
iterations, the mutation rate (M) varied from 0.05 to 0.15 with step 0.05, crossing 
rate (crossover) - 50%, population of 200 organisms, and the payment of the grand 
coalition was settled to $54,800. Convergence of the GA for 15000 iterations can 
be seen at Figure 3. As it can be seen, though the best solution converges shortly, it 
takes the average solution about 13500 iterations to get the whole population closer 
to the best one. 

 

Figure 3 
Convergence of the GA for twelve robots with penalty functions 

As we can see, the average fitness is about 12, with the best value of 2,33 and one 
outlier of 58,5. This value estimates coalition performance and is composed of the 
differences in payments and productivity constraints. The value represents 0.02% 
of the total payment, which is a very good approximation of the result. A feasibility 
threshold for the acceptable payment possibility can be defined to exclude those 
solutions that have little possibilities. Nevertheless, as we can see from Table 2, 
most of the robots and coalitions have high levels of payment possibilities. 

The limitations on the shape of a MF for the use case does not impact on the 
generality of the described approach. As we can see, in most of the runs, the third 
robots (#3, #6, #9 and #12) were excluded from the coalition structure since they 
have the lowest productivities (Table 1). For the HP Pavilion x360 notebook with 
i5 8-th generation CPU and 8 Gb of RAM, one simulation run of the GA, 10,000 
iterations with unconstraint settings for 12 robots takes 22 mins. 
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Table 2 
Use case results: the structure of effective coalitions for twelve robots. The best runs for each setting 

are shadowed 
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Discussion and Conclusion 

The study is aimed on the use of the theory of fuzzy cooperative games for the 
formation of coalitions of autonomous robots. For task allocation, robots exchange 
their individual expectations of a gain from participating in a coalition, as well as 
their capabilities, which are used as constraints in a cooperative game. The existence 
of a core allows coordinating the actions of individual members to achieve a 
common goal, as well as to evaluate and distribute the overall winnings. In the 
experiments, each robot was assigned to perform at most a single task, which led to 
non-overlapping coalitions. Nevertheless, coalitions can overlap, allowing robots to 
solve tasks for different coalitions with various game cores and receiving a reward 
from each of them. When changing the conditions in which the task was set, a 
dynamic change in the composition of the coalition is envisaged, if necessary. 

A test scenario of precision farming was studied, describing a two-stage processing 
of the field by several robots. Obtained results show that the fuzzy definition of the 
requirements and the membership function of the coalition ensures the selection of 
participants, in the absence of a clear statement of the problem and requirements for 
individual members of the coalition, thus solving the problem of the empty core. 

To calculate the composition of the coalition, a genetic algorithm was used as a 
mechanism for optimizing the solution. The population gene included variables that 
denote the dynamic assignments of the jobs with corresponding area to the robot, 
robots’ strategies, the payment to the robot, and the possibility of payment. This is 
due to the fact that competition for payment appeared between robots and various 
behavioral strategies arose, which also had to be taken into account in the core. 
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Solving of unconstrained optimization problems (with penalty functions) in general 
is easier than solving a constrained optimization problem. In this case, a quadratic 
penalty function is defined for each general constraint, which gives greater 
variability and better convergence. 

The distinctive features of the obtained solution include a rather small variability in 
payments to coalitions and grand coalitions with a very high possibility of the game. 
This is because the GA solves two problems in a parallel: i) the assignment task and 
ii) the distribution of payments. In the distribution problem, the main condition is 
to minimize the value of the fitness function, which in most iterations gives the 
maximum approximation to the total distribution of the payment. In the assignment 
problem, more attention is paid to constraints, and therefore more variability is 
formed, since, due to the presence of two constraints, there are more options for 
distributing tasks between coalition members. For practical purposes, the best 
available solution (min fitness function) among several runs or the game instance 
with the highest possibility of payments can be selected as the coalition structure. 

The work contribution could be resumed as follows: 

• Extended definition of the coalition game with fuzzy core with task 
allocation is proposed. The definition provides additional variables to the 
assignments that are added into the core. Therefore, solving in parallel coalition 
formation and task allocation, enables obtaining efficient and stable coalition 
structure as a result of the game. 

• An efficient solution algorithm of metaheuristic optimization for 
unconstraint problem statement is proposed. The optimization is based on the 
genetic algorithm along with penalties for estimating variation from the expected 
value. 

• The proposed approach is applied to the group robotics, specifically to the 
precision agriculture problem. Approach is used for computing a coalition for field 
processing task and provides coalition structures and payment distribution along 
with the assignments for each coalition participant. 

• For the scenario from precision farming, the computation of the game 
solution takes less than 30 minutes with linear complexity in terms of the number 
of robots, coalitions and iterations that proves the scalability and robustness of the 
proposed framework to be used in real-life applications. 

Further work will focus on two main directions. The first is to reduce computational 
costs and speed up the process of calculating a cooperative game with more types 
of robots. Achieving this goal will make it possible to make operational decisions 
when the situation changes dynamically and, thereby, change the composition of 
the coalition in real time to address these changes. This approach will provide the 
ability to replace robots in the event of failures. The second direction is the 
development of the game characteristic function and the expansion of the list of 



L. Sheremetov et al. Dynamic Multi-Robot Coalition Formation: Precision Agriculture Case Study 

‒ 240 ‒ 

variables to take into account a larger number of factors to achieve a more accurate 
selection of robots based on the effectiveness of the coalition. 
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