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Abstract: Laser Speckle Contrast Imaging (LSCI) is an optical method mainly used for
creating blood flow maps. Despite its beneficial properties, the technique is yet to find a
place in clinical practice. In this work, we propose a setup for LSCI to overcome some of
the disadvantages associated with the method. We call the setup the sample-in-the-loop
LSCI as it is based on the feedback of the captured image, which is determined by the
properties of the sample and the experimental setup. We investigate and demonstrate the
method in three exemplary scenarios: optimization to specific contrast setpoint,
sensitivity maximization and dynamic range maximization. These goals are achieved by
using optimization on the laser light pulse sequence and on the exposure time of the
digital camera.

Keywords: laser speckle contrast imaging; sample-in-the-loop; time varied illumination;
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1 Introduction
Despite recent years show a decrease or slowed growth in the utilization rates of
non-invasive diagnostic imaging modalities, they are still cornerstones in terms
of clinical applications and are the main focus of scientific research [1]. The
medical imaging practice has its traditional, proven, widely applied techniques
such as X-ray, computed tomography, magnetic resonance imaging, or
ultrasound. However, there are modalities yet to become a part of clinical
practice, one of which is Laser Speckle Contrast Imaging (LSCI) [2, 3]. A
possible drawback of LSCI is the sensitivity to calibration, dynamic range, and
exposure [4, 5]. In our current work, we propose a way to alleviate these by
partly automating processes based on feedback. LSCI utilizes the interference
pattern caused by the reflection of coherent light from a medium with static and
dynamic scatterers [6]. In the specific case when the reflective medium is
completely static, the imaging device observes a frozen pattern of the so-called
speckles. However, if motion occurs (e.g. blood flows) the pattern changes and
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decorrelates in time. The level of decorrelation can be quantified by calculating
the contrast in a region of interest (ROI). Carrying out the calculation using a
sliding window results in a contrast map, which tells us about the relative flow
speeds in vessels with various sizes, the progression of diabetes-induced
vascular complications [7] or regeneration of a burned tissue [8, 9]. Among
others, one of the disadvantages of the technique is the relatively low dynamic
range. Previously multi-exposure techniques have been investigated to increase
the dynamic range and to suppress the detrimental effect of static
scatterers [10–12]. Furthermore, under- or overexposure can also greatly affect
the observed contrast values. To this end, [13] introduced a correction term to
counteract the effect of underexposed images. [14] recommends adjusting the
average intensity in the image to be around or slightly below the middle of the
dynamic range of the sensor.

A recent study [15] showed that the dynamic range of LSCI can be greatly
improved by utilizing a novel, time-varied illumination during camera exposure.
Discrete pulsetrains were used for the realization of the time-varied
illumination. Different shapings of the discrete pulsetrains have been
investigated, however, they share the common aspect of predefinition or
model-based optimization of the sequence, and both are done offline. The
offline approach is disadvantageous because (i) it requires an accurate model,
(ii) two measurements are needed (before and after identification of the model),
and (iii) the sample is subject to changes between measurements.

The experienced drawbacks motivated the creation of an alternative method.
Here, we propose to optimize the discrete pulse sequence in an online,
model-free manner, calling it the sample-in-the-loop approach. Although the
concept originates from the time-varied illumination approach we do not limit
ourselves to that specific case. In contrast to the varied illumination, hereinafter,
we refer to the constant illumination as the continuous wave operation of the
laser light. Compared to multiexposure methods [11, 12, 16], the online,
optimization-based approach can take into account the average intensity; instead
of making post-measurement corrections [13, 17] can keep the intensity in a
favorable range. Also, the method does not need an extensive calibration
process, as it was proposed in [18].

We demonstrate the concept in a custom-developed channel slide through three
experimental scenarios: optimization to specific contrast setpoint, sensitivity
maximization, and dynamic range maximization. The three distinct scenarios
touch on different aspects; continuous wave versus time-varied operation
dictates the usage of different optimization algorithms and scenarios can differ
in the number of required ROIs.

The paper is structured as follows. First, in Section 2 we detail the sample in
the loop setup with the designed channel slide. Next, the approach to the laser
pulse optimization is given, defining the optimization goals and methods. In the
Results section, the three experimental scenarios are investigated separately, and
finally, in Section 4.3 conclusions are drawn.
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2 Sample in the loop setup
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Figure 1
The experimental setup can be seen on the left-hand side. A medical syringe pump provides a

constant flow speed, while the laser and the digital camera are controlled by the Raspberry Pi. A raw
speckle image with a typical ROI selection is illustrated in the upper right corner. The schematic

diagram in the lower right corner summarizes the sample-in-the-loop LSCI method.

A Raspberry Pi 4 Model B carries out the digital pulse wave generation, the
camera control, and the image processing tasks through a custom-developed
software. Fig. 1 depicts the sample-in-the-loop experimental setup. The
protocol of an experiment can be summarized as follows: First, the user selects
the optimization scenario and the related thresholds and reference values.
Second, an initial pulse wave is generated to capture a single image for ROI
selection purposes. Afterward, the optimization algorithm updates the pulse
sequences based on 10 averaged contrast images (with a resolution of
2000x1500 pixels). It continues to do so until a maximum number of iterations
or termination limit is reached. The pulsetrains (leaving the GPIO pins of the Pi)
control the 660 nm 50 mW laser diode through a laser driver (LDP-VRM 01-12
CA, PicoLAS, Germany) and at the same time trigger the monochrome digital
camera (Basler acA2040-55um). Based on preliminary investigations we
limited the minimum pulse width to 10 µs. With shorter pulses the proportion of
laser transients becomes dominant, which introduces two unwanted effects:
average intensity significantly lowers, and contrast lowers because of the larger
proportion of incoherent light [19]. Furthermore, the laser is mounted in a
thermally stabilized mount (LDM21, Thorlabs, Germany) driven by a Thorlabs
TED200C temperature controller. The constant temperature improves contrast
by reducing temperature-induced laser mode hopping.
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2.1 Designed channel slide
For demonstration purposes, we designed a channel slide 2, where the cross
sections range linearly from 100 µm to 1000 µm in 100 µm increments. We
created a simulation of the flow in the channel design using COMSOL
Multiphysics [20], which showed that the velocities at the center of the straight
sections are roughly proportional to the diameter. The microfluidic channel slide
was created using PDMS bonded to glass with a depth of 100 µm.

Figure 2
The channel slide design we used for evaluation. Based on the simulated model, the flow speeds at

the center of each straight section is proportional to their diameter. The annotated sizes on the image
are in µm.

3 Laser pulse optimization
The validity of pulsed speckle contrast imaging has already been proven in [21].
In this method, uniform intensity and uniform length discrete laser pulses with
uniform pulse rates are used instead of continuous wave illumination. Instead of
the well-known multi-exposure methods [11, 12] that were developed to extend
the dynamic range, we use time-varied illumination laser speckle contrast
imaging [15] which is based on pulsed speckle contrast imaging. It uses laser
pulsetrains of uniform intensity and uniform length discrete pulses, however, it
changes the density of the pulses that ultimately simulates a varying intensity
during a single exposure. Using a pulse sequence made of multiple density
pulsetrains (e.g. 3 pulsetrains of equal length with 75%, 50% and 25% duty
cycles concatenated) enables high dynamic range flow rate imaging during this
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single exposure.

We made this discrete pulse sequence to be a function of a single variable. This
function limits the number of feasible sequences but helps with the optimization
problem by introducing only one more variable besides the exposure length.
The additional parameter affects the spacing – in a form of a power function –
between two consecutive high states. The sequence starts with an initial high
state. The next high state is defined by the number of low states (nLOW )
following the initial high state as:

nLOW (i) = round(iγ)−1, (1)

where the discrete sequence is loaded with binary values from i = 0 to i = T
10 µs ,

T is the exposure length, γ >= 0 is the spacing factor. If nLOW ≤ 0 the next state
will remain a high state. The continuous wave laser setup is a limiting case when
γ = 0, typically we evaluated 0 ≤ γ ≤ 1.4. Fig. 3 illustrates how the spacing
factor affects the average ROI intensity for different exposure lengths.

Figure 3
Measured average intensities in an ROI are visualized as a function of the spacing factor. It can be
observed that after an initial interval between 0 and 0.1, a spacing factor of 1 reduces the intensity
by more than an order of magnitude. Small values of the spacing factor would have only a visible

effect on exposures above 30 ms.

The typical way of quantifying flow speed in LSCI is by means of contrast
calculation. The speckle contrast is calculated on a single digital image or
sequence of consecutive images (to descrease noise level), in both cases using a
sliding window. The contrast is calculated by taking the quotient of the standard
deviation and the mean of the intensities in the current window. The window
size is usually n×n, where n is in the range of 5 to 15 [22]. The spatial speckle
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contrast is defined as:

κ =
σ(Is)

⟨Is⟩
, (2)

where σ(Is) and ⟨Is⟩ are the sample standard deviation and the sample mean in
the current window. The choice of window size affects the noisiness and the
resolution of the resulting contrast map. The contrast value is averaged on 10
consecutive images in order to reduce noise and improve the consistency of the
optimization.

We defined three major optimization problems: contrast setpoint, sensitivity
maximization, and dynamic range maximization. Previously it was shown
in [13] that the intensity has a significant effect on the contrast values. Thus,
besides the major objectives, all three share an optional penalization for
underexposed images; a linear term penalizes the given parameter/parameter set
when the average intensity falls below a predefined threshold in the ROIs. In our
experimental setup ROI sizes ranged between 10x10 to 50x50 depending on the
size of the evaluated cross-section in the channel slide.

Figure 4
Observed speckle contrasts plotted with respect to the average ROI intensity. Low intensities can
cause falsely observed large contrast values, while high intensities can cause falsely observed low

contrast values. In order to avoid the potentially detrimental effects, a method of intensity
penalization is implemented during the optimization. The figure indicates that a threshold around an

intensity level of 40-50 guarantees a linear, flat response.

3.1 Contrast setpoint
Optimization based methods are widely used in control problems [23–26], we
defined the first scenario as an optimization to setpoint contrast value. The user
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can select an arbitrary ROI and define a desired average contrast value in that
particular ROI. Then the gradient descent algorithm iteratively modifies the
continuous wavelength, which also determines the exposure length of the
camera. This first scenario aims to approach the sample-in-the-loop concept in
the simplest manner. For this reason, we decided to optimize a single variable
with the gradient descent method as follows:

Ti+1 = Ti −α
∆J
∆T

, (3)

where α is the step size, ∆ denotes the differences in cost J and exposure length
T between the i-th and i−1-th iteration.

min
T

J(T )= |κ(T )−κre f |+ Jexp.,

s.t. T ∈ [1,30],

Jexp.=

{
0, if µ >= µre f ,
µ−µre f

λ
, else.

,

(4)

where κ is the average calculated contrast in the ROI, κre f is the user-defined
contrast setpoint, and µre f is the average intensity threshold. The offset from
the reference intensity µre f is normalized by λ in order to scale the additional
penalization in the range of the unpenalized cost, in our experimental setup, a
reasonable value for the λ was around 40. The parameters of the control: α , the
number of iterations, and the λ were determined based on multiple experiments
with different channel slides and flow speeds.

3.2 Sensitivity maximization
The cost is defined as the inverse of the difference:

min
T

J(T ) =
1

|κ1(T )−κ2(T )|+ ε
+ Jexp.,

s.t. T ∈ [1,30],

Jexp.=

{
0, if µ >= µre f ,
µ−µre f

λ
, else.

,

(5)

where κ1 and κ2 are the average contrast values in the respective ROI and ε

avoids division by zero.

3.3 Dynamic range maximization
Study [15] showed that by utilizing time variant illumination during the camera
exposure the dynamic range of the laser speckle contrast imaging can be greatly
improved.
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min
T,γ

J(T,γ) = |κ1(T,γ)−κre f |+ |κ2(T,γ)−κre f |+ Jexp.,

s.t. T ∈ [1,30], γ ∈ [0,1.4],

Jexp.=

{
0, if µ >= µre f ,
µ−µre f

λ
, else.

,

(6)

where κre f . is a user-defined contrast value, around which the sensitivity ought to
be the least.

4 Results
4.1 Optimization to contrast setpoint

Figure 5
The set exposure length and measured contrast with respect to the current sample number are

illustrated by solid black lines. The flow speed of the syringe pump has been modified during the
experiment (denoted by the dashed red line), creating an external disturbance on the system. The

contrast setpoint is depicted by the dashed green line.
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Fig. 5 demonstrates the result of the first scenario, namely the optimization for a
specific contrast value. A contrast value of 0.27 is observed with an initial
exposure length of 3 ms. Then the gradient descent algorithm iteratively
increases the exposure length to match the reference 0.2 contrast value. Besides
the fluctuation caused by the measurement noises, the algorithm settles for an
exposure length of 6 ms. When the disturbance occurs (in a form of flow speed
change), the observed contrast drops by 0.05, but the algorithm compensates for
it after a couple of iterations and settles for a new 4 ms exposure length. A
change in flow speed induces a change in the measured contrast values, which
are based on the captured image. The larger deviance in the contrast value
ultimately results in a larger cost. A new optimum can be found by either
increasing or reducing the exposure time so that deviance can be counteracted.
The compensation can be done only in a feasible range of the parameters which
determine the operation of the laser and the camera.

4.2 Sensitivity maximization
Despite that the optimization of the exposure length would be sufficient for
sensitivity maximization, we carried out an experiment using both of the
variables for demonstration purposes: the spacing factor and the exposure
length.

Fig. 6 demonstrates well that the optimizer achieved the lowest costs when the
spacing factor was close to zero. The small spacing factor in practical perspective
translates to a continuous wave-like operation, which is otherwise expected to
yield the best result in terms of sensitivity.

Figure 6
Evaluated spacing factor-exposure length combinations are illustrated during the sensitivity

maximization scenario. It can be seen that the lowest costs are achieved if the optimizer converges
the pulse sequence to the continuous wave operation.
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4.3 Dynamic range maximization
In Fig. 7 we showcase an exemplary optimization using the grid search algorithm
[27]. The algorithm aims to minimize the cost function given in (6). It can be
seen that it converges to a spacing factor of around 0.3 and to an exposure length
of 8 ms, where a minimum is found. In this multivariate scenario, the grid search
algorithm was preferred in order to avoid the possibility of quick convergence to
a local minimum.

Figure 7
Evaluated spacing factor-exposure length combinations are illustrated during the dynamic range

maximization scenario. It can be seen that the cost can be lowered by applying time-varying
illumination. An optimal solution is found around a spacing factor of 0.3 and an exposure length of

8 ms.

We explored the effect of the spacing factor and exposure length in order to
ascertain the cost surface and that the algorithm indeed found a minimum. The
exposure length is varied in a range from 1 ms to 30 ms and the spacing factor is
from 0 to 1.4. Fig. 8 and 9 depict the optimization surfaces given two different
reference contrast values. The reference value of (6) is set to 0.1 in Fig. 8 and
0.3 in Fig. 9.
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Figure 8
The measured optimization surface when the reference value is set to 0.1 is approximated with a

family of curves. Subplot a) represents the ”raw” cost, while subplot b) the cost when the average
intensity is penalized.

Figure 9
The measured optimization surface when the reference value is set to 0.3 is approximated with a

family of curves. Subplot a) represents the ”raw” cost, while subplot b) the cost when the average
intensity is penalized.

The behavior of the cost function towards the minimum (0) and maximum (1.4)
of the spacing factor is dominated by the phenomenon related to the average
intensities. Firstly, for small values of the spacing factor, the laser switches to
continuous wave-like operation, which means increased exposure. The
increased exposure (mostly in the case of longer exposure times) leads to
saturation, which in return lowers the observed contrast (as indicated in Fig. 4).
Zero contrast values consequently saturate the cost function, as it can be seen in
Fig. 8 and 9 subplots a) for exposure times above 20 ms. Secondly, the
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countereffect of high spacing factors introduces numerical instability into the
calculation of the speckle contrast. Falsely observed high contrast values
increase the cost; numerical instability appears at smaller spacing factors for
shorter exposure times. Subplots b) showcase the intensity penalized cost
surface. The significant difference between the raw and the penalized versions is
that the cost towards the larger spacing factors is affected by an additional term,
which penalizes the underexposed images in a linear way. The start of the
penalization – when the exposure falls below the predefined threshold – is
dependent on the actual exposure length as expected.

The theoretical minimum moves toward the continuous wave operation mode
for larger values, as it is indicated by the black circle on the envelope. Such
behavior is expected since larger spacing factors have a great effect on the
dynamic range, making the response so wide that the contrast values fall below
the reference values, hence increasing the cost. Fig. 10 depicts the Pareto front
around the minimum; it can be seen that similar costs are achieved with
different combinations of exposure length and spacing factor.

Figure 10
As the dynamic range maximization in (6) is formulated as a multi-objective optimization, a Pareto
front can be found, where ROI1 and ROI2 costs represent the distances from the reference contrast

value.

Conclusions

In this study, we proposed the sample-in-the-loop approach for LSCI
applications. We defined three use cases in order to demonstrate the
applicability of the method. We did not aim to prove or validate the utilization
of the three use cases but to demonstrate the concept through different scenarios.

In the first scenario, the algorithm realized a setpoint optimization for the
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reference contrast value and was able to compensate for an external disturbance
coming from flow speed change. The solution can be a help running automated
measurements, however, it is important to note that the method can provide
information only about the relative flow speeds in a given time instant or if the
external factors are constant. This is the case since the algorithm will
compensate (in a feasible range) for changes in external factors such as flow
speed.

Previous studies indicated and our findings confirmed that the sensitivity
maximization is best achieved as a continuous wave operation, where we
optimized the exposure length using the gradient descent algorithm. Regarding
the dynamic range maximization, we demonstrated that the proposed algorithm
can find a minimum, and this minimum is dependent on the actual reference
contrast value. Furthermore, with the current laser setup, the exposure
penalization leaves small room for dynamic range improvements. This
highlights the importance of sufficiently high laser power as large spacing
factors reduced the total exposure by more than an order of magnitude. The
explored cost surface indicates that it is sufficient to use gradient descent in the
multivariate case as well since the cost surface is a convex function with respect
to the free variables. The application of the gradient descent can then accelerate
the convergence to a minimum and the fulfillment of the measurement protocol.
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