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Abstract: Communication protocols define the set of rules needed to exchange messages 
between communicating entities. Networked and distributed systems, built around 
communicating protocols, are widely used nowadays. Since such systems are often 
deployed in safety-critical applications, confidence in protocol correctness is highly 
required. We propose an approach based on formal method integration to support the 
modeling and analysis of communication protocols. Process algebra and Petri nets are 
used together to combine the best properties from both methods – the exceptional 
properties for system description offered by process algebra, and the powerful analytical 
properties of Petri nets. The ideas described within the paper are demonstrated by an 
example – the Trivial FTP (TFTP) protocol. 
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1 Introduction and Motivation 

A protocol is a set of rules which must be followed in the course of some activity. 
Originally, the term was used in connection to human (more or less formal) 
activities. If the protocol is not followed, the activity will not be successful. 
Nowadays the term is increasingly used when the communication between 
computers, computer components or computer systems is considered [19]. Within 
the paper we will focus on this type of communication protocols. Communication 
protocols thus define the set of rules needed to exchange messages between two or 
more communicating entities [4, 5, 17]. Such protocols are elements of great 
importance when networked and distributed systems are considered [25]. 
Nowadays such systems are very common, and incorrect communication, or no 
communication at all, can cause complications, the severity of which can range 
from financial loss (internet banking, e-shopping) to issues like human health and 
lives (medical or transport systems). 
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2 Protocol Correctness 

The mentioned risks are motivating factors for the development and use of 
protocols to ensure a correct information exchange between communicating 
entities. But what is the protocol correctness, and how can it be shown that the 
particular protocol is correct? We can look at the problem from different points of 
view. In the event that we want to check if the system complies with the 
requirements and performs the functions for which it is intended, we are talking 
about validation. A process used to determine if the system is consistent, adheres 
to standards, uses reliable techniques, performs the selected functions in the 
correct manner is referred to as verification [26, 10, 15]. Confidence in protocol 
correctness can be increased in different ways. Testing is one method and involves 
building a prototype and observing it, or observing the behavior of a real system. 
The main disadvantage of testing is that it can be used to show errors, but not to 
prove correctness. Simulation is a method based on the construction of an 
executable model of the system and its observation. Simulation requires the 
generation of test cases, which are difficult to design for complex systems. In the 
case of critical properties, simulation is not believed to provide sufficient 
confidence [2]. Methods such as simulation and testing are usually used with 
success to show the performance characteristics of the system considered. Formal 
methods, on the other hand, are mathematically-based techniques offering a 
framework in which systems can be specified, developed and analyzed in 
systematic manner. Generally, they are not suitable for assessing a system’s 
performance, but there exist methods specifically designed for this purpose (e.g. 
Performance Evaluation Process Algebra – PEPA) [9]. Since performance 
analysis is not our goal here, we will focus our attention on employing formal 
methods in protocol correctness analysis further in this paper. 

3 Related Works 

Many attempts have been made to perform protocol analysis based on formal 
methods [7, 27, 2, 6, 13]. Process algebras, Petri nets and other methods have been 
employed for the specification and analysis of these systems. Process algebraic 
constructs, like basic operators for constructing finite processes (alternative and 
sequential composition), communication, encapsulation, abstraction and other 
operators, form a solid basis for specification and analysis of wide range of 
systems. In particular, they are suitable for the specification of communication 
protocols. The usual method for performing the system analysis in this case is the 
following: Firstly, the desired external behavior of the protocol is specified in the 
form of a process term (usually using basic operators and recursion). Next, the 
implementation of the protocol is specified in the form of a process term (usually 
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including basic operators, parallel operators and recursion). Then, internal actions 
are forced to communicate using the encapsulation operation and the internal 
communication actions are made invisible using an abstraction operator, so 
effectively only the input/output relation of implementation is visible. Finally, 
using the axiom system, we try to show the terms are equal. By this equality we 
prove the desired external behavior and the input/output relation of the 
implementation are (rooted branching) bisimilar [7]. The above mentioned process 
enables us to show that the system meets properties included in the term 
validation. 

4 The Method 

Instead of the verification process just described (or as an addition to it), we 
propose to use a method based on a combination of two formal methods: process 
algebra and Petri nets [22]. Our aim here is to use the best properties from both 
worlds – the exceptional properties for system description offered by process 
algebra, and the powerful analytical properties of Petri nets. We believe it is easier 
to create a description of a communication protocol using the constructs of 
process algebra. The main reason for our belief here is that de/composition and 
communication can be expressed more naturally using special algebraic constructs 
than using Petri nets. The larger and more complex the modeled system, the 
greater is the impact of this advantage. In the case of communication protocols, 
the system usually consists of communicating entities, medium and maybe other 
parts, which can be specified separately and put together by means of the parallel 
composition operator. On the other hand, we believe the analysis is usually 
better/easier done using Petri nets. Petri nets are a well-known formal method, 
mainly due to their valuable analytical properties and intuitive graphical 
representation [27, 3]. Two types of properties can be investigated using the Petri 
net models: properties which depend on the initial marking (behavioral properties) 
and those which are independent of it (structural properties). Problems connected 
with analysis of behavioral properties include reachability, boundedness, liveness, 
reversibility and home state, coverability and other problems. Structural 
properties, depending on the topological structures of Petri nets, on the other hand, 
hold for any initial marking or are concerned with the existence of certain firing 
sequences from some initial marking. Properties of this kind include structural 
boundedness, conservativeness, repetitiveness and consistency [14, 11]. Invariants 
of the system can be derived from the structure of the net, so the construction and 
analysis of the state space (which can be of great size) is not necessary here. 
Invariant-based analysis alone is a powerful tool for studying the structural 
properties of Petri nets. 
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Many different dialects of Petri nets are available today and differ by the 
properties such as modeling power and decision power. Modeling and decision 
power are in some respects antagonistic properties; by increasing modeling power, 
decision power usually decreases. In our case, ordinary Petri nets are considered, 
which represents a good balance between modeling and decision power. 

The key element of the method proposed here is the automatic, semantic-
preserving transformation of process-algebraic specification into the Petri net-
based one. After the transformation is performed, the powerful analytical 
properties of Petri nets can be used. By the analysis we can disclose defects in the 
internal consistency and correctness of the specification, which can potentially be 
hidden within the specification. 

5 The TFTP Protocol 

The transformation method developed by the author, described in deeper detail, 
can be found in [20, 21]. Transformation is automated by tools like ACP2Petri and 
PATool [23], both developed at the author's home institution. ACP2Petri is the 
tool performing the transformation itself. It accepts a process algebraic, ACP-
based [1] specification in the PAML language as the input and produces the 
corresponding Petri net in the standard PNML format, which is supported by 
various analytical tools, such as TINA, Netlab and PNtool2 [24, 16, 12]. 

The TFTP (Trivial File Transfer Protocol) [8, 18] was chosen as an example to 
demonstrate the ideas presented above. TFTP is a simple protocol to move files 
between machines. It is designed to be small and easy to implement, so it lacks 
most of the features of a regular FTP. The protocol only supports reading and 
writing files from/to a remote server. It cannot list directories and currently has no 
support for a user authentication. TFTP is a protocol with strict data transfer 
restrictions. When an error occurs, the current transfer is stopped and connection 
is terminated, so it is necessary to establish the connection and start the transfer 
again. Communication between the server and the client will be described at the 
level of packets exchange. According to the type of data within a packet, packets 
can be subdivided into types summarized in Table 1. 

Table 1 
TFTP packet types 

Packet type Description 
RRQ Read request 
WRQ  Write request 
D1  Data 1 (first packet of a file) 
DL  Data L (last packet of a file) 
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DN  Data N (N-th packet of a file) 
ACK0  Answer after the request for writing to the server was received 
ACK1  Answer after receiving the first packet of the file 
ACKN  Answer after receiving the N-th packet of the file 
ERR  Error 

All the packets of the communication serve one of the following purposes: 

• To transfer the (parts of the) file, i.e. data packets (D1, DL, DN). 

• To control the transfer, i.e. control packets (ACK0, ACK1, ACKN, ERR, 
RRQ, WRQ). 

Basic TFTP functionality includes reading a file from the server and writing a file 
to the server, respectively. Let us describe those activities in deeper detail. 

5.1 Reading a File from the Server 

The operation is initiated by sending the RRQ packet by the client. The server can 
respond to this request in three ways: 

• By sending ERR, if the file requested does not exist, or it is unable to read the 
file. 

• By sending D1 – a positive answer to the request and a first packet of the file. 

• By sending DL – a positive answer too, but also a signal, that this is the only 
packet of the file. 

When a client receives the ERR packet, the reading of the file is terminated and it 
is able to send its new request. The client replies to D1 and DL (received as the 
first after RRQ packet) by sending the ACK1 packet. If server receives the ACK1 
packet after sending DL, it terminates the connection and is ready for the next 
request. In the case that the server receives ACK1 after sending D1, it responds 
with the next part of the file in form of a DN or DL packet, where the latter of the 
two is used, when the last part of the file is to be sent. The client replies to the 
received DN by the ACKN packet, where N is the packet number, and to packet 
DL (when it is not only packet of the file), replies also with DN. 

5.2 Writing a File to the Server 

The writing operation is very similar to the reading one, with one significant 
exception: after receiving the writing request in form of the WRQ packet, the 
server replies by ACK0, which is a packet type reserved especially for this 
purpose only. The rest of communication runs analogically to the reading 
operation explained above. 
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The protocol operation from the client’s point of view is depicted in Figure 1. 

 
Figure 1 

Protocol operation, client point of view 

5.3 Formal Specification 

Formal specification of the TFTP protocol is based on the analysis of its operation 
given above. The rules for naming the actions used within the specification are as 
follows. The first symbol of the action name is one of the three following: c 
(client), s (server) and m (medium); the second symbol is ‘_’ (underscore); and the 
third one gives a type of communication (s-send, r-receive). The next symbols 
represent an abbreviation of the message (packet) type. Some packet types are 
used in both directions of communication, so the direction in these cases is 
expressed by the suffix w (write to server) or r (read from server). Packets of ERR 
type are distinguished similarly according to the direction by adding a suffix s 
(from the server) or c (from the client), respectively. The two operations supported 
by the TFTP protocol (read and write) are mutually independent, so it is possible 
to perform decomposition and specify (and analyze) each of them separately. The 
reading operation (TFTPR) specification only is given within the rest of this 
paper. In the case of interest in a whole TFTP specification, please refer to [8]. 
The following TFTPR specification is given in textual form [23] of process 
algebra ACP [1]. 
 
*Communication 
gamma (c_srrq,m_srrq) = srrq  gamma (s_sdnr,m_sdnr) = sdnr 
gamma (m_rrrq,s_rrrq) = rrrq  gamma (m_rdnr,c_rdnr) = rdnr 
gamma (c_sack1r,m_sack1r) = sack1r gamma (s_sdlr,m_sdlr) = sdlr 
gamma (m_rack1r,s_rack1r) = rack1r gamma (m_rdlr,c_rdlr) = rdlr 
gamma (c_sacknr,m_sacknr) = sacknr gamma (s_serrs,m_serrs) = serrs 
gamma (m_racknr,s_racknr) = racknr gamma (m_rerrs,c_rerrs) = rerrs 
gamma (s_sd1r,m_sd1r) = sd1r  gamma (c_serrc,m_serrc) = serrc 
gamma (m_rd1r,c_rd1r) = rd1r  gamma (m_rerrc,s_rerrc) = rerrc 
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We started with the definition of communication between actions, where the ACP-
style binary communication function gamma gives the action that is the result of 
communication. Actions not essential from our point of view are hidden 
(encapsulated) further in order to concentrate on the protocol operation. 
 
*Encapsulation 
encset[H](c_srrq,m_srrq,m_rrrq,s_rrrq,c_sack1r,m_sack1r,m_rack1r,s_ra
ck1r,c_sacknr,m_sacknr,m_racknr,s_racknr,s_sd1r,m_sd1r,m_rd1r,c_rd1r,
s_sdnr,m_sdnr,m_rdnr,c_rdnr,s_sdlr,m_sdlr,m_rdlr,c_rdlr,s_serrs,m_ser
rs,m_rerrs,c_rerrs,c_serrc,m_serrc,m_rerrc,s_rerrc) 
 

The specifications of client, server and the messages transferring medium are 
given. The recursive specifications used here reflect their repeated activity. 
 
*Client 
CRN=c_rdnr.(c_sacknr.CRN+c_serrc)+c_rdlr.(c_sacknr+c_serrc)+c_rerrs.C 
CR1=c_rd1r.(c_sack1r.CRN+c_serrc)+c_rdlr.(c_sack1r+c_serrc)+c_rerrs.C 
C = (c_srrq.CR1).C 
 
*Server 
SRN=s_sdnr.(s_racknr.SRN+s_rerrc)+s_sdlr.(s_racknr+s_rerrc)+s_serrs.S 
SR1=s_sd1r.(s_rack1r.SRN+s_rerrc)+s_sdlr.(s_rack1r+s_rerrc)+s_serrs.S 
S = (s_rrrq.SR1).S 
 
RRQ = m_srrq.m_rrrq.RRQ 
ACK1 = (m_sack1r.m_rack1r).ACK1 
ACKN = (m_sacknr.m_racknr).ACKN   
D1 = (m_sd1r.m_rd1r).D1 
DN = (m_sdnr.m_rdnr).DN 
DL = (m_sdlr.m_rdlr).DL 
ERRS = (m_serrs.m_rerrs).ERRS 
ERRC = (m_serrc.m_rerrc).ERRC 
 
*Composition 
TFTP = encaps[H](C||S||RRQ||ACK1||ACKN||D1||DL||DN||ERRS||ERRC) 

At the end of the specification, all the components are put together by means of 
the parallel composition operation. The encapsulation set (H) is applied to the 
whole composition. The specification given above is translated into a machine 
readable, XML-based PAML format using the PATool [23]. The resulting 
algebraic specification is transformed subsequently into the corresponding Petri 
net (Figure 2) and stored in PNML format. The resulting Petri net generated by the 
ACP2Petri tool has a simple (matrix) layout and was edited manually to the form 
depicted in Figure 2 using the TINA Toolbox [24]. 

5.4 TFTPR Analysis 

Petri net analysis can be used for the investigation of several properties of 
modeled systems, as was mentioned in Section 4 of the paper. The methods to 
analyze Petri net models may be subdivided into the following three groups: the 
coverability (reachability) tree method, the matrix-equation approach and the 
reduction/decomposition techniques [4, 11, 14]. 
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Figure 2 

Petri net of TFTPR protocol 

The execution of operations or occurrence of events within the modeled system is 
simulated by the firing of Petri net transitions. State changes of the system thus are 
reflected by the changes in distribution of tokens (marking) in places of Petri net. 
By analysis of these changes, one can study the dynamic behavior of the modeled 
system. For instance, when the sequence of messages (srrq – send read request, 
rrrq – receive read request, sd1r – send first packet of data read from the server, 
rd1r – receive first packet of data) is exchanged between a client and a server, 
starting from the initial state of our system (Figure 2), the client can respond by 
sending one of two messages – error (serrc) or acknowledgement (sack1r) 
respectively, depending on the successfulness of receiving the first packed of 
requested data file. Within the corresponding Petri net, the situation is modeled by 
two enabled transitions (serrc and sack1r), as depicted in Figure 3. 

Invariants alone have numerous applications and form the basis for many 
necessary/sufficient conditions of Petri net model properties. There are a variety 
of tools available today which help with invariants calculation. In our case, the 
Netlab [16] tool was used and invariants of places and transitions calculated are 
summarized in Table 2 and Table 3, respectively. 
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Figure 3 

Studying the dynamic behavior using the Tina [24] stepper simulator 

Table 2 
Invariants of places 
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0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Moreover, Netlab provides the summary of net analysis results in textual form 
based on invariants and a reachability graph. Some of them are listed below in an 
abbreviated form. 

• Dead transitions (RG): none.  
• Total deadlock (RG): none. 
• Reversibility (RG, condensed): The net is reversible. 
• Necessary conditions for invariants: There exists a non-

negative T-invariant. Therefore, the necessary condition for 
reversibility is satisfied, and the net may be reversible. 

• Partial deadlocks exist in the following sinks (RG, 
condensed): none. 
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• Liveness (RG, condensed): The net is live. 
• Necessary conditions for invariants: There exists a positive 

T-invariant. Therefore, the necessary condition for liveness 
is satisfied, and the net may be live. 

• Boundedness (RG): The net is bounded. 
• Sufficient conditions for invariants: There exists a positive 

P-invariant. Therefore, the sufficient condition for 
boundedness is satisfied, and the net is bounded. 

 

PNtool2, as an addition to the invariant analysis, provides also the reachability 
analysis based on results of the research performed at the author’s home 
institution [11, 12]. 

Table 3 
Invariants of transitions 
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0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 

Conclusions 

Within this work a method for the specification and verification of communication 
protocols is discussed. It is based on combining process algebra and Petri nets in 
order to simplify both the production of protocol specification (using process 
algebra) and protocol analysis (using Petri nets). The Trivial FTP protocol is taken 
as an example of practical employment of the method proposed. In this case, the 
resulting Petri net has the properties (boundedness, liveness, deadlock freeness) 
which a correct communication protocol should have. 

Our future activities will include several items to be explored. Firstly, a lot of time 
was spent editing the generated Petri net model into the shape depicted in Figure 
2. We have made some attempts in the field of generating the layout of Petri net 
models, but there is still a lot of space to improve. Another idea is to incorporate 
the notion of time into the process of transformation. This would lead to an update 
of the transformation method (and the ACP2Petri tool implementing it) with the 
support of corresponding timed process algebra and Petri net formalisms. And 
finally, we plan to specify some other protocols to recognize the potential 
strengths and limits of the method proposed above and compare it more deeply 
with other approaches. 



Acta Polytechnica Hungarica Vol. 9, No. 4, 2012 

 – 127 – 

Acknowledgement 

This work is the result of the project implementation: Development of the Center 
of Information and Communication Technologies for Knowledge Systems (ITMS 
project code: 26220120030) supported by the Research & Development 
Operational Program funded by the ERDF. 

References 

[1] Baeten, J. C. M., Weijland, W. P.: Process Algebra, Cambridge University 
Press, 1990 

[2] Barjaktarovic, M., Shiu-Kai, C., Jabbour, K.: Formal Specification and 
Verification of Communication Protocols Using Automated Tools, 
Proceedings of ICECCS'95, pp. 246-253, 1995 

[3] Češka, M., Marek, V., Novosad, P., Vojnar, T.: Petri nets, BUT, 2009 

[4] Diaz, M.: Petri Nets: Fundamental Models, Verification and Applications, 
John Wiley and Sons, 2009 

[5] East, I.: Computer Architecture and Organization, Pitman Publishing, 1990 

[6] Edwards, J.: Process Algebras for Protocol Validation and Analysis, 
Proceedings of PREP 2001, pp. 1-20, Keele, England, 2001 

[7] Fokkink, W.: Introduction to Process Algebra, Springer-Verlag, 2007 

[8] Fürdős, F.: Verification of Communication Protocols, diploma thesis, 
Technical university of Košice, 2009 

[9] Hillston, J.: Process Algebras for Quantitative Analysis, Proceedings of the 
20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05), 
pp. 239-248, Chicago, 2005 

[10] Holzmann, G. J.: Design and Validation of Computer Protocols, Prentice-
Hall, 1991 

[11] Hudák, Š.: Reachability Analysis of Systems Based on Petri Nets, Elfa, 
Košice, 1999 

[12] Hudák, Š., Zaitsev, D. A., Korečko, Š., Šimoňák, S.: mfdte/pntool – a Tool 
for the Rigorous Design, Analysis and Development of Concurrent and 
Time-critical Systems, Acta Electrotechnica et Informatica, Vol. 7, No. 4, 
2007 

[13] Lanet, J. L.: Using the B Method to Model Protocols, AFADL98 
(LISI/ENSMA), pp. 79-90 

[14] Murata, T.: Petri-Nets: Properties, Analysis and Applications, Proceedings 
of the IEEE, 77(4), 1989 

[15] Oberkampf, W. L., Trucano, T. G., Hirsch, C.: Verification, Validation, and 
Predictive Capability in Computational Engineering and Physics, 



S. Šimoňák Verification of Communication Protocols Based on Formal Methods Integration 

 – 128 – 

Foundations for Verification and Validation in the 21st Century Workshop, 
Hopkins University, Maryland, 2002 

[16] Petri net tool Netlab, available at: http://www.irt.rwth-aachen.de/en/fuer-
studierende/downloads/petri-net-tool-netlab 

[17] Sharp, R.: Principles of Protocol Design, Springer-Verlag, 2008 

[18] Sollins, K.: The TFTP Protocol, 1992, available at: 
http://tools.ietf.org/html/rfc1350 

[19] Szádeczky, T.: Problems of Digital Sustainability, Acta Polytechnica 
Hungarica, Vol. 7, No. 3, 2010 

[20] Šimoňák, S.: Formal Methods Integration Based on Petri nets and Process 
algebra Transformations, PhD thesis, Technical University of Košice, 2003 

[21] Šimoňák, S., Hudák, Š., Korečko, Š.: ACP2Petri: a Tool for FDT 
Integration Support, Proceedings of EMES'05, pp. 122-127, 2005 

[22]  Šimoňák, S., Hudák, Š., Korečko, Š.: Protocol Specification and 
Verification Using Process Algebra and Petri Nets, Proceedings of CSSim 
2009, pp. 110-114 

[23] Šimoňák, S., Peťko, I.: PATool – A Tool for Design and Analysis of 
Discrete Systems Using Process Algebras with FDT Integration Support, 
Acta Electrotechnica et Informatica, Vol. 10, No. 1, 2010, pp. 59-67 

[24] TINA (Time Petri Net Analyzer) home, available at: 
http://homepages.laas.fr/bernard/tina/description.php 

[25] Tomášek, M.: Language for a Distributed System of Mobile Agents, Acta 
Polytechnica Hungarica, Vol. 8, No. 2, 2011 

[26] Verification and Validation, available at: 
http://en.wikipedia.org/wiki/Verification_and_validation 

[27] Zaitsev, D. A., Zaitsev, I. D.: Verification of Ethernet Protocols via 
Parametric Composition of Petri Net, 12th IFAC Symposium on 
Information Control Problems in Manufacturing, pp. 122-127, 2006 


