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Abstract: In this paper we propose a novel semi-supervised learning algorithm, called 

Random Split Statistic algorithm (RSSalg), designed to exploit the advantages of co-

training algorithm, while being exempt from co-training requirement for the existence of 

adequate feature split in the dataset. In our method, co-training algorithm is run for a 

predefined number of times, using a different random split of features in each run. Each 

run of co-training produces a different enlarged training set, consisting of initial labeled 

data and data labeled in the co-training process. Examples from the enlarged training sets 

are combined in a final training set and pruned in order to keep only the most confidently 

labeled ones. The final classifier in RSSalg is obtained by training the base learner on a set 

created this way. Pruning of the examples is done by employing a genetic algorithm that 

keeps only the most reliable and informative cases. Our experiments performed on 17 

datasets with various characteristics show that RSSalg outperforms all considered 

alternative methods on the more redundant natural language datasets and is comparable to 

considered alternative settings on the datasets with less redundancy. 
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1 Introduction 

Semi-supervised learning is a class of machine learning techniques that employs 

both labeled and unlabeled data for training. The goal of semi-supervised learning 

is to achieve high accuracy while demanding less human effort. In this paper we 

focus on the major semi-supervised learning method called co-training [1]. Its 

successful application is guaranteed when the dataset possesses a natural division 

of the features in two disjoined subsets, called view, such that each view is 

sufficient for learning and conditionally independent to the other given the class 

label. This makes co-training application limited because the needed optimal 

feature split is unknown in the great majority of settings. 
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In this paper we propose a novel co-training based method, called the Random 

Split Statistic algorithm (RSSalg), which exploits the advantages of co-training 

and is exempt from co-training requirement for the existence of adequate feature 

split. In our previous work [2, 3, 4] we published promising preliminary results for 

our RSSalg methodology. However, the disadvantage of our earlier method was 

the introduction of threshold parameters to the co-training setting, which greatly 

affects the performance of RSSalg and needs to be carefully manually tuned for its 

successful application. In this paper we develop a methodology for automatic 

determination of these thresholds. 

This paper is organized as follows. Section 2 presents the related work. Section 3 

describes our RSSalg methodology. Section 4 presents the conducted experiment 

and achieved results. The results are discussed in Section 5. Finally, Section 6 

concludes the paper and outlines the possible directions of future work. 

2 Related Work 

One way to enable co-training application on the single view datasets is by 

designing a methodology that can provide a good approximation of the optimal 

feature split. This approach resulted with some promising results [5-10]. However, 

approximating the optimal feature split is a difficult task, as the relation between 

the characteristics of the views and the performance of co-training has not been 

sufficiently investigated. Moreover, research [10] indicates that in the real-world 

situations where co-training would be most useful, that is, in the situations where 

we posses only a small training set, the independence and sufficiency assumptions 

of the views cannot be reliably verified. In these situations, split methods can be 

unreliable, and thus the performance of co-training is uncertain as it may degrade 

the classification performance when its assumptions are not met [11]. 

In this paper, we compare our proposed method to a co-training algorithm that 

uses a random split of features, shown to be beneficial in case of redundantly 

sufficient feature sets [5, 6]. 

Also, we compare our method to a method called maxInd [7]. MaxInd 

approximates the optimal feature split for co-training by crating two maximally 

independent views, given the class label. This approach is based on the 

conditional independence requirement for the views [1]. Experimental results with 

maxInd have shown that the prediction accuracy of co-training does not always 

become better by simply choosing truly independent views, leading the authors to 

conclude that the relation between the characteristics of views and the 

performance of co-training should be investigated more in detail. These findings 

have also been confirmed in [8], where the authors randomly generated a number 

of splits and tested the most independent splits against the least independent ones. 
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Another way researchers approach the problem of enabling co-training application 

on single view datasets is by combining co-training with ensemble learning [12]. 

This approach is mainly based on using an ensemble of classifiers in the place of 

two single classifiers in the co-training algorithm [13-15]. Methods based on this 

approach are able to significantly boost the performance of co-training. However, 

they usually rely on having a relatively large initial training set in order to build 

the initial ensemble of diverse and accurate classifiers. Moreover, in the case of a 

high dimensional dataset, classifiers trained on small bootstrapped data samples 

using single feature view may face the ‘large p, small n problem’ [16, 17]. One of 

the goals of our setting is to combine the advantages of co-training style 

algorithms and ensemble learning while keeping the training set at the same size 

as would be used in the original co-training setting (just a few labeled examples). 

Instead of employing multiple classifiers inside the co-training algorithm, our 

methodology exploits different configurations of co-training in order to create an 

ensemble of classifiers from only a few labeled examples. 

In [18] it is argued that ensemble learning and semi-supervised learning can be 

mutually beneficial. Based on this, some approaches exploit unlabeled data for 

ensemble diversity augmentation [19, 20]. As opposed to other ensemble 

approaches, our methodology combines multiple co-training classifiers. In this 

way, a hierarchical ensemble is constructed: each co-training consists of two base 

classifiers, and our RSSalg methodology combines multiple co-training classifiers. 

In [21] we have also explored an alternative way of combining multiple co-

training classifiers by treating them as inconsistent and unreliable annotators in an 

unsupervised multiple-annotation setting. 

3 Methodology 

In our setting we are given a training set of labeled examples L, which is relatively 

small and a set of unlabeled examples U, which is relatively large. Our goal is to 

determine the unknown labels of the instances in the given test set T. 

The first step in our Random Split Statistic algorithm (RSSalg) is to create an 

ensemble of m diverse co-training classifiers CL
m

i. This is achieved by running 

co-training until its termination m times on a given dataset, using a different 

configuration for each of the m runs in order to get a different classifier. Each time 

co-training is run independently of the other co-training runs and each run of co-

training uses a different random split of features, thus producing a different co-

training classifier. A random feature split is created by random selection of half of 

the features from the feature set as the first view, and the remaining half of the 

features is treated as the second view. Each independent run of co-training 

produces a different pair of base classifiers, as each time a different feature split is 

used. Based on their confidence, each pair of base classifiers selects different 
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instances from the unlabeled set for labeling. Thus, it may happen that in different 

runs of co-training algorithm different instances are selected for labeling. Also, it 

may happen that the pairs of base classifiers from different co-training runs give a 

different label to the same instance. Consequently, in each co-training process a 

disparate enlarged training set L (consisting of initial labeled data and data labeled 

in the co-training process) is formed. We will refer to an enlarged training set 

created during the i
th

 co-training run as co-training result set Lresi. 

The second step in RSSalg is to form the final classifier by training it on the best 

instances from gained m co-training result sets {Lresi}
m

i
.. The statistic S, based on 

co-training result sets, is created: for each Lresi  and each instance e which is a 

member of  Lresi, the number of times instance e occurs in all co-training result 

sets ne is determined (equation 1), and for each class Ck  we count the number of 

times instance e is labeled Ck (equation 2). 

ne ═|{Lresi | e  Lresi , i{1..m}}| (1) 

neCk  ═|{Lresi | e  Lresi  label(e) ═Ck , i{1..m}}|  (2) 

Each instance e is assigned its most voted label C, determined by a majority vote 

of co-training base classifiers CL
m

i  (equation 3). 

neC ═ max(neCk  | k  {1.. m}) (3) 

Falsely labeled instances would introduce noise into the training set for the final 

classifier. Our assumption is that the instance is reliable (in terms of high 

probability of being assigned the correct label) if the majority of co-training base 

classifiers CL
m

i, created in the first step of RSSalg, agree on the label of that 

instance. Thus, for each instance e, the label agreement percent eagg is calculated 

as follows: eagg ═ neC/ne. An instance is marked as reliable if its label agreement 

percent exceeds the defined label threshold lts. 

In the extreme case, an instance might occur only once in co-training result sets 

(ne=1), and label agreement percent of that instance would be 100%. However, we 

consider this instance uninformative, as there is no other co-training classifier 

which would contradict or agree on its label, and labeling an instance based on the 

prediction of only one co-training classifier, which can possibly be of poor 

performance, is unreliable. Therefore, another condition for selection of instances 

in the training set for the final classifier is defined: an instance must be 

informative. Our assumption is that instances that appear in most of co-training 

resulting sets are informative (in terms of having good bases to improve the 

learning process). To define which instances appear in most co-training resulting 

sets, an example threshold ets is used. Let n be the number of different instances 

noted in statistic S. For each instance e from S we calculate the occurrence percent 

eocc as follows: eocc ═ ne/n. An instance is marked as an informative instance if its 

occurrence percent exceeds the defined example threshold ets. 
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Thus, if we had optimal values of label threshold and example threshold, we could 

train our final classifier on instances marked both informative and reliable, where 

each instance would be assigned its most voted label. The result of the RSSalg is 

this final classifier which can be used to label previously unlabeled data. Pseudo 

code of RSSalg is presented in Figure 2. 

Given: 

 A small set L of labeled training examples 

 A much larger set U of unlabeled examples 

 A set T of labeled test instances (used for model evaluation) 

 Label threshold Lts and example threshold Ets 
for i = 1..m  iterations: 

 Create two feature sets (views) x1 and x2 describing the examples by randomly splitting feature set 

x in half. 

 Run co-training algorithm using L, U, x1 and x2. Algorithm outputs Lresi  (enlarged labeled set L 
consisting from initial L and examples from U labeled by co-training algorithm) 

 Update statistic S - for each instance e which is a member of  Lresi: 
o Increase the occurrence number of instance e, ne. 

o for each class Ck, we count the number of times instance e is labeled Ck 

      (equation 2) 
for each instance e occurring in statistic S: 

 Calculate the most voted label of the instance, C:  neC = max(neCk | k  {1.. m}) and label instance 

e as C. 

 Calculate the label agreement percent: eagg = neC/ne 

 Calculate the example agreement percent: eocc = ne/n (n -number of examples in S) 

for each instance e occurring in statistic S: 

 If  eagg > Lts and  eocc >  Ets add e (labeled as C) to initial training set L 

Train learner on the enlarged training set L to get the final classifier. Apply final classifier to T. 

Figure 2 

Pseudo-code of RSSalg 

An example case of forming the training set for the final classifier in RSSalg is 

shown in Figure 3. In this example, the label threshold is set to 80%, which means 

that the example is considered reliable if it is in at least 80% cases assigned the 

same label. The example threshold is set to 70%, which means that the example is 

considered informative if it is contained in at least 70% of the co-training result 

sets. Figure 3 shows that all examples from the initial training set L are contained 

in the final training set, as these examples appear in all co-training result sets and 

are assigned the same label in all these sets (co-training algorithm only adds 

examples to the initial training set without modifying the initial data). Example U1 

is added to the final training set as it is contained in all the co-training result sets 

(it is contained in 100% co-training result sets, which is more than the value of 

70% defined for the example threshold) and in 80% of the cases it was assigned 

the positive label (which is the same as the value of 80% defined for the label 

threshold), and thus in the final training set U1 is labeled positive. Example U2 is 

also added to the final training set and labeled negative as it is contained in 80% 

co-training result sets and it is 87.5% of the times labeled negative (in 7 out of 8 

cases in which it is contained in the co-training result sets). Example U3 passes the 

example threshold (it is contained in 80% co-training result sets), but is not 
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considered reliable as it was 50% labeled positive and 50% labeled negative, and 

thus it is not included in the training set of the final classifier. Example U4 is not 

included in the final training set as it does not pass the example threshold (it is 

contained in only 50% co-training result set), although it has a high label 

agreement (100% - in the five cases that it was labeled, it was labeled negative). 

Finally, the last unlabeled example Um is excluded from the final training set as it 

fails to pass both thresholds. 

 

Figure 3 

An example case of forming the training set for the final classifier 

In order to find an optimal label threshold/example threshold pair (lts and ets) 

which maximizes the performance of the model output by RSSalg, a genetic 

algorithm is used. 

3.1 Automatic Determination of Label Threshold/Example 

Threshold Pair 

Defining label/example threshold pair is a complex optimization problem. Genetic 

algorithms [22] are a class of adaptive search and optimization techniques, 

extremely efficient at searching large solution spaces. They have been shown to be 

a robust and effective method for the optimization of complex problems 

characterized by multiple optima, nondifferentiability and other irregular features 

[23], and thus they are suitable for our problem of optimizing label/example 

threshold pair. 
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Genetic algorithm is a search heuristic applied in order to find approximate 

solutions to complex optimization and search problems. It mimics the behavior of 

natural selection in order to reach an optimum solution to any multi-dimensional 

problem [22]. 

In our methodology each individual has two chromosomes: one represents the 

label threshold and the other represents the example threshold. Both chromosomes 

have a binary string structure. The values of threshold range from 0% to 100%. 

Simply converting the threshold values to their binary values and handling them 

as binary strings would allow recombination operators to possibly change them in 

such a way that they fall out of specified range. For example, if we use 8-bit 

binary strings to code our values, a value of 1% encoded as 00000001 could fall 

out of range by modification of the first bit: 10000001 would encode 129%. Thus, 

if we use the n-bit encoding, we divide the number of all possible values (2
n
-1) in 

100 intervals and assign each interval one value from 0% to 100%. Thus, when 

converting the number x, which falls into range of (minVal, maxVal), to its n-bit 

binary encoding, we use equation 4. For example, the example threshold of 55% is 

encoded in 8-bit binary string as 10001100. 

Binary[Round(  (x - minVal) ∙ (2
n
 - 1) / (maxVal-minVal)  )] (4) 

Each individual represents the label/example threshold pair. As we want to 

produce the model with the highest possible accuracy, the logical fitness function 

for the individual would be the accuracy of this classification model achieved on 

the set intended for model evaluation. However, in the co-training setting we are 

limited to only a few labeled examples and we lack the labeled test data necessary 

to evaluate the accuracy of our model. 

Setting the label threshold/example threshold pair causes some of the data from 

co-training result sets that exceeds these thresholds to be selected as training data 

for the final model creation, and some of the data to be omitted from this 

selection. In the example shown in Figure 3, examples U1, U2 and U5 are included 

in the final training set, while U3, U4 and Um are shown to be omitted from the 

final training set. Based on the idea of out-of-bag estimation [24] to use the left-

out examples from bootstrap samples to form accurate estimates of important 

quantities, we form the test set for model evaluation from the omitted data that did 

not fulfill the requirements to be included in training of the model, that is, from 

the data whose label agreement percent and example occurrence percent did not 

exceed label threshold and example threshold, respectively. Instances in thus 

formed test set are labeled by a majority vote of resulting co-training classifiers, in 

the same way as examples that did pass the thresholds. In the example shown in 

Figure 3, we evaluate the model trained on the examples {L1,…,Ln, U1,U2,U5,…} 

on the test set {U3,U4,…,Um}. 

However, some label threshold/example threshold pairs which might occur can 

cause all of the examples to be selected in the final training set, thus leaving no 
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examples left for evaluation of the individual. Also, too small test sets 

{U3,U4,…,Um}, with high possibility of noise, could impose a bad estimation of 

the performance of the created model. Thus, we define a testing threshold - a 

minimal number of examples needed in the test set for the evaluation of an 

individual. This testing threshold is dependent on the size of the total number of 

examples in statistic S. For example, if we use a testing threshold of 20%, each 

individual that uses more than 80% examples from the statistic S for the model, 

and less than 20% of the examples form S for testing the model, it is considered as 

poorly estimated. In these cases, we transfer examples from the training set 

{L1,…,Ln, U1,U2,U5,…} to the test set {U3,U4,…,Um} until we have enough 

examples in the test set for estimation. The examples that are transferred from the 

training set are those estimated to be the least confident ones. We estimate which 

examples are the least confident ones based on the label agreement percent and 

example agreement percent: those examples that have the smallest sum of these 

two values are considered to be the least confident ones. 

In the selection stage individuals of the current generation are chosen from the 

population and allowed to reproduce. We used the proportional (roulette wheel) 

selection [25]. For recombination, we used bi-parental uniform crossover [26] and 

single point mutation operator [22] in order to produce new individuals. In our 

setting elitism is used to preserve the best individual (as determined from fitness 

evaluations) in each generation in order to increase the speed of the search. 

Elitism reserves two slots in the next generation for the highest scoring 

chromosome of the current generation. 

3.2 The Motivation behind RSSalg Methodology 

The motivation for our methodology is that unlabeled data can be helpful to 

ensemble learning [18]. Our methodology exploits ensemble learning in the terms 

of combining the result sets Lresi, created in the co-training process by different 

co-training classifiers. Ensemble learning is only effective if the classifiers in the 

ensemble are both diverse and accurate [27], which can be achieved by applying 

an unstable base learning algorithm. Co-training possesses this feature of 

instability as it is sensitive to the two underlying assumptions on the views [5, 28], 

and therefore to the feature split division. Thus, by running co-training using 

different random splits of features, we should gain an ensemble of diverse 

classifiers. The empirical studies show that the co-training algorithm used with 

random split may be beneficial, provided that there is enough redundancy in the 

data [5]. A major characteristic of natural language datasets is the high level of 

feature redundancy [29]. Thus, by using co-training as the base learner, with 

different random splits of features on natural language datasets, we hope to gain 

an ensemble of both accurate and diverse classifiers. However, on the less 

redundant datasets, co-training using a random split is unreliable. In the 

experiment performed in this paper, we test RSSalg on both groups of datasets. 
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Our RSSalg methodology has certain similarities with bagging [30]. The first 

phase in both bagging and our RSSalg methodology is creating the bootstrap 

replicas of the original training set. In order to perform bagging, we need a large 

training set. The set of bootstrap replicates is created by randomly drawing 

examples from that large training set. In bagging, a necessary and sufficient 

condition for an ensemble of classifiers to be more accurate than any of its 

individual members is their accuracy and diversity [27]. Bagging relies on the 

available training data in order to create the diversity. In the setting where we 

dispose with only a small amount of training examples, the diversity among the 

ensemble classifiers would be limited. Also, ensemble classifiers would be trained 

on bootstrap samples, which omit some of the training data, and thus their 

performance would be even worse than the performance of a weak classifier 

trained on the small labeled training set. Ensemble methods do not use unlabeled 

data as an additional source of knowledge but are rather designed when there is 

sufficient source of labeled data but only week learning algorithms. 

In RSSalg, we dispose of the few training examples and a sufficiently large set of 

unlabeled examples. The set of bootstrap replicas is created from both labeled 

examples and unlabeled examples by applying co-training in order to incorporate 

unlabeled data into the original training set. In such a way we hope to increase the 

amount of training data and gain a more accurate classifier then the one trained on 

the original labeled set. The difference is that labels appointed by co-training to 

examples in bootstrap data are less reliable compared to the labels of examples in 

bootstrap data created by bagging. 

The second step in bagging is to apply a base learning algorithm on each bootstrap 

replicate in order to gain an ensemble of learning models. Then, we can decide on 

a label of a previously unseen example by a majority vote of the resulting learning 

models. In RSSalg, we use majority voting in order to determine the final labels of 

the examples from bootstrap replicas. Even if the requirements for the successful 

application of co-training are met, in the co training process some noise is added 

to the initial training set through non-perfect classification. Moreover, the hard 

requirements of co-training are rarely met in practical situations, thus the 

performance of co-training is degraded by using non-ideal split. This introduces 

noise in bootstrap replicas created in the first phase of algorithm. Compared to 

other ensemble methods, bagging tends to be less accurate but stable and robust to 

classification noise [27]. Thus, by employing majority voting as in bagging, we 

hope to gain more accurate labels of examples in bootstrap replicas. 

4 Empirical Evaluation 

In this section we describe the experimental procedures and report the obtained 

results. 
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4.1 Datasets and their Preprocessing 

We have tested our settings on tree natural language datasets: WebKB-Course [1, 

5], News2x2 [5, 7] and LingSpam corpus [6, 8]. In addition, we have performed 

experiments on 14 UCI datasets. All of these datasets were previously used for co-

training evaluation [10, 13]. We have selected these datasets that vary in size, 

dimensionality, redundancy and other characteristics in order to gain better insight 

on the effectiveness of our method in the real-world situations. 

In case of natural language datasets we adopt the preprocessing technique used in 

[7] in order to compare our algorithm to the performance of co-training run using 

their artificial maxInd feature split. For dimensionality reduction, an English stop-

word filter that removes 319 frequent words is used, and stemming is performed 

with Porter’s stemming algorithm [31]
1
. Based on document frequency, 200 most 

important features are chosen for each view. After dimensionality reduction, 

datasets are represented using the bag of words model with tfidf measurement 

[32]. It should be noted that both document frequency and tfidf measurement do 

not require the knowledge of the class label and therefore they do not violate the 

co-training setting in which labels are known for just a few initial training 

examples. 

4.2 Evaluation Methodology 

For evaluation, we adopt a 10-fold-cross validation procedure used in [7] in order 

to compare these algorithms more accurately. In this setting, data is divided in 10 

stratified folds and in each of the 10 rounds of the validation process, a different 

fold is selected for random selection of required number of labeled training 

examples (the required number of training examples for each dataset is listed in 

Table 1, in the column denoted by |L|). The remaining data from that fold as well 

as 5 adjacent folds are used as unlabeled training data. The remaining 4 folds are 

used as test data. Thus, in each round, 40% of the data is used for testing, and 60% 

of the data is used for training. Each fold is used exactly once for the selection of 

labeled data, five times it is included as unlabeled data and four times it is used as 

a part of the test set. 

In our experiments accuracy is used as the measure of performance. Also, a 

statistical significance test, a pair-wise t-test with p-value of 0.05, is applied to see 

if the differences in accuracy of the tested algorithms are statistically significant. 

Co-training itself has a list of parameters that need to be configured. The number 

of examples for each class in the initial training set is chosen proportional to the 

                                                           
1
 In case of WebKB dataset, each sample was also filtered in order to remove the phone 

numbers, digits sequences, dates and non–alphanumeric characters which give no 

significance in predicting the class of the document. 
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class distribution in the dataset (for the only exception is the LingSpam dataset 

where we use the same settings as those in [7]). Parameters n and p that represent 

the numbers of examples per each class labeled by co-training inner classifiers at 

each iteration are also chosen proportionally to the class distribution in the dataset. 

By following [7], the size of the unlabeled pool u was 50 and the number of 

iterations used in each of the setting of co-training algorithm was 20. The number 

of different random splits used in RSSalg m was 50 for the natural language 

datasets and 30 for the UCI datasets. As the base classifier in co-training 

algorithm, we have used Naïve Bayes as it displays both speed and accuracy when 

applied on benchmark datasets. 

We have used the following settings for the genetic algorithm: the generation size 

was 50, the number of iterations for genetic algorithm
2
 was 10, the fixed 

probability of swapping bits in uniform crossover was 0.3, the probability of bit 

mutation was 0.02, and elitism was used. All these parameters were empirically 

chosen. The value of testing threshold was set to 20%. The datasets and their basic 

properties are listed in Table 1. The first four datasets in Table 1 (WebKB, 

LingSpam, News2x2 and Spambase from UCI) are natural language datasets, and 

the remaining 13 are UCI datasets. Both groups are sorted by parameter Gap. 

Table 1 
A summary of the datasets used in the experiment. Notation - Dim: the number of features describing 

the dataset; |L|: the size of the initial training set L, in the format of number of positive 

examples/number of negative examples; Lacc: accuracy achieved by a supervised Naive Bayes 
classifier trained on the initial set L; |All|: the size of the entire training set All (i.e., the sum of numbers 

of labeled and unlabeled examples), in the format of number of positive examples/number of negative 

examples; Allacc: accuracy achieved by supervised Naive Bayes classifier trained on the entire training 
set All (i.e., labeled examples and unlabeled examples with correct label); Gap: performance gap (also 

called the optimal gain in [10]) computed as Allacc - Lacc. 

Datasets Dim |L| Lacc |All| Allacc Gap 

WebKB 400 5/5 78.6 138/492 96.4 17.8 

Spambase 57 2/1 67.7 1672/1087 79.6 11.9 

LingSpam 400 5/5 80.1 288/1447 88.9 8.8 

News2x2 400 5/5 81.1 600/600 89.6 8.5 

Hepatitis 19 1/1 61.7 19/73 84.8 23.1 

Kr-vs-kp 36 6/5 65.6 1001/916 87.2 21.6 

Credit-g 20 1/1 53.6 420/180 74.1 20.5 

Heart-statlog 13 3/2 65.7 90/72 80.5 14.8 

Cylinder-bands 39 2/3 58.4 136/187 72.9 14.5 

Sonar 60 1/1 55.5 66/58 68.8 13.3 

Ionosphere 34 5/3 70.1 135/75 83.1 13.0 

Breast-cancer 9 1/1 59.0 51/120 71.7 12.7 

Credit-a 15 4/5 69.3 184/229 81.5 12.2 

                                                           
2
 Empirical experiments show that GA fastly converges after just a few iterations.  
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Tic-tac-toe 9 3/6 58.8 199/375 70.7 11.9 

Breast-w 9 1/2 86.3 144/274 97.4 11.1 

Mushroom 22 3/3 84.7 2524/2349 95.3 10.6 

Diabetes 8 2/1 64.8 300/160 75.0 10.2 

In our experiments the following co-training methods were considered as 

alternatives for solving the problem of co-training application on single-view 

datasets: 

1) Co-training applied with a natural feature split (in the case where this split was 

known, i.e. WebKB, News2x2 and LingSpam dataset), hereinafter referred to as 

Natural. 

2) Co-training applied with a random split of features, hereinafter referred to as 

Random. In order to give more realistic results, co-training is used with several 

random splits (the same m splits used in RSSalg) and the results are averaged. 

3) To experiment with an alternative method of combining co-training classifiers 

gained in the first step of RSSalg, we use majority voting method, hereinafter 

referred to as MV. 

4) Co-training applied with an artificial maxInd feature split introduced in [7]. 

MaxInd is not always successful in combination with Naïve Bayes and it displays 

better performance when applied with other base classifiers, such as RBF Nets and 

SVM [7]. Because of this, we report the best performance of maxInd achieved 

when using one of these three classifiers for each dataset, hereinafter referred to as 

maxIndbest. 

5) The RSSalg introduced in this paper, optimized with the genetic algorithm 

procedure presented in section 3.1., hereinafter referred to as RSSalg. 

6) RSSalg with label threshold/example threshold pair optimized with genetic 

algorithm that uses the accuracy of the resulting classification model, achieved on 

the set intended for model evaluation, as the fitness function, hereinafter referred 

to as RSSalgbest. 

4.3 Experimental Results 

The empirical studies [5] show that co-training algorithm using a random feature 

split may be beneficial if there is enough redundancy in the data. A major 

characteristic of natural language datasets is the high level of feature redundancy 

[29]. On the other hand, most of the UCI datasets are manually constructed with 

carefully chosen features and there should not be much redundancy in such 

created features. Thus, we will present and discuss the results achieved on natural 

language datasets and on the less redundant UCI datasets separately. 
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In Table 2 we show the accuracy and t-tests with 95% confidence obtained by 

each co-training method on all datasets. 

Table 2 
Comparisons of RSSalg and RSSalgbest vs. four alternative co-training methods. The percent accuracy 

and standard deviation are reported based on 10-fold stratified cross-validation, and t-test with 95% 

confidence obtained by each co-training methods on all datasets. The Natural is applicable only for the 
first three datasets (WebKB, LingSpam, and News2x2) that have the known natural feature split. The 

results denoted by “v” indicate cases where RSSalg was significantly more accurate than the 

alternative co-training method, while a “*” indicates the significant difference in favor of the 
alternative method and no symbol represents a tie (no statistically significant difference). The overall 

results of the t-test are summarized in the rows “t-test” (separately for natural language datasets and 

UCI datasets) as the number of wins/ties/loses of RSSalg versus alternative co-training methods (e.g. 
3/1/0 in the t-test row and the Random column means that RSSalg was statistically significantly more 

accurate than Random on 3 datasets, RSSalg and Random resulted in no statistical difference on 1 

datasets, and zero (0) means no dataset indicated RSSalg was statistically significantly less accurate 
than Random in the experiment). 

Datasets Natural Random MV MaxIndbest RSSalg RSSalgbest 

WebKB 87.2±6.7 84.2±7.6 87.7±3.5 78.3±9.1 v 87.3±5.1 90.7±3.3 

Spambase - 67.8±15.8 v 77.4±4.7 68.9±8.2 v 78.2±7.7 81.5±4.1 

LingSpam 70.3±13.3 v  76.6±8.5 v 81.1±7.4 v 83.9±1.1 88.5±7.0 91.1±5.9 

News2x2 82.9±4.6 v 80.0±7.0 v 86.3±2.4 v 76.2±12.8 v 89.1±3.1 90.6±1.8 

t-test 2/1/0 3/1/0 2/2/0 3/1/0 - 0/4/0 

Hepatitis - 80.3±8.0 83.3±4.3 80.8±7.9 82.6±3.5 86.5±3.4 * 

Kr-vs-kp - 54.4±5.0 v 55.3±4.5 60.1±6.2 58.3±5.7 67.1±4.2 * 

Credit-g - 62.0±5.5 64.4±5.5 68.1±1.8 * 62.7±6.8 70.2±0.7 * 

Heart 

-statlog 
- 79.4±8.2 81.8±2.0 80.8±4.5 81.1±3.2 83.3±2.2 

Cylinder 

-bands 
- 52.5±5.2 52.9±6.5 56.3±5.7 54.3±4.8 61.6±2.5 * 

Sonar - 54.9±6.0 56.5±5.5 56.7±9.1 56.7±8.0 61.2±5.8 

Ionosphere - 69.4±12.6 73.1±4.9 78.3±7.7 74.6±7.3 79.6±5.8 

Breast 

-cancer 
- 66.7±6.1 68.2±4.5 67.5±5.4 67.0±6.8 70.4±5.3 

Credit-a - 69.2±15.0 73.4±11.0 76.1±2.6 72.0±8.4 77.6±4.8 

Tic-tac-toe - 61.5±3.2 63.2±2.5 62.0±1.7 61.6±3.0 64.1±2.9 

Breast-w - 96.8±0.8 96.9±0.7 96.7±0.7 96.5±1.0 97.5±0.4 * 

Mushroom - 88.2±3.2 89.1±1.0 88.4±1.3 88.6±1.4 89.2±0.9 

Diabetes - 61.4±7.3 64.1±3.3 65.3±1.1 63.9±3.7 67.7±1.8 * 

t-test - 1/12/0 0/13/0 0/12/1 - 0/7/6 

 

The aggregated t-test results obtained by each method against each other in terms 

of wins-ties-losses on natural language datasets and less redundant UCI datasets 

are reported at Tables 3 and 4, respectively. Methods include not only the 6 co-

training methods, but also 2 additional Naive Bayes classifiers trained on the small 

labeled set L and on a much larger training set All respectively. 
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Table 3 
Aggregate number of wins/ties/loses of each method against other methods over four natural language 

datasets. Comparisons versus NB_L (i.e., Naive Bayes classifier trained on the initial set L) and 

NB_All (i.e., Naive Bayes classifier trained on a much larger training set All) are reported in the last 
two rows/columns. For example, 1/2/0 in the row MV and column Natural means that MV was 

statistically significantly more accurate than Natural on 1 dataset, MV and Natural resulted in no 

statistical difference on 2 datasets, and MV was statistically significantly less accurate than Natural on 
0 datasets. 

 Natural Random MV maxIndbest RSSalg RSSalgbest NB_L NB_All 

Natural - 0/2/1 0/2/1 1/1/1 0/1/2 0/1/2 1/2/0 0/0/3 

Random 1/2/0 - 0/3/1 1/2/1 0/1/3 0/0/4 1/3/0 0/0/4 

MV 1/2/0 1/3/0 - 3/1/0 0/2/2 0/2/2 3/1/0 0/1/3 

maxIndbest 1/1/1 1/2/1 0/1/3 - 0/1/3 0/0/4 0/4/0 0/0/4 

RSSalg 2/1/0 3/1/0 2/2/0 3/1/0 - 0/4/0 4/0/0 0/3/1 

RSSalgbest 2/1/0 4/0/0 2/2/0 4/0/0 0/4/0 - 4/0/0 0/3/1 

NB_L 0/2/1 0/3/1 0/1/3 0/4/0 0/0/4 0/0/4 - 0/0/4 

NB_All 3/0/0 4/0/0 3/1/0 4/0/0 1/3/0 1/3/0 4/0/0 - 

Table 4 
Aggregate number of wins/ties/loses of each method against other methods over 13 UCI datasets. 

Comparisons versus NB_L (i.e., Naive Bayes classifier trained on the initial set L) and NB_All (i.e., 

Naive Bayes classifier trained on a much larger training set All) are reported in the last two 

rows/columns. For example, 1/12/0 in the row RSSalg and column Random means that RSSalg was 
statistically significantly more accurate than Random on 1 dataset, RSSalg and Random resulted in no 

statistical difference on 12 datasets, and RSSalg was statistically significantly less accurate than 

Random on 0 datasets. 

 Random MV maxIndbest RSSalg RSSalgbest NB_L NB_All 

Random - 0/13/0 0/9/4 0/12/1 0/4/9 7/4/2 0/2/11 

MV 0/13/0 - 0/13/0 0/12/0 0/7/6 7/4/2 0/2/11 

maxIndbest 4/9/0 0/13/0 - 1/11/0 0/8/5 6/6/1 0/2/8 

RSSalg 1/12/0 0/13/0 0/12/1 - 0/7/6 4/7/1 0/3/10 

RSSalgbest 9/4/0 6/7/0 5/8/0 6/7/0 - 12/1/0 0/5/8 

NB_L 2/4/7 2/4/7 1/6/6 1/7/4 0/1/12 - 0/0/13 

NB_All 11/2/0 11/2/0 10/3/0 10/3/0 8/5/0 13/0/0 - 

In summary, in our conducted experiments the proposed method RSSalg had the 

following properties as compared to alternatives on natural language datasets: 

1) On two datasets the proposed method outperformed Natural and they resulted 

in a statistical tie on one remaining dataset (WebKB). These results indicate that 

RSSalg is generally better then Natural. 

2) On three datasets RSSalg outperformed Random and they resulted in a 

statistical tie on one remaining dataset (WebKB). These results indicate that 

RSSalg is generally better then Random. 

3) On two datasets RSSalg outperformed MV (LingSpam and News2x2) and they 

resulted in a statistical tie on two remaining datasets. These results indicate that, 

RSSalg is generally better then MV. 
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4) On three datasets RSSalg outperformed MaxIndbest and they resulted in a 

statistical tie on one remaining dataset (LingSpam). Therefore, it is generally 

better than maxInd because RSSalg outperformed maxInd’s best performance on 

the majority of datasets. 

5) On all four datasets RSSalg and RSSalgbest result in a statistical tie. As RSSalgbest 

represents the upper bound of performance of RSSalg on the test set, we can 

conclude that our method for automatic threshold determination was successful. 

6) On all four datasets RSSalg outperformed the Naive Bayes classifier trained on 

the small labeled set L. In contrast, none of the alternative co-training methods 

outperformed the Naive Bayes to that level. 

7) On three datasets RSSalg resulted with a statistical tie with Naive Bayes trained 

using a much larger set of labeled data All, and it lost to NB_All on one dataset 

(WebKB). None of the alternative methods were able to achieve this on the 

majority of datasets (only MV achieved a statistical tie with Naive Bayes classifier 

trained on a large labeled set on one dataset, Spambase). 

In our experiments co-training using a natural feature split outperformed Naive 

Bayes classifier trained on the small labeled set L on only one dataset (WebKB). 

In our experiments on the group of natural language datasets, maxInd was not 

beneficial. Its best setting (maxIndbest) has resulted with a statistical tie with Naive 

Bayes classifier trained on the small labeled set L. 

On natural language datasets, in our experiments MV outperformed maxInd on 

three datasets and resulted with a statistical tie with maxInd on the remaining 

dataset (LingSpam). MV resulted with a statistical tie with Natural and Random 

on most datasets. However, as opposed to Natural, Random and maxInd it 

outperformed Naive Bayes classifier trained on the small labeled set L on the 

majority of datasets (it is only tied with NB_L on LingSpam dataset). 

Generally, in our experiments on natural language datasets, RSSalg performed the 

best, followed by MV, and finally Natural, Random and maxInd which turned out 

to be of similar performance. 

In the summery of our experiments on UCI datasets, the proposed method RSSalg 

had the following properties as compared to alternatives: 

1) On one dataset (Kr-vs-kp) RSSalg outperformed Random and they resulted in a 

statistical tie on the remaining 12 datasets. These results indicate that RSSalg 

performs similarly to Random. 

2) On all 13 datasets RSSalg and MV resulted in a statistical tie. Thus, RSSalg and 

MV have a similar performance. 

3) RSSalg and MaxIndbest resulted in a statistical tie on 12 datasets and RSSalg 

loses to MaxIndbest on one remaining dataset (Credit-g). Thus, RSSalg performs 

similar to MaxIndbest. 
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4) On 7 datasets RSSalg results with a statistical tie with RSSalgbest and RSSalg 

loses to RSSalgbest on 6 datasets. As RSSalgbest represents the upper bound of 

performance of RSSalg on the test set, we can conclude that our automatic 

threshold determination was successful on the majority of datasets. However, it is 

less effective compared to its performance on natural language datasets. 

5) On 4 datasets RSSalg outperformed the Naive Bayes classifier trained on the 

small labeled set L, resulted in a statistical tie with it on 7 datasets, and lost to 

Naive Bayes classifier  trained on small labeled set L on two datasets. Thus, given 

less redundant datasets, it is unreliable weather RSSalg will be beneficial. 

6) On three datasets RSSalg resulted with a statistical tie with Naive Bayes trained 

using a much larger set of labeled data All, and it lost to NB_All on 10 datasets. 

Generally, in our experiments on UCI datasets, Random, maxInd, and MV show 

similar performance. RSSalg showed a slightly worse performance in that it 

outperformed the Naive Bayes classifier trained on the small labeled set L on 

fewer datasets, compared to other benchmark algorithms. 

It should be noted that RSSalgbest has the best performance of all benchmark 

algorithms on UCI datasets: 

1) RSSalgbest outperformed Random on 9 datasets and they resulted in a statistical 

tie on the remaining 4 datasets. 

2) RSSalgbest outperformed MV on 6 datasets and they resulted in a statistical tie 

on 7 datasets. 

3) RSSalgbest outperformed maxIndbest on 5 datasets and they resulted in a 

statistical tie on 8 datasets. 

4) On 12 datasets RSSalgbest outperformed the Naive Bayes classifier trained on 

the small labeled set L and resulted in a statistical tie with it on one dataset. In 

contrast, none of alternative co-training methods outperformed the Naive Bayes to 

that level, and some co-training methods even degraded the performance of the 

Naive Bayes classifier on certain datasets. 

5) On 5 datasets RSSalg resulted with a statistical tie with Naive Bayes trained 

using a much larger set of labeled data All, and it lost to NB_All on 8 datasets. 

Thus, a better method for automatic determination of thresholds for RSSalg on the 

less redundant datasets would greatly improve its performance. 

The limitation of RSSalg is its time complexity. However, it runs completely off-

line without any human interaction, which makes this issue less of a problem. 

Also, RSSalg can be easily executed in parallel, as multiple runs of co-training in 

RSSalg are completely independent. 

Random should have the lowest time complexity of all benchmark algorithms. 

The time complexity of the MaxInd algorithm should increase as the number of 

features in the dataset increases, as it requires calculating pair wise CondMIs for 
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all pairs of words that are in different sets in order to determine maximally 

independent views [7]. Finally, MajorityVote is less complex then RSSalg as it 

does not require genetic algorithm optimization or training of the final classifier as 

in RSSalg. However, MV requires an additional step that is not performed in 

RSSalg, namely applying each of the obtained co-training classifiers on the test 

set. As RSSalg, MV requires multiple independent co-training runs, which can 

easily be executed in parallel. 

Conclusion 

In this paper we have proposed RSSalg, a methodology designed enable 

successful application of co-training on single-view datasets and boost its 

performance. Our method is most successful on datasets with enough feature 

redundancy, such as natural language datasets. RSSalg relies on co-training 

applied with different random feature splits in order to form the accurate enlarged 

training set. 

We have compared the accuracy of the proposed method to several alternative co-

training methods applicable to single-view datasets. In addition, the new method is 

compared to co-training with a natural feature split in cases where such a split was 

known. Our algorithm outperformed all considered alternative methods for co-

training on the more redundant natural language datasets, while it was comparable 

to the considered alternative settings on the less redundant UCI datasets. 

Our genetic algorithm technique of determination of most accurate and 

informative examples would perform its best if we could define the fitness 

function as actual accuracy achieved on the test set. However, in the co-training 

setting we are limited to only a few labeled examples and we lack the labeled test 

data necessary for this fitness function. We have used this model RSSalgbest as 

indication of the upper bound on the performance of our RSSalg. Our results show 

that the performance of RSSalg reaches the performance of RSSalgbest as its upper 

bound accuracy on natural language datasets, while it is less successful on the less 

redundant UCI datasets. RSSalgbest has outperformed all considered co-training 

methods on UCI datasets; thus, a better method for automatic determination of 

thresholds for RSSalg on the less redundant datasets would greatly improve its 

performance, and this remains a task for the future. 

Our empirical experiments with RSSalgbest suggest that, given optimal parameters, 

RSSalg is consistent on various classification domains and does not require any 

specific requirements about the dataset to be met. However, the determination of 

optimal parameter values, without using labeled examples, remains to be 

improved in the future. 

The downfall of genetic search is that it suffers from serious variance (i.e., very 

different results may be obtained by different runs). In the future we plan to 

undertake an experimental study in order to analyze the difference caused by 

different runs of genetic search. 



J. Slivka et al. Combining Co-Training with Ensemble Learning for Application on  
 Single-View Natural Language Datasets 

 – 150 – 

Another limitation is the introduction of an additional parameter in the co-training 

setting, represented as the number of co-training classifiers created in the first step 

of RSSalg. In the future we plan to experiment with different parameter settings in 

order to investigate their impact on RSSalg. 

In the experiments presented in this paper we have considered only binary 

classification problems, and in future research we plan on extending our method to 

multiple-category label problems. Also, we plan on undertaking more 

experimental studies in order to compare our method to ensemble approaches that 

exploit unlabeled data, such as co-forest [14]. Finally, we hope to integrate our 

solution into the information system for monitoring the scientific research activity 

of the University of Novi Sad (CRIS UNS)
3
. Our solution would serve as an 

additional support of system for automatic extraction of metadata from scientific 

publications [33]. The goal is to overcome the problem of manual annotation of a 

large number of scientific papers. Finally, we hope to apply our algorithm as the 

solution for automatic mining of methodologies from scientific articles [34]. 
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