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Abstract: The use of hybrid dynamical systems opens a new horizon for flexible 

manufacturing systems scheduling. It even makes possible directly connect scheduling and 

MRP. In the present paper the most important new result is the proposed demand rates 

determination method for multi-section scheduling problems. Some other important 

achievements making possible the application of this approach are discussed,too. These 

are, for example: 

 feedback control law resulting in stable (implementable with finite buffers) and 

regular (converging to periodic) processes is described; 

 optimal demand rates determination for single- section problems is discussed. 

In this paper the “buffer principle” of planning is used and a bottleneck scheduling 

approach is applied. As the result, production times close to the global minimum of net 

manufacturing time, determined by the loading characteristics of bottleneck machine-

groups, may be realized. 

The proposed control is totally self-organizing. No outside control commands are 

necessary. Every buffer is only connected (in the signal level) with the previous and the next 

buffer. The actions are real-time controlled. The most important feature of this control is 

that it significantly improves the efficiency of utilization of system resources.The 

generalization for multi-section problems makes it possible to solve the most common 

application tasks. Ev, the solution of dynamical input problems becomes possible. 
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1 Introduction 

In the present paper we extend the development in paper [1] for single-sections 

hybrid dynamical systems based FMS scheduling method for multi-section 

scheduling problems. This last is the most common formulation (coming from 

MRP level) of production tasks. The results may even be used when the tasks 

(inputs) have a dynamical character. 

The good quality of the solution of scheduling problems is a key factor in the 

effective utilization of flexible manufacturing systems. The value of production of 

these systems is very high. This is why every improvement in processes quality 

has a significant economic effect. Classic methods of scheduling manufacturing 

processes may be used for Flexible Manufacturing Systems (FMS), too. In 

general, the approaches used for the solution of manufacturing scheduling 

problems belonged to applied operation research problems. Perkins and Kumar in 

[4] proposed to use for this goal Hybrid Dynamical Systems (HDS) theory based 

methods. By this, the scheduling problem became a control theory problem for 

which the approaches of dynamical systems investigation are suitable. 

Concerning manufacturing production planning,problems arise when we want to 

exploit the advantages and opportunities of these systems, where not only the 

manufacturing but also the handling processes are automatically realized. As an 

example of the difficulties,we mention the application of lot-streaming and 

overlapping production. In systems with high-level computerized control it is 

trivial to use these methods. But it is not trivial how to realize it. Even with very 

the powerful technology of computations, similar tasks lead to problems with very 

high dimensions with no chance of effective solution. Lot-streaming and 

overlapping production methods can be effectively used in flexible manufacturing 

systems due to the small values of set-up times. But to plan the processes is 

extremely difficult because of the increase in dimensions. Exactly this is the field 

where the application of the methods of hybrid dynamical systems may result in a 

breakthrough. 

The manufacturing scheduling problems are in the centre of attention of the 

scientific literature. A high number of publications are available. A survey is in 

[13] and others. From classical works we recall [14, 15]. 

Hybrid dynamical systems have attracted considerableattention in recent years 

(see e.g. [2, 3] and references therein). In general, HDS are those that combine 

continuous and discrete behavior and involve, thereby, both continuous and 

discrete statevariables. In many cases, such systems operate as follows. Whilethe 

discrete state remains constant, the continuous one obeys adefinite dynamical law. 

Transition to another discrete stateimplies a change of this law. In its turn, the 

discrete state evolvesas soon as a certain event occurs with both the evolution and 

theevent depending on the continuous state. 
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The class of HDS we are dealing with in the present paper consists of complex 

switched server queuing networks. This class of HDS was introduced in [4, 5] to 

model flexible manufacturing systems. Different aspects of the investigation of the 

processes in these systems were outlined in [2 12]. A flexible manufacturing 

system considered in this paper produces several part-types on a network of 

machines. Raw parts are the inputs to the network. Parts arriving to a machine are 

waiting in buffers and are supplied to the machines when required. Each unit of a 

given part-type requires a predetermined processing time at each of several 

machines, in a given order. A set-up time is required whenever a machine switches 

from processing one part-type to another. 

The investigation of the fluid analogy of similar systems is a popular research 

field. Especially the periodic processes in these systems have attracted significant 

attention (see: [16, 17, 18, 19]). 

It should be emphasized here that in FMS the set-up times have small value 

compared with the manufacturing times. Nevertheless, as is well known from 

practice, and as is proved by theoretical investigations, their values may not be 

neglected without serious consequences. 

In classic manufacturing scheduling problems, the parts are supposed to be 

delivered to machines in batches. The batches are properly sized. When hybrid 

dynamical methods are used, the basic difference in part delivery policy is that the 

parts are delivered to buffers serving the machines in a continuous flow. More 

precisely, the part demand is (equally) distributed in time. In the early works (see 

e.g.: [2 9]) on HDS theories used for FMS scheduling, the inputs representing the 

production tasks were introduced as infinite flows without start and end. This 

representation was suitable for stability problem formulation and for the 

investigation of periodic motions in such systems. If the systems are stable, the 

practically interesting regimes of their motion are the periodic ones. Results 

regarding periodic motions in these systems were published, for example, in 

[3 9]. 

In [10] a new aspect of input flows determination was proposed which reflected 

the practical requirements of scheduling. Namely, the part demand (part arrival) 

was determined in a way that it should result in the production of the given part-

types in the given number during the given (scheduling) time. Clearly, one of the 

most important points is that the production time for an order be as low as 

possible. 

The above mentioned method was developed for systems where the tasks 

(production order) were given for one single (common) scheduling section. In the 

present paper we extend the results for cases when multi-section problems 

are formulated; that is, every series of part-types has its own(individual) 

scheduling section (interval) but these sections overlap.This second case, of 

course, contains the single (common) scheduling section case, too. 
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In the present paper,as theoretical basis, the results of paper [1] are used. These 

results concern the solution of manufacturing scheduling problems by the use of 

hybrid dynamical methods. We remark that throughout the present paper the 

continuous representation is used. Furthermore, it is supposed that the number of 

parts is suitably large, and the set-up times are suitably small. 

The content of the present paper covers the following: 

After this Introduction, in Section 2 we describe the problem statement for 

manufacturing scheduling. 

In Section 3 we give a simplified discussion of the theoretical investigation of the 

FMS scheduling problem. The main emphasis is on the aspects of practical use. 

So, the formulation of the feedback control law is simpler (but equivalent) than in 

[1]. Because the goal is to extend the results to multi-section scheduling problems 

the results are formulated to serve this goal. 

In Section 4 we describe the method developed for single section scheduling. We 

propose an approach for optimal determination of demandrates. This is important 

because the basis for the effective solution of the multi-section problem is the 

effective solution of single-section problems. 

The main results of the present paper are given in Section 5 where we 

generalize the demand rates determination method for systems with multi-

section scheduling intervals. 

In Section 6 some idea is given how the proposed in the paper make possible to 

contact FMS scheduling and MRP. 

Conclusions are formulated in Section 7. 

2 Problem Statement 

Flexible manufacturing systems for scheduling by the use of HDS theories may be 

modeled as follows: 

(i) There are P part-types labeled1; 2; . . . ; P, and a set  ={        } 
of machine-groups which we will also call simply machines, in the following. 

(ii) Parts   of   type   p   require   processing   at   the   machinesµp,1, µp,2,  ……..    

     
in that order where µp,j 1,2,…,M. Here   is the index of the machine which 

processes the last operation of the given part (index of final machine-group). So, 

for example, whenµp,1=3, µp,2=1, µp,3=4 the part with index p is processed on 

machine identified with indices 3,1,4, in this order. Because the machine with 

index 3 is the last   =3.) 

(iii) Raw parts of type p arrive to the system at the machine µp,1at a constant rate 

rp>0. 
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(iv) At the j-th machine they visit, parts of type p enter the buffer labelled bp,j from 

which they are eventually processed by thismachineat a given constant rate Rp,j>0. 

The dimension of Rp,j is [part/time unit]. We will use also the valueτp,j=
 

    
This is 

the time of processing one part on the given machine.  

(v) We also assume that parts of type p incur a fixed transportation delay lp,j≥0 

when moving from the machine j to themachine j + 1. 

(vi) The machine m is served from the buffers Bm:={bp,j: µp,j=m} 

A minimal set-up time   
 >0 is required when the machine with index m switches 

from processing parts of type p in the buffer b in Bm to processing parts of another 

type p’ in Bm. The machine does not work during such a set-up time. Theset-up 

time can be artificially increased to achieve our controlgoal. In other words, set-up 

time δm(t)  of the machine m is acontrol variable. However, condition 

δm(t) ≥   
                                 (2.1) 

should be satisfied. 

Now we face the task of scheduling the operations to perform the production 

orders. For that we should know the production capacities which we have assigned 

to perform the tasks. These capacities are given as the time intervals of available 

machine-groups devoted to the given operations. 

2.1 Scheduling Sections 

Single-section case 

There is given the scheduling section as 

0               (2.2) 

During this the given numbers of part-types should be produced in the number of 

items: 

               

Multi-section case 

The scheduling sections are given as 

         (2.3) 

j=1,2,3…….J 

Where: 

                                                                   

During the individual scheduling sections the following number of parts should be 

produced: 

           ,           , ……..      
. 
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As can be recognized, the indexing of the part-types is continuous from 1, 

(1,2,3……).  In a given section the part-types indices are from        to Pj 

3 Scheduling FMS using Hybrid Dynamical Methods 

As was mentioned, in the present paper we use the results outlined in [1]. Here 

only the basic definitions and results are described to give a background for the 

formulation of the new results concerning the determination of demand rates for 

multi-section scheduling. 

The structure of one layer of the manufacturing system in consideration is given in 

Fig. 3.1. 
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Figure 3.1 

One layer of the flexible manufacturing system 

This layer represents a machine-group together with the buffers serving the 

machines in supplying some given parts. Every part-type has its dedicated buffer. 

Here we remark that the buffers are understood as virtual ones because in reality 

these buffers may have different physical implementation. The buffers may be 

individual devices but may be parts of common storages or pallets, etc. Another 

side of this virtuality is that the numbers of part items are treated as real numbers 
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and not as integers, as is in real production. The buffers are filled-up from central 

(or local) storages, or from the output of other machine-groups. We suppose that 

the delivery among machine-groups is a continuous process. Among the 

buffers,the most common types are those which are served from some other 

buffers. But there are initial buffers served from storages. The momentary role of 

the initial buffers may be different. Some of them may supply parts for immediate 

processing. We name those as the starting initial buffer. Other buffers are only 

filled up with no output flow because the given machine (machine-group) is 

engaged to produce other parts. In the Figure, the final buffers are indicated, too. 

But they do not have any role in the systems actions. They serve only for the 

registration of the end of some production action. 

We remark that the buffers here have symbolic meaning. In reality these indicate 

the buffer-machine-part-type items conglomerate. Their actions are equivalent 

with the actions of the conglomerate. One more remark: there are systems where 

the systems processes are continuous in reality. An example of these is: chemical 

systems processing fluid components. Of course, all that are proposed here are 

fully applicable to those systems. 

As was already mentioned, we consider switching feedback control laws. Now, 

according to that the system, processes may be characterized as follows. At some 

particular time instant 

 A given buffer is filled-up from storage (with rp flow rate), but the machine-

group which is served from this buffer is engaged in making other parts (or 

set-up is performed). In this case the buffer content is not reduced and its 

content permanently grows according to the input flow rate (demand rate). 

 The same as above but the machine-group is engaged to produce the given 

parts so the buffer content is reduced according to the production rates. 

 The buffer content is supplied from the machine before the given one (from 

the previous buffer) in the sequence of the production, but its content is not 

reduced because the given buffer for the time being is not engaged in the 

production. 

 The same but the buffer content is reduced because the part-type items are 

produced. 

In describing the systems work we will use the terminology: active buffer. An 

active buffer is the one which is engaged in production. That is; it receives a 

command for production from the previous buffer but the conditions to finish this 

production are not met, yet. (Where to relate the set-up times does not have any 

importance from the systems actions viewpoint.) 

As we mentioned, the systems activities to produce parts are characterizedfrom the 

point of view of buffers. Accordingly, we will use for the description of processes 

the vector of buffer levels 

x(t)={       }                                   (3.1) 
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p 1,2,……P 

m 1,2,…..M 

Finally let     (t) denotethecumulativeoutputofpart-type p from the 

buffer     overthetimeinterval [0,t] i.e.,theamountof part-type items of type p 

processedbythemachine      over [0,t]. Then,     (t) is described by 

initialcondition     (0)=0 andequations: 

if a buffer is active then  ̇p,i(t)=     
                (3.2) 

if a buffer is not active then  ̇p,i(t)=0 

The cumulative output may be characterized by vector 

y(t)={    (t)} 

3.1 Feedback Control Law for Self-Organizing, Distributed, 

Real-Time Scheduling of FMS 

In the system described above the continuous parts are characterized by the 

relations 

 ̇p,m=up,m(t)                                           (3.3) 

p= 1,2,……P 

m= 1,2,…..M 

whereup,m(t) are the input flows of the buffers. 

In [1] the processes of the given system are given in algorithmic form. 

This formulation gives, for example, for a buffer filled-up from the storage and 

reduced at the same time                                                                                                                                     

 ̇p,1=rp-     
                                                                    (3.4) 

Another example is when a buffer is filled-up from a machine-group before and at 

the same timeits content is reduced according to the present production 

 ̇p,i=        
          -     

              (3.5) 

For the relations describing the other processes in the system, see [1]. 

In [1] the following goal was formulated: 

Let d1>0; d2>0,……dP>0 be given constants. These constants are 

calledproduction levels. LetT >0 be a given time value.The goal is to determine 

the part arrival rates r1, r2,….rP and feedback control policy such that for all p 

=1,2,…..P;   i= 1,2,…..  , the value yp,i(k + 1)T)-yp,i(kT) (that is the amount of 

parts of type p processed by the machine     over the interval [kT; (k + 1)T]) is 
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close, in some sense, to dp, where k =0,1,2,….. Furthermore, we wish to find the 

minimal time T for which this will be possible. Also, the closed-loop system 

should be stable. (The definition of stability is given below.) 

For future use the following will be introduced: 

Definition 2.1: (See [4], [5].) The closed-loop system constructed according to 

Fig. 3.1 and working with the use of switching feedback control is said to be stable 

if for any solution [x(t)] with initial conditions x(0)=x0 (where x0 is a vector with 

non-negative components)the vector functionx(t) is bounded on [0, ), i.e. there 

exists a constant 

L(x0)>0 

such that 

xp,i(t)   x0)                                                                                       (3.6) 

Definition 2.2: The closed-loop system discussed above issaid to be regular with 

the production levels d1, d2,……dP and the scheduling period T if it is stable and 

the following condition holds 

                                  (    (      )          )    (3.7) 

                       

As was mentioned above, regularity with the production levels d1,d2…..dP and the 

scheduling period T means that for any p the amount of part-type p processed over 

time intervals [kT; (k + 1)T] converges to dp as k tends to infinity. 

Definition 2.3: Assume that d1>0, d2>0,…..dP>0 are given. The minimal time T0 

for which there exist constants r1>0, r2>0,….rP>0 and a feedback policysuch that 

the closed-loop system is regularwith the production levels d1, d2,…..dP and the 

schedulingperiod T0, is called the minimal scheduling period of thesystem. 

For the sake of the simplicity of future discussion, we introduce some more 

definitions and terminology. 

The quantity 

Ltm=∑       
   
                  (3.8) 

m 1,2,….M 

is the net manufacturing time needed for any machine-group to produce the parts. 

The quantity 

Dm=∑       
   
        (3.9) 

p         

m 1,2,….M 
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is the net manufacturing time when dp(p=1,2,…P) number of parts is produced 

from a part-type items in a period of periodic motions. 

The quantity 

ELtm=[km  
                                                                                            (3.10) 

m 1,2,….M; 

is named extended load time, where:km is the number of set-up events on a 

machine-group when performing a production order. 

We will use also the following quantities 

Mltm=MaxLtm                (3.11) 

m 1,2,….M;  

and 

MELtm=Max ELtm     (3.12) 

m 1,2,….M;  

These quantities belong to the bottleneck machine groups. It very frequently 

happens that the machine-groups for which the maximums of Ltmand ELtmoccur 

are the same. This is because the set-up times usually are that of suitably small 

value. In the following, we will suppose that the bottleneck machine-group is the 

same as regards the net and extended load times. In the opposite case, it is very 

easy to modify the results. 

It was proved in [1] that the minimal time T0 for the closed loop system to be 

regular is 

T0=Max[km  
 +∑       

   
   ]=Max[km  

 +Dm]          (3.13) 

m 1,2,……M 

We introduce for any time value T     a quantity, which we name 

synchronization coefficient, as follows 

  
  

    

  
      (3.14) 

The machinem works with kmbuffers. Denote the corresponding 

buffersb1,b2,……    
in an arbitrary order. Let us form the followingcyclic 

sequence of these buffers 

           
                   (3.15) 

Let b     Then next[b] is the next buffer from Bm that is the next to b in the cyclic 

sequence (3.15). 



Acta Polytechnica Hungarica Vol. 8, No. 6, 2011 

 
– 165 – 

We consider an active buffer. For the activity period of a buffer the following 

feedback policy was proposed. Let    be the time instant when after the set-up 

time the processing of the parts begins. Furthermore, we introduce 

     
  

    
                                   (3.16) 

This is the net manufacturing time to produce sub-parts of part-type p in number 

of items    in machine-group with index m. 

The    value indicates which buffer is active at a given time instant. That is just 

after     b=    

The following feedback policy is proposed 

if{                          } 

then{     
                                }    (3.17) 

As was mentioned, in Equation (3.17)     is the time instant when the given active 

buffer began to produce the given part-type items. 

Finally, we introduce the demand rates as follow: 

rp=
  

 
                                                              (3.18) 

Now, we are can formulate the basic results concerning the problem outlined 

above: 

1) The minimal scheduling period T0 of this system with the production levels d1; 

d2,………dPis defined by (3.13). 

2) For any T     the closed-loop system with the part demand (3.18) and the 

feedback policy defined by relation (3.17) is regular with the production levelsd1,  

d2,……dP  and the scheduling period T. 

The above results were formulated and proved in [1] (See: Theorem 1). 

The given control solution is named Enforced-Period switching law. 

In Figure 3.2 we demonstrate the above switching law. In the centre there is the 

present buffer which is active, that is, which produces the sub-part items p by rate 

Rp,m. The buffer is supplied from the previous machine-group by rate Rp,j, or is not 

supplied because the previous machine-group is not engaged by the production of 

this sub-part, or is supplied from storage (if the buffer is an input one). At the time 

corresponding to the situation in Figure 3.2, only b=  is an active buffer in 

machine-group m. When according to the switching law the conditions for a 

switch are satisfied, the “activity” is transferred to the next buffer. 
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3.2 

The switching law 

4 Determination of the Demand Rates for Single-

Sections 

The orders for production are determined on the MRP (Material Requirement 

Planning) level of systems. As was mentioned, there are two cases for this: 

1. single section scheduling 

2. multi-section scheduling 

First we deal with the single section case. 

The task is to produce during the scheduling time: 

0                                                                        (4.1) 

the given number ofitems of the part-types 

N=N1, N2,…….Np,………NP(4.2) 

As was mentioned, in the classic formulation of tasks, the part numbers are given 

for the whole scheduling period. It is not specified when exactly in this time 

window the part items should be produced. The only important point is to have 

them at the final time instant (due date). Using hybrid dynamical approaches there 

is a change in this respect. We distribute the part requirement equally along the 

time axis. We name demand rate the rate at which the parts are required by the 

system. The part demands are the integral in time of the demand rates. We also 

use for this the terminology arrival rate. This is the rate the parts arrive into the 

buffers. Clearly, the demand rate and the arrival rate represent different ideas but 

are characterized by the same quantities. 
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Now, let us consider the manufacturing capacities necessary to perform an order. 

As was mentioned, the machines loads (necessary net manufacturing capacities) 

are: 

Ltm=∑       
   
                             (4.3) 

m 1,2,….M 

The global minimum of net production time is determined by the maximum of this 

quantity. The machine-group for which we have this maximum is the bottleneck 

machine-group considering the net manufacturing times. As we mentioned, we 

suppose that the given machine is the bottleneck, taking into consideration the set-

up times, too. We identify this machine group by index 

                                                                          (4.4) 

In the following, for the maximum of loading time we will use (see: (3.11)) 

Mtl=MaxLtm                             (4.5) 

m=1,2,……M 

In [10] it was proposed to determine the demand rates as 

rp = 
  

    
k                             (4.6) 

p=1,2,……P 

The coefficient k was named demand rate coefficient. 

It was proposed to choose the k coefficient having a value slightly less than one. 

Now we discuss the reasons of this proposal.According to the description of 

system processes above, the part demands appear as contents in the buffers at the 

first machine-groups processing given part-types. So, there is an input buffer, the 

content of which characterizes the momentary for a part-type requirement. The 

demand rate choice according to Equation (4.6) is illustrated in Figure 4.1.Clearly, 

because Mtl is the maximum of net manufacturing time and at the same time the 

global minimum of production time, it is impossible to finish the overall task,for 

any part-type, for less time than Mtl. So, if we use equal distribution of demands 

along the time axis the 
  

   
 value, will give the slope of the upper border of the 

“demand sector”. Similarly, the 
  

    
 value will provide the lower border because 

for any value less, the due date requirement may not be satisfied. (There may exist 

some technological restrictions (see: [10, 11, 12]) which in most of the practical 

cases do not affect the results.) It is expedient to choose the demand rates as big as 

possible for decreasing the production time. A k value slightly less than one, 

which provides some reserve for set-up times, can give a suitable solution for the 

above goal. The upper and lower borders determine the so-called “demand 

sector”.The mentioned will be discussed later in more detail. 
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The demand sector 

Returning to analyze the system processes, the demands appear at the first 

machine-group processing a given part-type. As was proved,the processes in the 

systems converge to regular. The processes at the output ofthis first machine-

group will converge to periodic ones, too. At the beginning of the system actions, 

some starting procedure should be realized. (We will discusslater how to start the 

systems processes.) If the system actions are properly planned, the processes in 

every buffer will have some starting, transient, then periodic parts, and at the end, 

some final sections. Accordingly, the production time can be described as 

tpr= tstart + tperiodic+ tend     (4.7) 

We are most interested in the tperiodicpart of the motions. 

It has been shown by a number of simulation studies (see: [10, 11, 12]) that the 

starting transient parts may be made very short. The final section has no 

significant effect on system performance. So, the system goodness may be 

characterized quite well considering the processes of the periodic part of the 

motions. 

So, let us suppose that the planning of system processes may be performed based 

on periodic motion. 

We assume that the scheduling task is performed during “W” period of periodic 

motions where W is a properly chosen integer value. 

Then 
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dp=
W

N p
p= 1,2,…..P                          (4.10) 

 

 

According to Equations (3.13) and (3.18) the arrival rate can be determined as 
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(4.11) 

Considering Relation (4.5) and (4.6) we get 

  
   

     
     

              (4.12) 

The only free parameter in the above expression is the W value. 

We remark that the low values of W exclude the use of hybrid dynamical methods, 

because, for example, W=1 corresponds to the classic scheduling problem. Its 

solution has well-known results and difficulties. The other small values of W 

would indicate the necessity to use classic (or modern) lot- streaming technologies 

(see e.g.: [20]) which, as far as we know, do not have significant, general results. 

The development of computational technology makes it possible to solve very 

sophisticated problems. But the computation difficulties and, what is even more 

important, the complicated realization makes the use of these approaches not very 

attractive. The proposed self-organizing approach is free from these difficulties. 

Now, we will try to analyze the problem of the proper selection of the W (or k) 

value. 

4.1 Optimal Demand Rate Selection 

The production time (tpr) when using HDS methods can be represented as 

tpr= Mtl +W*km  
  +      (4.13) 

where     is the time of finishing all of the operations on other than the bottleneck 

machine-group. The task is to choose the W value minimizing the last two terms 

of (4.13). It depends on the task and may be solved by simulation. To gain some 

general idea we may have some supposition. In Savkin, Somlo (2009) it was 

supposed that 

  =T0                               (4.14) 

By that, the optimal W is (see: Savkin, Somlo (2009)): 

Wopt=√
   

    
            (4.15) 
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According to some new idea about the effect of lot-streaming (see: [21, 22) it 

seems that a better estimation of production time may be provided by 

   =
     

 
 (4.16) 

where the H coefficient value is 

H=0,2 0,5 

The above supposition was concerned with the investigation of the solution of the 

scheduling problems with full load of bottleneck machines. It was supposed that 

for “full load” problems, scheduling the production times may be characterized as 

tpr=Mtl(1+H) + km  
                                                                                         (4.17) 

where H is about the above given values. 

We remark that, depending on the task, H may have, in some cases, less value than 

the above. But these cases are trivial from scheduling points of views. The 

obtained schedules should be realized in the most usual way. (Lot-streaming 

should not be used.) 

In general, substituting (4.16) into (4.17) we get: 

Wopt=√ √
   

    
                             (4.17) 

The proper H value depends on the tasks. A rather defensive choice is H=0,5. By 

this 

Wopt =
√ 

 
√

   

    
                             (4.18) 

As the simulation experiments show, the system performance is not very sensitive 

to W value. So, wide variety “close” to the optimal value may be used. 

So, 

Wopt=(0,5      √
   

    
                                                                             (4.19) 

valueseemsa reasonable choice. 

Buffer size aspects 

Because (see: Equation. (4.10)) 

dp=
W

N p

                                      p=1,2,…….P                                         (4.20) 

if at the chosen W, at all of the machine groups,  the dp values are below the 

physical buffer sizes, then the successful working regimes can be realized. In the 
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other case W should be increased (or buffer sizes increased). The planning issues 

are straightforward from the mentioned. 

4.2 How to Start the System 

Now, let us deal with the problem of how to start the system work. The rough 

parts come into the system from storages. We have given the way how the part 

demands are formulated. Clearly, at every machine-group it should be determined 

which part-type processing should begin first because the feedback control 

algorithm do not give any information about that at time instant t=0. (There is no 

previous machine which would give the command “next”.) The work starting 

strategy also affects how the demands are fulfilled because they determine the 

transient processes. It is very difficult to say anything about the selection of 

starting input buffers from among the input buffers because the transient processes 

are highly nonlinear, dynamic ones, and so their parameters are very difficult to 

estimate. But, according to our simulation experiments (see: [11, 12]), it is not 

necessary. The transient processes, usually, are very short. Another point in this 

line is that (as the simulations have shown) the transient parts of the motions can 

be used for automatic scheduling, as well, without losing anything in quality. 

Different rules for starting buffers selection may be developed. For example, they 

may be chosen in decreasing order of demand rates. 

Now, let us suppose we have chosen the starting input buffers. We propose the 

following starting strategy. Let us introduce some starting waiting time value 

         . The parts arrivals begins at time t=0. Then, at 

t =         +   
                             (4.21) 

we propose to begin the processing of the chosen part-type item on all of the 

machine-groups where it is possible. It is a strategically important decision how to 

determine the starting waiting time value. With the proper determination of these 

values, the time of the transient processes may be decreased. It is easy to recognize 

that if we want to process part-type items in number dp in the first sub-lot (in the 

bottleneck machine-group, machining the part-type with label p), the following 

waiting time value should be applied (see: [10, 11, 12]) 

         
            

  
-  

                             (4.22) 

This is obtained from the relation 

(tp,start+  
                                          (4.23) 

Then, the output of the first machine-group producing the given part-type will be 

exactly as at the periodic regime. But because of the dynamic processes in the 

system, in the following the situation will change. Hopefully, the processes will 

converge quickly to periodic ones. It seems to us that slightly smaller values than 

obtained according to (4.22) would result in favorable performance. Concerning 
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other machine-groups than the bottleneck, the same strategy can be used. A similar 

Equation to (4.22) can be used but actualized for the given machine-group. 

5 Demand Rates Determination in Multi-Section Case 

Now, let us consider the general formulation of the FMS scheduling tasks. The 

order for the production is formulated at the MRP (Material Requirement 

Planning) level. There are given: the time sections (time windows) of production 

and, for every section, the types of parts and the corresponding numbers of items 

to be produced. 

That is: 

                                                                                                  (5.1) 

           

where: 

rej– is the release time from which the production may begin, 

ddj – is the due date, 

J– is the number of scheduling sections. 

We will identify the part-types as follows: 

for j=1 we have the identification index p=1,2,……P1 

for j=2 we have p=P1+1, P1+2,……..P2                                             (5.2) 

  

for j=J we have p=PJ-1+1, PJ-1+2,……..PJ. 

For all of the part-types, the number of part-items to be produced is given. 

They are: 

N1, N2,N3, ……………NP                                                                (5.3) 

The scheduling sections are overlapping. This is because otherwise the tasks could 

be solved as outlined above for single (common) scheduling sections problems. 

Let us first deal with a simple example, when there are only two sections. In the 

first section let be produced 2, in the second 3 part-types. 

Let re1=0; re2<dd1<dd2 
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Figure 5.1 

Demand rates for the example 

We apply the following heuristic approach for demand rate determination. At any 

production period which begins at time instant rej we produce first the part-type 

items scheduled for rej       . When we arrive to a new release time instant 

(rej+1), we interrupt to produce the items of the j-th period and begin to produce the 

new ones. The not finished part-type items of the j-th period will be produced 

later. 

Now, let us consider the simple example. Let us perform for the first section all 

the planning steps proposed for single-sections. 

We use the following symbols for the planning results: 

 W1 - is the number of sub-lots 

 Mtl1-is the global minimum of net manufacturing time for the first section 

 r1, r2 – are the demand rates 

 T1- is the time-period of the periodic motions 

In the case of the example, Mtl1 is determined as 

Mtl1=Max{             }         (5.4) 

m=1,2,…..M 

Let us begin the production in a self-organizing, decentralized, real-time 

controlled manner. When reaching the time instant re2, we interrupt producing the 

part-type items of the first period and begin to produce the parts of the second 

section. For the second section, we determine the quantities outlined above exactly 
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in the same manner as we did for the first section. The expression, we interrupt 

producing the part-type items of the first period, means that at t=re2 the input flows 

are not introduced anymore for the input buffers and the buffer contents of part-

types produced in the first period are freeze-in. The reason why we acted in this 

way is that the value of re2 shows that having the parts of the second section is 

certainly more important than finishing the production of the part-types of the first 

section. 

Furthermore, we have, certainly, some reserve in the due date of the task for the 

first section to be able for this kind of interruption. Below we will give some 

details about how the due dates effect the above. 

So, for the first section we had the planning results: 

W1, Mtl1, r1, r2, T1.                                                                           (5.5) 

After the interruption we can determine the planning parameters for the second 

section 

W2, Mtl2, r3, r4, r5, T2.                  (5.6) 

The system actions we begin in self-organizing manner (see: Figure 3.1) for the 

first section. Then, at t=re2 the processes of the second section begin. When these 

terminate the first section items are finished. For these finishing operations the 

best is to use the demand rates determined before (re1and re2). It is advisable, 

inspite of the fact that the freeze-in values are not exactly those which would 

exactly match the planning conditions. But it is possible, of course, to recalculate 

the demand rates having the actual parameters (numbers of produced already sub-

part-type items). 

Due date aspects 

Now, let us consider the opportunity to begin the production at a time instant other 

than re2. In this case we should use some estimation of the production time value 

for the second section. The simplest is: 

tpr2=k2Mtl2   (5.7) 

This value can be slightly less than the real. 

Or we can use 

tpr2=(W2+1)T2 (5.8) 

It might be slightly more than the real production time. 

A compromise is also possible (like using Equation (4.17)). 

Anyway, a not very bad estimation is possible. Then, if we introduce some starting 

reserve time (indicated as Res2) we have: 

Res2=dd2-tpr2                                                            (5.9) 



Acta Polytechnica Hungarica Vol. 8, No. 6, 2011 

 
– 175 – 

we can begin the second production time section at any time instant (    )in the 

interval 

re2       re2+Res2                                                            (5.10) 

In other respects, everything stays the same. That is, the determination of the 

values r1, r2, r3, r4, r5 and other parameters is unchanged. 

It is an interesting opportunity that if 

dd2-tpr2 re1+tpr1………………………………………              …(5.11) 

the problem can be separated in to two single-section ones. 

Second method of demand rates determination 

It is clear that not only the method proposed above but also many other equivalent 

solutions exist for demand rates determination in multi-section case. One is the 

following. For the second section of production we do not cancel the production of 

the series of the part-types items of the first section fully but apply decreased 

demand rates for both the first, and the second section as well. Indeed, we can 

consider the production of part-type itemsN3, N4, N5 together with the production 

of part-type items not finished in the first section LN1, LN2. These values can be 

estimated as: 

LN1=N1-r1(re2-re1)                                                                            (5.12) 

and 

LN2=N2-r2(re2-re1)                                                                             (5.13) 

Now, we have a new scheduling task for t>re2 time which can be solved as 

outlined for single scheduling section problems. We get the results: 

  
      

    
        

       
    

      
      

                                                               (5.14) 

What is outlined above in the case of the example is demonstrated in Figure 5.2. 
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Figure 5.4 

Second method of demand rates determination 

General solution for demand rates determination 

Now let us consider the general case as determined by Relations (5.2), (5.3). 

For multi-section scheduling we propose applying the first method described 

above for demand rates determination. 

For the first production section let us take t=re1=0. By this choice we determine: 

W1, Mtl1, r1, r2,………..   
, T1, 

Then, for t=re2 we determine 

W2, Mtl2,      ,      ……..    
, T2, 

Going on we may have 

………… 

………… 

WJ, MtlJ,          , …          ,…..   
, TJ,                                 (5.15) 

Having finished the production in every section, we can estimate the number of 

any part-type itemswhich were not completed andleft for future production. 

LNi=Ni-ri    (5.16) 

i           
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where     is the time interval a part-type was processed during any section. 

These values give the simplest estimations but donot differ too much from real 

numbers. 

If a part-type production is interrupted several times, (5.16) is applied several 

times in the proper sense. 

This rather simple approach described above can be used for planning of the 

processes. In fact, as self-organizing, distributed, real-time control is used, the 

processes will be determined by the nonlinear dynamics of the systems. The inputs 

are the demand rates and the starting time values at the starting input buffers. At 

system level, of course, the data should be up-dated for the different scheduling 

sections. To understand the nature of the problems, the inter-connection of MRP 

and scheduling should be analyzed. 

6 MRP and Scheduling Interconnections 

The production orders come from the MRP systems. MRP is product oriented. By 

the time a product is assembled, all of the components should be available. MRP 

allocates the time intervals for production and at the same time checks whether the 

production capacities are available or not. Every time a new part-type series comes 

into consideration, MRP assigns the necessary production times to all of the 

homogeneous capacities (machine-groups). If any production capacity is 

overloaded (it happens at the bottleneck machine-group), the given task is 

rejected. Scheduling is production oriented. It allocates the loads necessary to 

perform the tasks (corresponding to the given orders) to the production capacities. 

There is a contradiction among MRP and scheduling. The practical scheduling 

problems (frequently) may not have an exact solution. So, it may happen that the 

capacities estimated by MRP are not enough. (Practical scheduling problems 

(usually) may only be solved exactly with full enumeration (see, for example, 

French [13]) which is in most of the cases impossible). 

To eliminate the above difficulty, unnecessarily big reserves should be provided at 

MRP level. All this constrains significantly the MRP-scheduling system 

efficiency. 

This difficulty is eliminated when the approach proposed in the present paper is 

used. The production control provides that the production time is close to the 

global minimum. This is caused by the automatic lot streaming and overlapping 

production. This means that a full load strategy may be applied at MRP level. 

In Section 5 of the present paper, we analyzed the question of the estimation of the 

production time. The global minimum of the net manufacturing time is a good 

basis for this estimation. If a scheduling may be produced resulting close to the 
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global minimum production times, it fulfils all the expectations. The proposed 

control solution gives close to the above goal results. Inthe classical approaches, 

there is no direct contact between scheduling and MRP level. So, on the MRP 

level, the production times should be highly overestimated. This leads to the law 

of effective utilization of devices. The hybrid dynamical approach may totally 

improve this situation. 

It is possible to give a formal description of the proposed direct connection of 

scheduling and MRP, but because the lack of place we will not give it here. 

Conclusions 

In the paper we outlined a self-organizing, distributed, real-time scheduling 

method for Flexible Manufacturing Systems. This method provides production 

times very close to the global minimum as the result of automatic lot-streaming 

and overlapping production. Our earlier investigations have shown that the 

condition of usability is to have a suitably large number of parts (as minimum 

300      in the series, and small set-up times. It seems to us that the sum of the 

maximum set-up times should be 300     times less than the global mimimum 

of net manufacturing time to produce all of the part-types in the given number. 

The above, is based on analytical investigations and simulation studies. The 

proposed Enforced-Period-Switching-Law and by that the hybrid dynamical 

feedback control provides stability and regularity. The first means that for 

every task it is possible to find buffers with given capacity which will be able to 

serve the stable work of machine tools (will not overflow). The second means that 

the processes converge to periodic ones which automatically realize lot streaming 

and overlapping production. The above results and the proposed control law make 

it possible to realize self-organizing, distributed, real-time control of flexible 

manufacturing systems. This is a significant achievement, not only in the respect 

of quality improvement but also in bringing dramatic simplification in the 

organization of processes control, too. 

The most important achievement of the paper is the proposal for multi-

section problems demand rates determination method. For the practical 

application, only a single planning parameter for every scheduling section should 

be properly chosen (the number of sub-lots or the demand rates coefficient). The 

paper details, also, the demand rates determination method for single-section case 

which is the basis for solving the multi-section problem. 

The outlined makes it possible to contact directly FMS scheduling and MRP. 
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