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Abstract: This paper investigates the dynamic parametric estimation of a solar cell system, 

by using balancing composite motions optimization (BCMO). The BCMO technique was first 

online published in 2019, the main idea is to balance composite motion properties of 

individuals in solution space, to equalize global and local searchability. To evaluate the 

performance of BCMO, experimental tests are carried out in photovoltaic cell parameters 

estimation of R.T.C.France which is collected under 1000 W/m2 at 33oC, by changing the 

population size of BCMO. And then, the performance of BCMO is compared with well-

established parameters estimation methods in terms of convergence speed, computation time, 

and RMSE value. The results demonstrate that the proposed approach can be accurately 

estimated for photovoltaic model parameters. 
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1 Introduction 

In order to cope with air pollution and climate change, renewable energy sources 

such as solar, wind, hydro and biomass energy are increasingly widely used and 

become mainstream worldwide. Among them, solar energy is one of the highest 

attention for generating electricity based on photovoltaic (PV) technology in recent 

years. To study the maximum power extracted from PV cells, characteristics 

including open-circuit voltage (V), short circuit current (I), and maximum power 

point (MPP) must be identified [1-3]. Many approaches have been proposed to 

model characteristics of PV cells used of the equivalent circuit models such as the 

single diode model (SDM) and double diode model (DDM) [4], and three diodes 

model (TDM) [5]. 

To solve the PV cell parameters extraction, deterministic and metaheuristics 

optimization techniques have been widely developed. With a deterministic method-
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based approach, Paper [6] identified the five parameters of SDM of PV cells using 

a least-squares method. Paper [7] proposed a comparison of the Newton-Raphson 

method and the Levenberg–Marquardt algorithm in the PV cell parameters 

extraction. Paper [8] presented a Lambert W-function to extract seven parameters 

of DDM of the PV cell. However, these methods are easily trapped in local optima 

and sensitive to the initial condition. 

On the contrary, the metaheuristics techniques are good at exploration and 

diversification to globally optimal solutions that do not need initial condition 

sensitivity and gradient information. These techniques have been applied to solve 

real-world problems recently such as analysis of geometry parameters variations for 

FinFET device based whale optimization algorithm (WOA) [9], optimizing of type-

2 fuzzy controllers based slime mold algorithm [10], optimizing type-1 and type-2 

fuzzy controllers based, grey wolf optimizer (GWO) [11], optimal production 

strategy using NSGA-II algorithm [12], cancer biomarkers identification using 

artificial bee colony based on dominance (ABCD) algorithm [13], deep 

reinforcement learning models with evolutionary algorithms [14], load forecasting 

based grasshopper optimization and neural network [15] and so on. To obtain the 

accuracy of PV cell parameters extraction, metaheuristics algorithms and variants 

were continuously proposed such as adaptive differential evolution (L-SHADE) 

algorithm [16], memetic differential evolution with Nelder-Mead simplex [17], 

JAYA and IJAYA [18], hybrid differential evolution with whale optimization 

algorithm (DE-WOA) [19], performance-guided Jaya algorithm (PGJAYA) [20], 

teaching-learning-based artificial bee colony (TLABC) [21], an advanced onlooker-

ranking-based adaptive differential evolution (ORcr-IJADE) [22], adaptive Harris 

hawks optimization (AHHO) [23], comprehensive learning Rao-1 (CLRao-1) [24], 

random reselection particle swarm optimization (PSOCS) [25], radial movement 

optimization (RMO) [26], manta ray foraging optimization (MRFO) [27], improved 

gaining sharing knowledge (IGSK) algorithm [28], hybrid Jaya and DE algorithm 

(MJAYA) [29], salp swarm algorithm (SSA) [30], combining multi-task 

optimization and DE algorithm (SGDE) [31]. 

Recently, many new algorithms have been introduced such as Honey Badger 

Algorithm (HBA) [32], Artificial Gorilla Troops Optimizer (GTO) [33], Henry gas 

solubility optimization (HGSO) [34], Lévy flight distribution [35], Rao-1 [36] and 

logistic chaotic Rao-1 optimization algorithm (LCROA) [37]. Among them, 

Balancing Composite Motions Optimization (BCMO), which was first published 

online in 2019 [38], is via a probabilistic selection model that creates a movement 

mechanism of each individual to equal a global and local search in solution space. 

The purpose of this paper is to apply the BCMO algorithm for estimating the 

parameters of PV cells. To survey the effectiveness of BCMO, experimental tests 

are carried out in extracting parameters of SDM and DDM by changing the 

population size of BCMO. And then, BCMO is compared with other well-

established parameters extraction methods such as JAYA [18], DE [19], MJAYA 

[29], SGDE [31], Rao-1, and LCROA [37]. 
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The main contributions of this paper are given as follows: 

 Investigate the influence of the population size - NP on the performance of 

the BCMO algorithm when estimating the PV cell parameters. 

 The effectiveness of the BCMO algorithm is conducted by parameter 

extraction of R.T.C.France solar cell described in [31], which was collected 

under 1000 W/m2 at 33oC. 

 Perform PV parameter estimation using the classical GA, DE, JAYA, and 

BCMO algorithms to analyze the convergence speed and computation time 

between these algorithms. 

 Experiments are conducted to verify the superiority of the BCMO algorithm 

in comparison to other well-established parameters extraction methods such 

as JAYA [18], DE [19], MJAYA [29], SGDE [31], Rao-1, and LCROA [37]. 

The results prove that BCMO can be accurately identified and are highly 

competitive with other PV parameters extraction methods. 

The rest of the paper is organized as follows. The mathematics of the solar cell and 

the optimization problem in modeling PV models is presented in Section 2. Section 

3 introduces the BCMO technique and how to parameter extraction of the solar cell 

model. Section 4 shows the experimental results and analysis. Finally, the 

conclusions are presented in Section 5. 

2 Problem Formulation 

In general, there are two most commonly used in practice to describe the nonlinear 

features of the solar cell model, the single diode model (SDM) and the double diode 

model (DDM). 

2.1 Single Diode Model 

The equivalent circuit of a solar cell with a single diode includes a diode, a current 

source, a shunt resistor, and series resistance is illustrated in Fig. 1. In which,
PHI  

is a photogenerated current,
SDI  is a reverse saturation current, n is a diode quality 

factor, 
SR  is a series resistance, and 

SHR  is shunt resistance. 

According to Kirchhoff’s current law, the output current 
LI  can be calculated as: 

( )L PH D SHI I I I     (1) 

Where 
PHI  is the photogenerated current in a cell;

DI represents acquired by 

Shockley formula Eq. (2); 
SHI is the shunt resistor current acquired by Eq. (3). 
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Figure 1 

Equivalent circuit of SDM 

In which, 
LV  mean for the output voltage. n, k, q, and T represent the diode ideality 

factor, the Boltzmann constant (1.3806503×10-23 J/K), the elementary charge 

(1.60217646×10-19 C), and the cell temperature in Kelvin. Hence, Eq. (1) can be 

rewritten as, 

( )
exp 1L S L L S L

L PH SD

SH

q V R I V R I
I I I

nkT R

      
      

    

                                   (4) 

It can be seen from Eq. (4) that there are five unknown parameters (i.e.

, , , andPH SD SH SI I R R n ) that need to be extracted. 

2.2 Double Diode Model 

As shown in Fig. 2, the idea equivalent circuit model of a solar cell using a double 

diode model (DDM) consists of two diodes paralleled with both the shunt resistance 

and current source to shunt the photo-produced current source. 
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Figure 2 

Equivalent circuit of DDM 
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According to Kirchhoff's current law, the output current is calculated as: 

1 2( )L PH D D SHI I I I I                                                     (5) 

Moreover, currents
1 2,D DI I  calculated by Shockley formula, therefore: 

1 2

1 2

( ) ( )
exp 1 exp 1L S L L S L L S L

L PH SD SD

SH

q V R I q V R I V R I
I I I I

n kT n kT R

          
            

           

     (6) 

Where 
1 1andDI n  are diffusion and diffusion ideality factors, respectively. 

2 2andDI n  are saturation current and recombination diode ideality factors, 

respectively. 

Obviously, there are seven unknown parameters (i.e.  1 2 1 2, , , , , ,PH SD SD S SHI I I R R n n

) that need to be extracted. 

2.3 Objective Function 

The problem of PV cell parameters extraction can be solved by minimizing the root 

mean square error (RMSE) between the experimental data and simulated data which 

is defined as follows: 

  2

1

1
( , , )

N

i L L

i

RMSE f V I
N 

 x x   (7) 

Where I-V data ( , )L LV I obtained from the experimental PV cell. N is the number 

of samples of the experimental data. x is the set of the extracted parameters. 

In Eq. (7), for SDM model: 

( )
( , , ) exp 1L S L L S L

SDM L L L PH SD

SH

q V R I V R I
f V I I I I

nkT R

    
      

  
x                  (8) 

 , , , ,PH SD SH SI I R R nx  (9) 

for DDM model: 

1

1

2

2

( )
( , , ) exp 1

( )
exp 1

L S L

DDM L L L PH SD

L S L L S L
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SH

q V R I
f V I I I I

n kT

q V R I V R I
I

n kT R

  
     
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 (10) 

with  1 2 1 2, , , , , ,PH SD SD S SHI I I R R n nx                                                                (11) 
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3 Balancing Composite Motions Optimization 

(BCMO) for Photovoltaic (PV) Parameter 

Estimation 

3.1 BCMO Algorithm 

The balancing composite motions optimization (BCMO) was first introduced in 

2019 [38]. The BCMO algorithm includes the main phase as follows, 

Initialization. Assume that it needs to minimize a d real-parameter function 

optimally. The population size (NP) of d real-parameter is defined. In the first 

generation, the population distribution is uniformly generated within the search 

space as follows: 

 min max min1, ( )i i i id  x x rand x x   (12) 

where min max,i ix x are the min and max boundaries of the ith individual, respectively. 

rand (1,d) is a uniformly distributed random number from [0,1]. Then, all 

individuals in population are ranked, based on the following sorting: 

  arg sort fx x   (13) 

In which,  f x  is the objective function values. 

Determination of the instant global point and the best individual. We define an 

instant global optimum point Oin in the search space. The way to determine Oin in 

the tth generation is as follows: 

       
   

oin

1

1 1 1

1

1

t t t

t

t

if f f

otherwise





 
 


u u x
x

x

  (14) 

Where, 1

1

t
x  is the best individual in the previous generation. A trial individual 

1

t
u

is indicated by using the population of the previous generation as: 

       
1 2 21 / /1

t t t

c k k k  u u v v   (15) 

Where uc is a center point of the search space [minB, maxB] and can be expressed: 

       
min max

2
c

B B
u   (16) 

1 2/

t

k kv  and 
2 /1

t

kv  are the relative movement of the k1
th individual concerning the k2

th 

and the k2
th individual to the previous best one. k1 is randomly in a range [2, NP] 

and k2 < k1. 
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Composite motion of individuals in solution space. To balance the exploiting and 

exploring ability, the movement of the global search
jv is calculated as: 

        
inj j o j v x x   (17) 

Where 
j is the first-order derivative of the movement distance  

ino jx x  and is 

expressed as follows: 

 
j GS jL  dv   (18) 

Where LGS is the global step size scaling the movement of the jth individual and dvj 

is a direction vector. LGS and dvj are calculated based on a trial number TVj which 

is generated uniformly from [0,1] as follows: 

2

2

1

1
1

0.5
j

j

j
r

d NP
j

GS j
r

d NP

e if TV
L

e otherwise



 
  

 




 



        (19) 

 

 

1, 0.5

1,

j

j

rand d if TV

rand d otherwise

 
 



dv          (20) 

Where rj is a distance from the jth individual to Oin and is determined as: 

       
inj o jr  x x   (21) 

Similarly, vj, the relative movement 
/i jv of the ith individual concerning the jth one 

can be calculated by xi and xj as: 

        /i j ij j i v x x   (22) 

Where 
ij is expressed as follows, 

 
ij LS ijL  dv   (23) 

LSL  can be fixed at 1 for balancing the local exploration and exploitation abilities 

of the ith individual. ijdv is calculated as in Eq. (20). 

The updated ith individual in the next generation is determined as follows: 

       1

/

t t

i i i j j

   x x v v   (24) 
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3.2 Applied BCMO for Estimating the PV Parameters 

BCMO is used to estimate the parameters of the PV model (five for the SDM and 

seven for the DDM) by minimizing the RMSE as shown in Fig. 3. The Pseudocode 

of the BCMO for PV parameters estimation is illustrated in Algorithm 1. 

RMSE

SDM or DDM 

mathematical 

model

BCMO

+
-

Measured data (I,V)

Simulated data (I,V)

 

Figure 3 

Block diagram of PV cell parameters estimation using BCMO algorithm 

In which, MinRMSE is allowed error, MaxIter is the maximum number of 

generations. BCMO is a parameter-free optimization algorithm and the 

performance of BCMO only depends on the population size NP selected for each 

specific optimization problem. 

Algorithm 1: The pseudo-code of BCMO used in parameter extraction 

1:  Generate the initial population 

 x , , , ,PH SD S SHI I R R n  or   1 2 1 2x , , , , , ,PH SD SD S SHI I I R R n n  

2:  Evaluate the fitness of each individual in the population 

3:  Rank the population and find the best individual 

4:  while(MinRMSE is attained or t < MaxIter) do 

5:  Generate a trial individual 
1

t
u by Eq. (15) and Eq. (16). 

6:  Calculate  1

tRMSE u  

7:  Determine
oin

t
x  by Eq. (14) 

8:  1 in

t t

ox x  

9:  for i = 2 to NP do 

10:          Calculate rj by Eq. (21); 
LSL  = 1 

11:          % Determine the global  search of the ith individual 

12:          TVj  = rand[0, 1] 

13:          if 0.5jTV   

14:  
                      

21
j

j
r

d NP
GSL e



  
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15:                         1,j rand ddv ;  1,ij rand ddv  

16:        else  

17:  
                      

21
1 j

j
r

d NP

GSL e

 
  

   

18:                  1,j rand d dv ;  1,ij rand d dv  

19:        end 

20:          j GS jL  dv  

21:        
inj j o j v x x  

22:        % Determine the local search of the ith individual 

23:          ij LS ijL  dv  

24:           /i j ij j i v x x  

25:          
1

/

t t

i i i j j

   x x v v  

26:  end for 

27:  Rank the individuals 

28:  t = t + 1 

29:   end while 

4 Results and Analysis 

In order to prove the effectiveness of BCMO, it is used to extract parameters of two 

different PV cell models, i.e. single diode model (SDM) and double diode model 

(DDM) in comparison to other related studies. The benchmark I–V (current-

voltage) data of PV cells was described in [39], which is collected on a 57 mm 

diameter commercial (R.T.C.France) PV cell under 1000 W/m2 at 33 oC. The lower 

and upper bounds of the PV cell parameters are shown in Table 1. 

Table 1 

Parameters range for SDM and DDM model 

Parameter Lower Upper 

 
0 1 

 
0 1 

 
0 0.5 

 
0 100 

n 1 2 

 PHI A

 SDI A

 SR 

 SHR 
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Verification of the effectiveness of BCMO includes 2 steps, first, we evaluate the 

performance of the BCMO algorithm by changing the population size NP to 

estimate the PV cell parameters. And then, BCMO is compared with other well-

established methods such as JAYA [18], DE [19], MJAYA [29], SGDE [31],       

Rao-1 algorithm, and logistic chaotic Rao-1 optimization algorithm (LCROA) [37]. 

The parameters of these methods are listed in Table 2. All methods are run from 30 

to 50 independent times. 

Table 2 

Parameters setting of other related methods 

Method Parameter setting 

JAYA [18]  NP = 20; MaxIter = 50000; 30 runs 

DE [19] 
The mutation scaling factor F and crossover rate Cr are uniformly 

distributed in (0.1,1) and (0,1); MaxIter = 10000; 50 runs 

MJAYA [29] 
Hybrid DE and JAYA; DE’s parameters Cr = rand[0.7, 1.0]; F = 

rand[0.4, 1.0]; NP = 10*d (d = 5 with SDM and d = 7 with DDM). 

SGDE [31] NP = 150, LP = 20, |h|=60; MaxIter = 50000; 30 runs. 

Rao-1, LCROA [37] 1000 iterations and 10 population; 30 runs. 

4.1 Results on SDM Parameters Estimation 

The results in terms of the best, worst, mean, STD (standard deviation) and the cost 

time computation for SDM are described in Table 3. The comparison convergence 

rates in changing NP of the BCMO algorithm are shown in Fig. 4. From Table 3 

and Fig. 4, it can be seen that BCMO provides the least RMSE value (9.8602e-4) 

and BCMO will converge quickly about 3000 generations in the case of NP = 50*d. 

Where d is the number of parameters to be estimated for the SDM model (d = 5). 

When increasing the population size NP, the cost computation will be increased, on 

the contrary, the quality and convergence speed of PV parameters estimation 

achieve higher accuracy. Additionally, the I-V curve between the estimated data 

achieved by BCMO and experimental data for the SDM model in the case of NP 

=50*d is described in Fig. 5. Results prove that the parameters estimated by BCMO 

are of a high accuracy. 
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Figure 4 

The convergence curve when changing NP for SDM 

 

Figure 5 

Comparison of the real data and the estimated data for SDM 

Table 3 

Comparisons of various NP extraction methods for SDM 

NP 
RMSE  

Best Worst Mean Std. Run(seconds) 

5*d (25) 0.0010 0.0089 0.0043 0.0028 333.8 

10*d (50) 0.0011 0.0024 0.0015 5.33e-4 555.8 

20*d (100) 9.87e-4 0.0011 0.0010 5.37e-5 864.6 

30*d (150) 9.8613e-4 9.9509e-4 9.8722e-4 2.78e-6 1189.1 

35*d (175) 9.8605e-4 9.9064e-4 9.8666e-4 1.43e-6 1341.0 

50*d (250) 9.8602e-4 9.8603e-4 9.8603e-4 3.08e-9 1835.1 
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4.2  Results on DDM Parameters Estimation 

Table 4 shows the performance of BCMO when changing NP for DDM parameter 

extraction in terms of the best, worst, mean, std. Fig. 6 describes the comparison of 

convergence rates in changing NP of the BCMO algorithm. From Table 4 and Fig. 

6, it can be seen that BCMO provides the least RMSE value (9.8635e-4) and BCMO 

will converge quickly at about 1.500 generations in the case of NP = 50*d. Where 

d is the number of parameters to be estimated for the DDM model (d = 7). When 

changing NP from 20*d to 50*d, the performance of BCMO gives a nearly equal 

quality. Fig. 7 shows the I-V curve between the estimated data achieved by BCMO 

and experimental data for the DDM model in the case of NP =50*d. 

 

Figure 6 

The convergence curve when changing NP for DDM 

 

Figure 7 

Comparison of the real data and the estimated data for DDM 
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Table 4 

Comparisons of various NP extraction methods for DDM 

NP 
RMSE  

Best Worst Mean Std. Run(seconds) 

5*d (35) 9.8533e-4 0.0015 0.0011 1.69e-4 462.7 

10*d (70) 9.8600e-4 0.0014 0.0011 1.47e-4 702.9 

20*d (140) 9.8619e-4 0.0010 9.9563e-4 1.65e-5 1156.5 

30*d (210) 9.8579e-4 0.0011 9.9776e-4 2.27e-5 1613.0 

35*d (245) 9.8538e-4 0.0011 9.9755e-4 2.54e-5 1811.9 

50*d (350) 9.8371e-4 9.8727e-4 9.8635e-4 8.03e-7 2597.3 

4.3  Comparison with Other Techniques 

For SDM, the RMSE value in terms of the best, mean, worst, and standard deviation 

(Std.) are shown in Table 5. The estimated parameters of the SDM model are 

described in Table 6. 

Based on the results in Table 5 and Table 6, it can be proved that BCMO has better 

performance than those of classical JAYA, DE, and Rao-1. Details as, in term of 

average and standard deviation, JAYA, DE, Rao-1 and BCMO obtain (1.1617e-3, 

1.88e-4), (1.0212e-3, 1.4469e-4), (9.912816e-4, 1.861748e-4) and (9.8603e-4, 3.08e-

9), respectively. When compared with a modified classical algorithm, BCMO gives 

the same performance as MJAYA and SGDE and is better than LCROA. Moreover, 

the standard deviation of BCMO obtained 3.08e-9 proves that BCMO has 

robustness capabilities in PV cell parameters estimation. 

 

Table 5 

Comparisons of other well-established parameters extraction methods for SDM 

Method 
RMSE 

Best Worst Mean Std. 

JAYA [18] 2017 9.8946e-4  1.4783E−3 1.1617E−3 1.88E−4 

DE [19] 2018 9.860219e-4  1.810590e-3 1.0212e-3 1.4469e-4 

MJAYA [29] 2020 9.860218e-4 9.860218e-4 9.860218e-4 1.99e-17 

SGDE [31] 2020 9.860219e-4 9.860354e-4 9.86022e-4 2.47465e-9 

Rao-1 [37] 2021 7.749435e-4 1.348222e-3 9.912816e-4 1.861748e-4 

LCROA [37] 2021 7.730063e-4 1.348222e-3 1.272813e-2 4.054798e-2 

BCMO (NP = 50*d) 9.8602e-4 9.8603e-4 9.8603e-4 3.08e-9 
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Table 6 

Details estimated results of SDM 

Parameters  PHI A   SDI A   SR    SHR   n  RMSE 

JAYA [18] 

2017 
0.7608  0.3281 0.0364 54.9298 1.4828 9.8946E−4 

DE [19] 2018 0.76078 0.32302 0.03638 53.71852 1.48118 9.860219e-4 

MJAYA [29] 

2020 
0.7608 0.3230 0.0364 53.7185 1.4812 9.860219e-4 

SGDE [31] 

2020 
0.76078 0.32302 0.03638 53.71853 1.48118 9.860219e-4 

LCROA [37] 

2021 
0.76079 0.31068 1.51690 0.03655 52.88979 7.730063 

BCMO (NP = 

50*d) 
0.76078 0.3230 0.0364 53.7185 1.4812 9.8602e-4 

For DDM, Table 7 gives the comparison of BCMO with other well-established 

parameters extraction methods in terms of the best, mean, worst, and Std.                 

The estimated optimal parameters of the DDM model are described in Table 8. 

Table 7 

Comparisons of other well-established methods for DDM 

Method 
RMSE 

Best Worst Mean Std. 

JAYA [18] 2017 9.8934e-4  1.1767e-3 1.4793e-3 1.93e-4 

DE [19] 2018 9.829363e-4 2.009408e-3 1.068617e-3 2.233253e-4 

MJAYA [29] 2020 9.824848e-4 9.860218e-4 9.8260e-4 6.46e-7 

SGDE [31] 2020 9.84413e-4 9.86022e-4 9.85774e-4 4.01504e-7 

Rao-1 [37] 2021 7.60703e-4 1.66267e-3 1.05394e-3 2.65619e-4 

LCROA [37] 2021 7.49007e-4 6.61635e-2 1.41491e-2 2.18517e-2 

BCMO (NP = 50*d) 9.8371e-4 9.8727e-4 9.8635e-4 8.03e-7 

Table 8 

Details estimated results of DDM 

Parameters  PHI A   1SDI A   SR    SHR   
1n   2SDI A  

2n  RMSE 

JAYA [18]  0.7607  0.00608 0.0364 52.6575 1.8436 0.3151 1.4788 9.893e-4 

DE [19]  0.76078 0.49922 0.0366 54.8509 1.9979 0.2559 1.4615 9.829e-4 

MJAYA 

[29]  
0.7608 0.22597 0.0367 55.4854 1.4510 0.7494 2.000 9.825e-4 

SGDE [31]  0.76079 0.2807 0.0365 54.3667 1.4697 0.2499 1.9323 9.844e-4 

LCROA 

[37] 
0.7608 0.14582 0.0372 54.8589 1.4554 0.7351 1.8937 1.415e-2 

BCMO (NP 

= 50*d) 
0.7608 0.20588 0.0364 53.9364 1.4786 0.7494 2.000 9.837e-4 
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Based on results in Table 7 and Table 8, it can be seen that BCMO gets the smallest 

RMSE value in terms of the average and standard deviation has a better 

performance compared to those of JAYA, DE, Rao-1, and LCROA. When 

compared with a modified classical algorithm, BCMO gives slightly worse than 

MJAYA and SGDE but not significantly. 

4.4 Discussions of Convergence and Computation Time 

In this part, we perform PV parameter estimation using the original GA, DE, JAYA, 

and BCMO algorithms to analyze the convergence speed and computation time 

between these algorithms. In which, the mutation scaling factor F and crossover rate 

Cr for DE are uniformly distributed in (0.1,1) and (0,1) [19]. BCMO and JAYA are 

parameter-free optimization algorithms. The crossover and mutation factors of GA 

are selected by trial and error method and are equal to 0.9 and 0.01, respectively. 

The simulations were performed by Matlab version 2014b on an Intel Core i3 

computer with a clock rate of 2.53 GHz and 2.00 GB of RAM. All methods are run 

30 independent times and MaxIter = 20000 generations. 

The convergence rate of the original GA, JAYA, DE, and BCMO algorithms is 

shown in Fig. 8. For SDM model estimation, it can be seen that BCMO has a slightly 

worse convergence rate than JAYA and DE algorithms. For DDM model 

estimation, BCMO has a competitive convergence rate with the DE algorithm and 

a faster convergence rate than JAYA and GA algorithms. This proves that BCMO 

has good exploration ability and is highly competitive with other methods. 

From the results described in Table 9 and Table 10, it can be seen that BCMO needs 

a longer computation time when compared with those of GA, DE, and JAYA 

algorithms. Specifically, for SDM model estimation, the average computation time 

of BCMO is 555.8 seconds, about 5 times compared to the JAYA in the case of NP 

= 50. When BCMO achieves the best accuracy results with NP = 250, the average 

time of BCMO is 1835.1 seconds, about 15 times compared to the JAYA. 

Table 9 

Comparisons of various NP extraction methods for SDM 

NP Methods 

RMSE  

Best Worst Mean Std. 
Run 

(seconds) 

50 

GA 0.0483 0.1901 0.1417 0.0541 104.2 

JAYA 9.8602 e-4 9.8602 e-4 9.8602 e-4 1.3525e-12 120.8 

DE 9.8602e-4 9.8602e-4 9.8602e-4 1.0114e-12 152.4 

BCMO-50 0.0011 0.0024 0.0015 5.33e-4 555.8 

250 BCMO-250 9.8602e-4 9.8603e-4 9.8603e-4 3.08e-9 1835.1 
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Figure 8 

The convergence curve of the original GA, JAYA, DE, BCMO algorithms 

Table 10 

Comparisons of various NP extraction methods for DDM 

NP Methods 

RMSE  

Best Worst Mean Std. 
Run 

(seconds) 

70 

GA 0.05192 0.13003 0.07718 0.0328 149.3 

JAYA 9.8248e-4 0.0012 0.0010 8.0306e-5 141.8 

DE 9.8248e-4 9.8602e-4 9.8366e-4 1.7258e-6 186.9 

BCMO 9.8600e-4 0.0014 0.0011 1.47e-4 702.9 

350 BCMO 9.8371e-4 9.8727e-4 9.8635e-4 8.03e-7 2597.3 

In summary, the above discussions indicate that BCMO can be accurately identified 

and are highly competitive convergence rate with other PV parameters extraction 

methods. But the computational cost of BCMO has longer than other algorithms 

such as GA, DE, and JAYA algorithms. 

Conclusions 

In this paper, BCMO has been applied to estimate PV cell parameters.                       

The experimental results on benchmark test PV cell models, i.e., a single diode 

model and a double diode model in terms of the convergence speed, computation 

time, and the RMSE value are analyzed. First, we survey the impact of a population 

size NP on the quality of the BCMO algorithm. And then, the estimated 

performance of the BCMO algorithm is compared with other algorithms including 

classical algorithms and variants. The experimental results strongly proved that 

BCMO performs significantly better convergence speed and RMSE value than the 

classical JAYA [18], DE [19], Rao-1 [37] and is highly competitive with some 
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modified algorithms published in 2020-2021 such as MJAYA [29], SGDE [31], and 

LCROA [37]. For computation time criteria, BCMO has longer than the classical 

GA, DE, and JAYA algorithms. In summary, BCMO can be used as a promising 

method for the parameter estimation problem in energy systems. In future work, we 

will perform further enhance the BCMO algorithm and apply it for real-time model-

based fault diagnosis of the PV system. 
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