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Abstract: Li-ion batteries have become a widespread solution for modern energy storage 

systems, both for e-mobility and stationary storage. SOC and SOH estimation of batteries 

has great importance from both technical and economic aspects. There are many ways to 

estimate SOC and SOH with different complexity and accuracy rates, our paper focuses 

mostly on SOH. At first, this paper gives a brief review of possible methods of SOH 

determination. From these methods, one way is developed to measure an indicator related 

to SOH, and from the indicator estimating it. In our paper, we analyzed the connection 

between SOH and self-discharge for different time periods. The capacity degradation was 

measured with a high current, that closely resembles modern e-mobility applications. After 

that, from our experimental data, with the measured self-discharge, the final best-estimated 

SOH value in the range of ± 3% is achieved. 
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1 Introduction 

Nowadays, it is becoming a more and more important task to estimate battery cell 

SOC (state-of-charge) and SOH (state-of-health), both in e-mobility and stationary 

energy storage systems. The main focus of these is application dependent, though 

there are some basic criteria in accuracy, speed, and robustness. It is application 

dependent as in the case of SOC there are several electrochemical-based 

differential equations accurate enough, but they cannot be implemented on 

microcontrollers or FPGA due to their limited calculation capacity. There are 

simplified equations based on equivalent circuits or coulomb counting algorithms 

combining SOC estimation with other measurable quantities such as OCV (open-

circuit voltage). However, some basic difficulties can be handled differently. First 

of all, there is the problem with the non-linearity of the SOC-OCV relationship 

that can be solved either by different methods, like the Kalman-filter-based 

method [1] or piecewise linear interpolation method [2]. An issue with these 
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methods is that they may require information on the individual cell that is not 

available as manufacturers keep them as an industrial secret. From an economic 

point of view battery degradation cost shall be considered in the design phase of 

an energy storage system as shown in [3]. 

Battery health is usually connected with capacity fade and internal impedance 

increase, in the case of direct measurements. For capacity measurements, a precise 

current measuring device is required, as the SOC is an open-loop integral.            

In addition, the measurements shall be carried out with low current in terms of     

C-rate. Impedance measurements depend on the used battery model. One of the 

most complex ways is the electrochemical impedance spectroscopy (EIS) that 

gives the impedance values for a great range of frequencies [4]. In the case of a 

2nd order, that was presented in [5] and used in many applications for example in 

[6]. Considering two RC branches the question is the determination of R0, R1, and 

R2 (R1 and R2 are sometimes named short and long referring to the time constant). 

In the advanced model, the hysteresis of these values is also considered, which 

means these values are dependent on the current direction (different resistance for 

charge and discharge). An indirect often used method is based on the investigation 

of OCV or pseudo-OCV curves. OCV is the no-load voltage of a battery, after a 

given relaxation period. This measurement takes time, therefore sometimes a so-

called pseudo-OCV curve is used, constant current discharge with current below 

C/25. All these measurements require time and a proper testing device, for 

application the latter is sometimes not available, and in this case, the self-

discharge measurement could present an acceptable estimation of the SOH. 

This paper has the following structure, following the Introduction. In Section 2, 

State-of-Health Estimation, existing SOH estimation methods will be presented. 

Then in Section 3, Self-Discharge is presented, the authors present the most 

common literature concepts for self-discharge modeling and present a model for 

which the estimation will be applied. Following, in Section 4, Measurements 

experimental setup will be presented including the measurement devices and the 

selected cells and the measurement process will also be discussed. After this, in 

Section 5, the measurement results will be presented and evaluated in Section 6, 

the Measurement results. From the measurement results, a method for simplified 

capacity estimation will be discussed in the following Section 7, Estimation. 

Finally, Section 8, provides the Conclusions of our work, with the summarization 

of the measurements and all estimations. 

2 State-of-Health Estimation 

There are several possibilities for SOH estimation. In most cases, SOH decrease is 

connected to either the loss of available capacity or increasing internal impedance 

(especially in equivalent circuits). Most information comes from the post-mortem 
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analysis of a battery cell [7]. In their analysis, D. Aurbach et. al examined a 

18650-size cell from LG chem, with around 1800 mAh capacity [8]. They cycled 

the cells at two different temperatures (25°C and 40°C) for about 250 and 300 

cycles, respectively. At 25°C the cells reached 80% of their capacity after 230-250 

cycles, while at 40°C experiments 140-160 cycles according to their results. They 

observed both the anode and cathodes with SEM (scanning electron microscope) 

and compared the Nyquist plots of EIS measurements. Four possible reasons were 

presented for capacity fading: degradation of active mass on the anode; 

degradation of the solution; degradation of active mass on the cathode; reactions 

on the surfaces of both electrodes elevating their impedance, hence increasing the 

impedance of the whole battery cell. Waldmann et. al [9] examined 18650-size 

NCA/graphite cells with a wider temperature range. Their experiments were 

conducted at 0°C, 5°C, 25°C, and 45°C. In their study, they recorded the voltage 

relaxation for 4 hours from the end of the charge. Their discharge method for the 

3250 mAh capacity cells used a relatively small discharge current, 0.5C. They find 

that at low temperatures (0°C) the main aging factor is Li plating, while at higher 

temperatures (45°C) it is related to SEI growth and adhesive loss of active 

material. In [10] the authors give a review on calendar aging mechanisms of 

different cell chemistries. In their paper, they compared calendar capacity loss and 

resistance increase of the different cell chemistries at different SOC levels and 

temperatures. Results show that different ambient temperature and SOC level has 

different effects on different cell types. As an example, for their paper, an LCO 

chemistry cell tolerates high temperatures from a calendar capacity fade point of 

view around 80% SOC level. On the contrary with 80% maximum SOC a bigger 

battery would be required for the same energy or performance. That would mean a 

serious disadvantage in applications where mass or volume limitations are present 

for example an aircraft. Unfortunately, post mortem analysis can give details only 

after the cell died. For similar reasons, other invasive methods cannot be applied 

as well. For non-invasive methods, there are two major categories either based on 

voltage signal or non-voltage signals. Voltage signal-based measurement methods 

typically use OCV, impedance, electrochemical parameters. Other non-voltage 

signal-based methods are temperature, ultrasound, and force measurement [11].  

In [12] authors used a resistance-based two-tier DC load pattern, and a discharge 

and relaxation method for OCV, and an equivalent circuit real-time estimation 

method. The discharge phase lasted for one hour, while the relaxation was chosen 

to be two hours. In their experiments, Lüders et al. [13] has already examined the 

relation of Li plating and voltage relaxation curves. As indicated previously the Li 

plating occurs at low temperatures, therefore their experiments were performed at 

-2°C. For discharge they used low discharge rates for standard CC-CV (constant 

current-constant voltage) charge varied from 0.05 to 1 C. Voltage relaxation in 

their measurements was recorded continuously for 4 hours. The main goal in 

selected papers was to show the main factors affecting the battery SOH, and the 

methods that help in its estimation. There is another possibility used in measuring 
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SOH, it is based on the voltage change during discharge, Differential Voltage 

Analysis, used in [14] to give a mathematical model for health decrease. 

Usually, in the previously mentioned methods, the basic concept is to find a 

measurable quantity that is closely related to the degradation of the battery. In this 

paper, we observed the self-discharge of a chosen cell that undergoes continuous 

capacity fade during the first half of the cell lifetime. Capacity fade is reached on 

one hand with high C-rate discharge [15] and on the other hand with charging and 

storing the cell around 4.2 V (~100% SOC) [16]. In our measurement, we chose a 

cell that can be used in e-mobility applications, as there is a need for higher C-rate 

discharge in these applications. In their review, Barré et. al [17] compare battery 

aging estimation methods, based on five main aspects (adaptation, precision, 

operation without data, real-time application, and prediction). The compared 

methods: direct measurement; equivalent circuit method; electrochemical model; 

performance models; analytical model and statistical method. From their 

comparison, direct measurement is the best at adaptation and precision, while in 

real-time application and prediction is the worst. From the already developed 

methods, electrochemical models are the most precise, though their adaptation is 

rather challenging. Statistical methods are the easiest to adapt, while cannot 

operate without data. The other methods are between these highlighted ones. 

During the presented measurements, the capacity was directly measured for 

comparison with the estimated values. In our experiments, we analyzed the 

connection between self-discharge and capacity fade. With the presented method a 

new SOH indicating factor is presented, that can be used both for individual cell 

SOH estimation and estimation of battery packs or swappable battery modules. 

3 Self-Discharge 

The self-discharge phenomenon is present for all types of batteries such as lead-

acid, Ni-MH, and of course for Li-ion. As our measurements were performed with 

Li-ion cells, their self-discharge will be discussed in short. The mechanism is 

related to SOC, electrochemistry, electrolyte, chemical reactions, and temperature 

[18]. From the internal reactions point of view, it is strongly related to the so-

called SEI formation [19]. 

This SEI layer consumes intercalated Lithium both during charge-discharge 

reactions and self-discharge [20]. SEI formation is in connection with irreversible 

capacity loss as well. Beyond of SEI layer, in [21] it was discussed how the 

electrolyte can contribute to self-discharge in the case of a solution of LiPF6 in 

linear and cyclic carbonates. Besides the reactions of the electrolyte, there are 

several processes causing self-discharge as well. Reactions such as internal 

electron leakage, dissolution of active electrode materials, corrosion of current 

collectors, and parasitic electrochemical reactions on the electrode surface 
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according to [22]. For simulation of self-discharge, there are semi-empirical 

models developed based usually on the Butler-Volmer equation and Nernst 

equation, as presented in the overview on the self-discharge topic of the authors 

[23]. From those methods, the one developed by Galushkin et al. [24] and adapted 

to Li-ion batteries by Deutschen et. al. [25] is used for estimation. They derived 

two equations for approximate voltage decay one for short term (1), and one for 

long term (3), with switching from short term to long term around the 25th day. 

  (1) 

This short equation is formally very similar to the so-called Nernst equation [26]. 

It has five parameters, from which b can be further expressed (2). 

  (2) 

For Li-ion cells z = 1 (as the number of electrons involved in the electrode 

reaction [26]), F is the Faraday constant, R is the gas constant, and T is the 

absolute temperature. From (2) it is obvious that Vt depends on temperature as 

well, and with knowledge of the temperature value b can be calculated. 

  (3) 

Long-term approximation (3) has similar parameters, the difference is that in (1) 

an initial voltage is given, while here a stationary voltage is used. 

4 Measurements 

In this section, the measurement setup, chosen cell, self-discharge phenomenon, 

and the measurement process are presented. Since the aim of the measurements 

was to observe the degradation of the chosen battery cells that can be used in       

e-mobility applications. For this purpose, the cells were discharged with a high 

constant current rate (4C) as e-mobility applications like electrical aviation 

requires quite high discharge rates, opposing stationary storage systems, where the 

load can be rather low [27]. The selected current rate will be further explained in 

Subsection 2.1 selected cells. 
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Figure 1 

Schematic diagram of the test setup 

Figure 1 shows the measurement setup schematic. The tested cells are connected 

to the iCharger Duo 4010 device for charging and discharging. As the iCharger is 

capable of voltage measurement as well the digital multimeter is not used during 

this phase. For open-circuit voltage (OCV) only the 6½ digit Keysight multimeter 

was used, as it provides more precise values. During the measurements, ambient 

conditions are recorded as well (e.g. temperature). The list of the equipment can 

be found in Table 1. 

Table 1 

Devices used in the measurement 

Device Measurement type 

Keysight 34461A (6 ½ digit multimeter) OCV 

Junsi iCharger Duo 4010 Charge and Discharge voltage and current 

Testo 622 (Scientific Ambient Monitor) Ambient conditions 

4.1 Selected Cells 

The selected cells for the measurements were Panasonic UR18650NSX type [28]. 

These are cylindrical 18650 size cells with a 2.5 Ah rated capacity. According to 

its datasheet, a cell can be discharged with continuous 10C, that is 25 A, tough 

around 20% of SOC the battery temperature reaches 80°C. That is why a 10C 

discharge rate may not be preferable for e-mobility applications, while in the 

range of a bit smaller discharge rate (8C) the cell temperature remains below       

80 °C. In our test method, 4C constant current discharge was selected, as it is still 

a high current value (10 A) and the cell delivers performance as well. Beyond 

power and energy considerations it is also an important factor that the temperature 

of the cells remains certainly at an acceptable level. The manufacturer provides 
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information on the cyclic performance of the battery cell with 4C and 10C 

discharge rates. In the first case, the cells reach 80% of their initial capacity during 

300 cycles, while in the second case during 200 cycles. This also means that a 

higher discharge rate has a negative effect on the cycle life of a cell. The reason 

for choosing this cell is the possibility of high discharge rates that is essential for 

e-mobility applications where the required performance can be very high. Another 

aspect of the selection was the relatively high energy density of the cell, 

approximately 204 Wh/kg gravimetric and 514 Wh/l in volumetric means 

according to the datasheet. 

4.2 Measurement Process 

These measurements aimed to examine the effects of this high current discharge 

on the self-discharge of the cells. Therefore, the open-circuit voltage (OCV) was 

measured 10 min, 24 h, 48 h, and one week after fully charging the cells. The 10-

minute measurements were done after each charging, but for obvious time 

limitations, the other three (24 h, 48 h, and one week) were done only after 10 

cycles. After charging the cell the voltage decreases relatively fast, due to 

polarization, a 10-minute relaxation time was chosen for OCV measurements 

similar to [29], where the authors used from 6 minutes to 5 hours relaxation times. 

In [30] the authors find that the steady-state is reached in the range of 24 h. In the 

presented measurements one cycle means one full discharge and recharge. 

Altogether 5 Panasonic URNSX cells were tested. Originally there were 6 cells 

but after 35 cycles of testing, one of them had to be terminated due to some 

mechanical damage. The mechanical problem was independent of the test 

procedure. Altogether 100 full cycles were done. 

The test contained three major parts: 

• Charging the cells to 100% SOC (CC-CV) 

• Relaxation 

• Discharging with 4C until 2.65V (CC) 

During the initial phase, before the first discharge, of the test, cells were charged 

to maximum SOC, and for a week. During this initial relaxation period, the OCV 

of the cell was measured after 10 min, 24 h, 48 h, and a week. Then another 

charging started to compensate for the slight capacity loss due to self-discharge. 

The next step was the discharge with 4C, after that charging again and relaxation 

for 10 min, and OCV measurement. These were repeated 10 times, that is 10 

cycles altogether. After the tenth cycle, a longer relaxation period started for a 

week, measuring voltage the same way in the initial phase. The charging step was 

performed according to CC-CV protocol, wherein CC phase 1C (2.5 A) was used. 

In the CV phase the target voltage was 4.2 V. In cases of charge after the relaxing 

period, only the CV phase was performed. For discharge, as mentioned 
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previously, a 4C constant current was used with cut-off voltage 2.65 V as a safety 

limit as opposed to the 2.5 V. During the discharge phase cell voltage [V], current 

[A], and relative time [s] were recoded, while capacity [mAh], power [W], and 

energy [Wh] were calculated from them. During each test step, ambient conditions 

were recorded. These are: temperature [°C], relative humidity [%] and air pressure 

[hPa]. 

5 Measurement Results 

5.1 Capacity Measurement 

During the capacity measurements, the original six cells were cycled. They were 

labeled from S10 to S15. Measurements of S14 were terminated, due to some 

mechanical damage, not related to the charge-discharge cycles. In this section, 

some graphs from the discharge measurements are shown. Capacity was 

calculated by the Coulomb counting (or Amper counting) method. The method is 

described by (4) based on [31]: 

   

 (4) 

According to (4) the state of charge consists of two parts SOC0, the initial SOC (in 

the presented case always 100% at the start of discharge. The other term is an 

integral of the charge or discharges current between the initial time t0 and t. As 

SOC is a percentage the result of the integration is divided by the term Qr, the 

rated capacity from the datasheet. Since the capacity of a new cell usually differs 

from Qr, because of different ambient conditions for example; and in our 

measurement, the used discharge was not the datasheet specified method (not 

measured at 20 °C) therefore the initial capacity was used through the whole 

measurement. The constant η is called the coulombic efficiency, for Li-ion 

batteries, it is very close to 1 [32], therefore it is considered to be constant 1. In 

this paper the capacity of the cell is denoted by Q, to avoid any confusion with the 

current rate C. 

Fig. 2 shows the voltage of one battery cell during 4C constant current discharge 

during the first 20 cycles. The voltage maximum during charge was set to 4.2 V, 

the initial voltage at the start, after 10 minutes relax, was between 4.189 V and 

4.178 V depending mostly on the ambient temperature. The cut-off voltage was 

set to 2.65 V during all discharge cases to ensure a safer operation and not to reach 

deep discharge accidentally. In practice under about 3 V with load, the cell voltage 

drops more and more fast. At this range, the remaining capacity is relatively small, 
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while the temperature increases fast. This temperature rise can be explained by the 

increasing serial resistance at low SOC values from the equivalent circuit point of 

view. From Fig. 2 it can be seen that at the first 20 cycles the cell performance 

slightly decreased, as at the first cycles the discharge took about 830 seconds, 

while at the end of the sequence it took only 820 seconds. The nominal time for 

4C discharge would be 900 secs or 15 minutes. The difference from the ideal 

quarter-hour measurement time, is probably because the voltage did not reach 2.5 

V and the cells themselves have some difference from catalog values. 

 

Figure 2 

Voltage vs. time of one cell during the first 20 cycles 

On the aging of the cells, not the first 20 cycles would give information but all the 

cycles. Since the one-week relaxation occurred only after 10 cycles, therefore, the 

measurements after these relaxation periods are shown in Fig. 3. 

 

Figure 3 

Cell Voltage of one cell during cycling, only every 10th cycle presented 
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Voltages at end of the measurement, only the last 150 seconds, are shown in the 

upper right corner of Fig. 3 as well. It shows that at the first cycle, with fresh cells 

the discharge took the most time, from 10th to 40th the time is very similar to each 

other. From the 50th, the second half of our tests it monotonously shortens from 

around 810 seconds to 785 seconds. 

Figure 4 shows the measured capacity in percentage of all the five cells and their 

average value (red line). The capacity should monotously decrease with cycling, 

but in Fig. 4 there are some local minimums, after which capacity seems to be 

growing a bit. These are because of the so-called overhang effect discussed in 

depth in [33] and [34]. Briefly, as the anode is designed to be slightly wider than 

the cathode, some Li atoms can diffuse to this region in case of longer storage 

periods. The apparent capacity loss is slowly reversible with cycling, that is the 

reason of this curve. The overhang effect is significant in higher SOC ranges. 

For simplification reasons, the measured capacity of the first discharge 

measurement is considered to be 100%. From Fig. 4 and Fig. 5 it can be seen that 

during the first 15-20 cycles capacity fade has a higher slope after that the slope 

decreases and becomes almost constant until the 100th cycle. As the five cells 

follow a very similar pattern in Fig. 5 only the average relative SOC decrease will 

be presented with a linear approximation of their slope. The yellow line is the 

approximation of the slope of the first 15 cycles the orange line is the remaining 

85 cycles. Their equation is presented on the diagram; their color is respective to 

the line color. From the equations it can be stated that the slope of the first 15 

capacity results is almost 3 times bigger, in absolute value (0.159 [% / cycle]), 

than the measurements after that (0.57 [% / cycles]). 

 

Figure 4 

Relative capacity of the cells 
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Figure 5 

Slope of capacity decrease (first 15 cycles yellow; last 85 orange) 

If we neglect the rapid capacity decrease during the few cycles in the beginning it 

is possible to fit a linear curve to the measured values shown in Figs. 5 and 6.   

The orange curve was created with the MATLAB curve fitting tool, and the 

average measured values. The fitting algorithm was set to Linear-Least Squares. 

The equation of the curve is in Eq. 2. 

  (5) 

In Eq. 2 Q is the capacity, cyc is the cycle number, qd (capacity decrease) and q0 

(initial capacity) are coefficients with values -0.0569, 98.67 respectively, with 

95% confidence bounds. 

5.2 OCV Measurement 

In this section, the results of the OCV measurements will be presented.                

As described in section 2.3. the 24 h, 48 h, and 1-week measurements were done 

only after 10 cycles, therefore only 10 measurements results are shown in Fig. 6. 

For simplification reasons, only the average of the cell voltages will be presented. 

In addition to the measured values, a linear trendline is presented as well.          

The trendline was created with MS Excel's built-in function. The measured 

voltages at 30th and 70th cycles were rather outlier values, probably because of 

some errors. Therefore, they are omitted in the following estimation methods. 
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Figure 6 

Measured OCV after different relaxation times 

It can be seen from the figures that the measured voltages have a decreasing 

tendency, as expected. The red plus signs and dashed trendline belong to the 10-

minute measurements, the yellow circles, and the dashed trendline to the 24-hour 

relaxation times. Magenta stars and green crosses and dashed linear trendlines 

belong to the 48 hours and one-week relaxation, respectively. If we compare the 

diagrams it can be stated that the slope decreases with the relaxation time for 24 h, 

48 h, and 1-week OCV data, for 10 min measurements there is a negative slope as 

well, but it is more similar to the 1-week measurements than to the 24 h or 48 h. 

The voltage decrease values are summarized in Table 2. 

Table 2 

Voltage decrease after specified relaxation time 

Relaxation Period vd [μV/cycle] v0 [V] 

10 minutes -27.54 4.171 

24 hours -92.11 4.164 

48 hours -69.84 4.161 

1 week -16.47 4.153 

6 Estimation 

In the previous section, it is presented that both capacity and open-circuit voltages 

tend to decrease with cycling. For the voltages, the decrease is different for 

different relaxation times. This section aims to observe the estimation results for a 

capacity fade with the help of different voltages. As shown in Fig. 6 the decrease 

of the average measured capacity values is around 0.057% (relative to the first 

capacity measurement) per cycle. This information is not available generally, only 
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after long battery cycling processes. On the other hand, manufacturers usually 

provide some information on cycling characteristics for the battery cell, that can 

be used for estimation. This is shown in Fig. 7. 

 

Figure 7 

Cycling characteristics of the Panasonic UR18650NSX cell [28] 

The manufacturer in this case gave two cycling curves for two different discharge 

currents. Blue is for 10 A discharge current, which corresponds to 4C, and red 

curve for 20 A that corresponds to 8C. As our measurements are concluded with 

4C, the blue curve is used. From the datasheet curves Q(1), as the initial capacity 

of the cell and Q(100), capacity after 100 cycles are used. As another point for 

linear estimation Q(100) is chosen as our measurements lasted only for 100 

cycles. From Fig. 7 Q(1) is 2510 mAh, Q(100) is 2360 mAh. Capacity decrease is 

around 150 mAh for 100 cycles, the qd value become 0.06 % / cyc. This value 

aligns with the measured discharge rate quite well. 

Voltage decrease will be estimated based on Eq. 1. As previously mentioned the 

equation has two independent variables t and T. This would lead to a surface 

fitting problem. Unfortunately, the measured temperature values are from a very 

narrow range. The minimum temperature was 23.5 °C, the maximum was 26.6 °C. 

In terms of b, the minimum would be 38.7 the max would be 39.1. That would 

give questionable results regarding surface fitting. Therefore, instead of using 

individual T values for the fitting, the average will be used, it is 25.5 °C. With this 

approximation Eq. 1. will be simplified in a way that it contains only two 

parameters shown in Eq. 5. 

  (5) 

Note that Vt,0 is not changed, b is constant, and p incorporates the original 

parameters I0, V0 and, C. Simplification was necessary because the original 

equation continued four parameters (considering b constant). The measured 

voltages after 10 minutes, 24 hours, 48 hours and, 1-week would make it possible 
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to fit the original curve, however, the 10-minute voltage measurement has to be 

excluded from the curve fitting, as it is not part of the self-discharge period, but 

the relaxation after current flow. From an equivalent circuit method point of view, 

only the terminal voltage (Vt) can be measured without disassembling the cell. 

 

Figure 8 

Li-ion battery model with one RC branch [35] 

That means measured Vt has two terms, open-circuit voltage, and the voltage of 

the R1-C1 parallel term. This voltage decreases to zero in time, according to their 

time constant. A similar idea applies in the case of more parallel RC branches. 

The time these voltages are negligible depends on the model, can last from 

minutes to several hours [36]. 

For estimation and validation the measured cells are split into two sets. Parameter 

estimation was performed on the first set: S10, S11, S12 cells. These cells are 

referred as estimation set. The validation was performed on the second set: S13, 

S14 and S15. Unfortunately, S14 was withdrawn from the measurements, as 

previously mentioned. These cells are referred as validation set. 

With MATLAB Curve Fitting Toolbox, parameters Vt,0 and p were fit to the 

measured voltage points. Table 2 shows the parameters, R-square and, RMSE 

values. 

Table 2 

Curve fitting results 

 Vt,0 p R2 RMSE 

10 4.158 0.001722 1 - 

20 4.16 0.001722 0.9893 0.000430 

40 4.159 0.001825 0.9889 0.000461 

50 4.159 0.001582 0.9885 0.000414 

60 4.16 0.001517 0.9983 0.000151 

80 4.1595 0.001377 0.9391 0.000687 

90 4.159 0.001467 0.9659 0.000675 
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The estimation result shows, that Vt,0 remains constant, while parameter p shows 

a clear decrease. The 1st measurement is omitted because previous results in Fig. 5 

shows that the capacity fade becomes steady between cycle number 10 and 20. 

For the 100th cycle, the voltage result measurement file was damaged therefore, 

these values are omitted as well. A similar p estimation was performed for the 

validation set as well. 

Fig. 9 shows the estimated values for p, and a linear trendline is fitted to these 

values. The slope of the trendline is -4.54 ∙ 10-6 (pd) and the offset is 1.829 ∙ 10-3. 

These p values decline similar to the decline of measured capacity, so the slope of 

the trendline for pd and slope of the capacity qd from the estimation set will be 

used to estimate capacity fade Eq. 6. 

 

Figure 9 

Results of estimating parameter p and trendline fitted to it 

Index v in Eq. 6 refers to values from the validation set of cells and the init index 

is the 10th measured value, or fitted in case of p. 

  (6) 

Note that there were only ten voltage measurements for each period, so for 

pv(cyc), linear interpolation was applied on the measured data. 

7 Estimation Results 

Fig. 10 shows the original capacity vs. cycles curve and the estimated capacity 

curves. 

In Fig. 10 the blue points are the measured capacity values of the validation set, 

the red ones are the estimated capacity values based on Eq. 6. 
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Figure 10 

Measured and estimated capacity 

Estimation Accuracy 

The accuracy of the measurement is presented in Fig. 11. Here the percentage 

error is calculated by Eq. 7 for the nth cycle. 

 

 (7) 

 

Figure 11 

Relative error of the estimated capacities 

In. Fig. 11 it is shown that the relative error of the estimation remains in the range 

of ±3 % for the relevant cycles. Although previously mentioned that the first 10 

measurement results were excluded from the estimation process, their estimation 

result is presented as well in this figure. 
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Conclusions 

In this paper, the authors presented a link between cell SOH (capacity decrease) 

and the self-discharge process of a chosen Li-ion battery cell, suitable for e-

mobility applications. The measurement results involved the first hundred cycles 

of five cells with a relatively high discharge rate. The main purpose of these tests 

was to analyze the effects of this high current discharge on the self-discharge of 

the cells. 

Although effects of self-discharge are considered to be smaller for Li-ion 

technology, the voltage decrease was measurable. Open circuit cell voltage was 

measured four times after charging was finished: 10 minutes, 24 hours, 48 hours, 

and one week. A previously developed self-discharge model was applied to 

investigate aging-related issues. Although a relatively simple estimation method 

was used for calculating SOH, results show that it can give fairly accurate results. 

This can be used on battery modules, that are allowed to have a resting period, for 

example in electric vehicles. All capacity and open circuit voltage measurement 

data is accessible [37]. 
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