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Abstract: Three different approaches for improvement of objective video quality evaluation 

are presented in this paper. Improvement is obtained through quality guided temporal 

pooling, information content weighted temporal pooling, and multiscale analysis. The 

analysis was performed using five objective video quality assessment measures on two 

publicly available datasets with subjective quality scores. Only the videos with H.264, 

H.265, and MPEG-2 types of compression from two datasets were considered. The level of 

agreement between the subjective and objective quality scores are given through the 

Spearman rank-order correlation coefficients on complete datasets and subsets of video 

sequences with the same type of compression. Obtained results show that the performance 

of objective measures is dependent on the choice of the dataset. The greatest improvement 

is given by multiscale analysis. 
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1 Introduction 

In recent years there has been a rapid development of systems for digital 

processing, transmission and display of video content [1, 2]. This development has 

led to great interest in reliable, computationally efficient objective quality 

assessment measures. A subjective quality assessment is the most reliable way to 

determine the quality of video signals, but subjective tests are very expensive and 

time-consuming, and an alternative is sought in the form of objective quality 

assessment measures. There are three categories of objective quality assessment 

measures, No-Reference (NR), Full-Reference (FR), and Reduced-Reference (RR) 

[1-3]. This classification is based on the availability of the source signal on the 

receiving side. NR measures can be used in all applications where quality testing 
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is required because this type of metrics do not need knowledge of the source 

signal. FR metrics require full information of source signal and for that reason, 

this category cannot be used in some real-time applications where the knowledge 

of the original signal on the receiving side is not possible. RR techniques are 

between the two previously described categories and in these techniques only the 

most important part of the source signal is needed for quality evaluation. 

Objective image/video quality assessment measures have found numerous 

applications. Most applications are in situations where the quality of the modified 

version of the image/video needs to be evaluated. 

Algorithms for video quality assessment usually have two phases. In the first, 

quality is evaluated on local spatial/temporal level, and in the second, 

spatial/temporal pooling of local scores produces a final value of quality [4]. 

Spatial and temporal integrations are closely related to visual significance. 

Estimation of visual significance identifies information on motion image which 

notably effect on observer during forming an impression of the quality. This 

allows for increasing the impact of essential information on the final score of the 

evaluation. Generally, strong degradation in space and/or time has a great effect 

on the final impression of quality. Strong distortions give low values of similarity 

between reference and test signals, so using the scores with the lowest quality, the 

final quality value can be formed. Also, the resolution of video during processing 

and display can have significant effect on final quality assessment. 

The increasing number of video services and the increase in the resolution of the 

video display devices have led to the requirement for higher coding efficiency 

compared to the H.264 compression algorithm capabilities [5]. Therefore, a novel 

compression algorithm, H.265, was developed [6, 7], and a new compression 

standard is under progress [8, 9]. The goal of introducing the H.265/HEVC 

standard was to maintain subjective video quality by reducing the bit rate of 50% 

compared to H.264 [7]. 

The aim of this paper is to analyze the performance of objective quality 

assessment measures on sequences with MPEG-2, H.264 and H.265 

compressions, using three different approaches for improving the prediction 

accuracy of objective video quality estimation. Objective quality assessment 

measures performance was analyzed on two publicly available, subject rated video 

datasets. H.264, H.265 and MPEG-2 compression algorithms are most commonly 

used algorithms in video systems, and therefore they are chosen for the analysis. 

The quantitative measure adopted by the ITU [10] – Spearman's Rank Order 

Correlation Coefficient (SROCC) between subjective and objective quality scores, 

was used in the performance analysis of objective quality assessment measures. 

In the second part of the paper are described used FR objective quality measures 

and the most important information of two datasets for video quality is provided. 

Three possible directions to improve the video quality estimation with results are 

given in the third part of the paper. The conclusions and further research 

directions are given at the end of the paper. 
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2 Overview of Objective Measures and Video Quality 

Datasets 

The five objective video quality assessment measures were used in the analysis. 

Peak Signal to Noise Ratio (PSNR) [11], is the first measure. PSNR is an 

unavoidable measure in image/video quality analysis, although is often criticized 

[11, 12]. The Structural Similarity Index (SSIM) is the second measure, which is 

present in almost all tests of image/video quality measures [13]. 

Table 1 

Comparison of used video datasets 

Video Dataset FERIT-RTRK CSIQ Video 

Number of 

original 

sequences 

6 12 

Number of tested 

(distorted) 

sequences 

H.264 30 

90 

H.264 36 

72 H.265 30 

H.265 36 
MPEG-2 30 

Number of 

degradation 

levels 

5 3 

Degradation 

types 

H.264, H.265, 

MPEG-2 

H.264, H.265, 

MJPEG, SNOW, 

packet loss, AWGN 

Tested 

degradations 

H.264, H.265, 

MPEG-2 
H.264, H.265 

Resolution 1920x1080 pixels 832x480 pixels 

Length 5 seconds 10 seconds 

Frame rates 60 fps 24, 30, 50, 60 fps 

Number of 

observers 
30 35 

SSIM has numerous modifications, such as GMSM (average of local quality 

values of the gradient magnitude information preservation) and GMSD (standard 

deviation of local quality gradient magnitude similarity scores) [14]. GMSM and 

GMSD are third and fourth used measures. The fifth objective video quality 

assessment measure is VQAB [15]. VQAB is based on the analysis of the spatial 

information preservation (through the gradient magnitude and gradient orientation 

information preservation), the temporal information preservation (through the 

preservation of information on changes between frames) and the color information 

preservation. 
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The analysis was performed on two video quality datasets: FERIT-RTRK [16] and 

CSIQ Video [17]. Table 1 shows data comparison between two used video 

datasets. FERIT-RTRK dataset has more degradation levels and tested (degraded) 

sequences than the CSIQ dataset, but has less referent video sequences and shorter 

videos length. 

3 Video Quality Analysis 

Subject rated video quality datasets are of great importance because they can help 

in developing reliable objective measures. Quality guided temporal pooling, 

information content weighted temporal pooling and multiscale analysis are some 

of the approaches for improving the level of agreement between subjective and 

objective quality scores and performance of objective quality measures. 

3.1 Quality Guided Temporal Pooling 

It has been shown that regions of poor image quality significantly affect on a 

human estimation of visual quality [18]. This fact is used for quality guided lowest 

percentile temporal pooling approach, where p% (p percent) of the frames with the 

lowest quality scores are used. Parameter p represents a number of used frames in 

percent, in the step by 2%. The temporal pooling process is carried out in the 

following way. After determining objective quality scores on a frame-by-frame 

basis, their sorting is done in rising order, after which the final quality score is 

determined as the mean value of p% of the lowest scores of frames quality. Values 

beyond this range are rejected. This approach is guided by the hypothesis that the 

frames with poor quality can have a dominant role in the subjective impression of 

quality [18]. Measure GMSD has an inverse scale, so the sorting is done in 

descending order, after which the final quality score is determined as the mean 

value of p% of the highest scores of frames quality. 

Figure 1 shows the normalized values of objective quality scores of frames for two 

sequences with H.265 compression. Graphics show significant quality variations 

during the lasting of the video. Also, from Figure 1, a periodic repetition of the 

local maximums of quality is observed, which is the consequence of the I frames 

present in the degraded sequences. In addition, it can be noticed that objective 

quality measures in different ways respond to changes that occur in video 

sequences. Thus, from the Figure 1 (b), between the 100th and 300th frame, can 

be noted that PSNR and SSIM objective values are increasing then decreasing, the 

values of GMSD and VQAB objective measures decrease, while GMSM values 

increase. 
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 (a) (b) 

Figure 1 

Objective quality scores of frames of the analyzed sequences: (a) sequence yac_H265_1 from 

FERIT-RTRK dataset and (b) sequence BQTerrace_832x480_dst_18 from CSIQ dataset 

Figure 2 shows the mean values of p% of the lowest quality scores for two 

objective measures – PSNR and VQAB. All test sequences from both video 

datasets are analyzed. From Figure 2 it is noticed that dynamic ranges of the 

objective values differ on analyzed datasets. Thus, the dynamic range of PSNR 

measure is 4 dB narrower on the FERIT-RTRK dataset than on CSIQ dataset. 

Furthermore, both measures have lower objective quality values on the sequences 

from the FERIT-RTRK dataset. This observation is also valid for other analyzed 

objective measures – SSIM, GMSM and GMSD (this measure has an inverse 

scale, so the higher quality scores are obtained on the FERIT-RTRK dataset). 

Due to the content of the test videos, it can be explained why the results of the p% 

of the lowest objective quality scores differ between these two datasets. Used 

video sequences should represent the real world images, i.e. datasets contain a 

wide range of content. A variety of content of a dataset can be characterized using 

Spatial Activity (SA), Temporal Activity (TA) and colorfulness index. In this 

work, the spatial complexity of video sequences, SA, was analyzed based on the 

mean values of the gradient magnitude of the frames. Sobel operator was used to 

determine the gradient magnitude. Figure 3 shows SA values per frame of all 

sequences in CSIQ and FERIT-RTRK datasets. 

Dynamic ranges of the spatial activity of the distorted sequences on these two 

datasets are significantly different, which can be seen from Figure 3. The dynamic 

range of the spatial activity values is almost two times bigger in the CSIQ dataset 

than in the FERIT-RTRK dataset because video sequences from the CSIQ dataset 

are richer with details. This can be a consequence of the format of the delivered 

videos. Namely, CSIQ dataset sequences are delivered in raw format – YUV420, 

while all sequences (including reference) of the FERIT-RTRK dataset are 

delivered in the compressed format – mp4. 
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 (a) (b) 

 

 (c) (d) 

Figure 2 

Mean values of the p% of the lowest objective quality scores: (a) PSNR on CSIQ dataset, (b) PSNR on 

FERIT-RTRK dataset, (c) VQAB on CSIQ dataset and (d) VQAB on FERIT-RTRK dataset 

A similar analysis was carried out in the analysis of the TA [15] per frame of the 

distorted sequences, whereby the conclusion that the dynamic ranges of the TA of 

the sequences from these two datasets are approximately the same. 

The influence of the selection of the frames with poor quality on objective 

assessment was analyzed through the SROCC at the level of complete datasets 

and at the level of subsets of sequences with the same type of degradation. Results 

of the correlations with subjective quality impressions on the global level are 

shown in Figure 4. 
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 (a) (b) 

Figure 3 

Spatial activity values per frame of the test (degraded) sequences on the: (a) CSIQ dataset and (b) 

FERIT-RTRK dataset 

 

 (a) (b) 

Figure 4 

Rank order correlation (SROCC) between subjective and p% of the lowest objective quality scores on: 

(a) CSIQ dataset and (b) FERIT-RTRK dataset 

From Figure 4 it is noticed different trends of SROCC values on these two 

analyzed datasets. Unlike the FERIT-RTRK dataset, where the best agreement of 

subjective and objective quality scores is achieved if all frames of the test 

sequences (p=100%) are used, in CSIQ dataset can be noted that using the lowest 

scores of frames quality can improve the performance of objective measures 

(VQAB, SSIM, and PSNR). In this dataset, the greatest gain would be obtained 

using 10% of the lowest scores of the VQAB objective measure (level of agreement 

by using all frames is 0.9, while the level of agreement by using 10% of the lowest 

quality scores is 0.94). Objective quality assessment measure, VQAB, has the best 

performance on the CSIQ dataset (in the entire range values of parameter p). 

However, the performance of this measure is significantly worse on the FERIT-

RTRK video dataset. The performance of all other tested objective measures is 
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worse on the FERIT-RTRK than on the CSIQ dataset, where the biggest 

performance drop is noticed at VQAB and SSIM measurements. 

The performance of objective measures on subsets of videos with the same type of 

degradation is presented in Figure 5. From this figure, it can be noticed that on 

H.264 compressed videos, the performance of objective measures depends on the 

values p. On the other side, in a subset of sequences with H.265 compression, the 

performance of objective measures is almost independent of the choice of values 

p. The performance of objective measures on corresponding subsets of the FERIT-

RTRK dataset is worse than on subsets of the CSIQ dataset. 

 

 (a) (b) 

 

 (c) (d) 

Figure 5 

Rank order correlation (SROCC) between subjective and p% of the lowest objective quality scores on 

subsets of video sequences: (a) H.264 subset of CSIQ dataset, (b) H.264 subset of FERIT-RTRK 

dataset, (c) H.265 subset of CSIQ dataset and (b) H.265 subset of FERIT-RTRK dataset 
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3.2 Information Content Weighted Temporal Pooling 

The problem with non-uniform distribution of frames quality over time can be 

solved by assigning them a time-varying significance (weight) [19]. The general 

shape of a temporal weighting approach is given by: 

1

1

N

i ii
f N

ii

w Q
Q

w









 (1) 

where wi is the weight associated with the i-th temporal location (frame), N is the 

number of frames in the degraded/reference sequence and Qi is the quality value at 

the i-th temporal location. The weights are determined by the frame information 

content (using reference or distorted frames or both of them). 

A list of 18 weighted functions is given in Table 2. The significance associated 

with the estimates of the frames quality during the time is derived from the spatial 

activity of the reference (SAr) and distorted (SAd) video sequences, and from the 

temporal activity of the reference (TAr) and distorted (TAd) video sequences. 

Impact of the significance of the frames during the time is given through the rank 

order correlation between subjective and objective quality scores on a global level 

– on complete datasets. Spatial and temporal activities are combined in an additive 

and multiplicative manner or as their maximum value. In Table 2, for objective 

measures, with +/- are marked situations in which weighting led to an 

improvement/deterioration of the performance of the objective measure, while the 

value presents the gain/loss relative to the SROCC of the standard method of 

pooling the frames quality scores (averaging). All presented results are on the 

relation with correlation coefficients where 100% of the frames are included from 

the previous subchapter. 

From the Table 2, it can be noticed that all measures have some improvement on 

the CSIQ dataset within all weighted functions, except the GMSD measure which 

has an improvement for only four weighted functions. In all objective measures, 

the use of temporal activities (TAr/TAd) results in a higher gain than the use of 

spatial activities (SAr/SAd). Also, it can be concluded that weighted functions in 

multiplicative form lead to a greater agreement between subjective and objective 

quality scores than weighted functions in additive form or weighted functions with 

the selection of maximum. The highest improvement on this dataset was obtained 

by using PSNR objective measure overall analyzed weighted functions. The 

greatest gain in the PSNR measure was achieved by applying multiplicative 

weighted functions TAdTAr (0.03), SArTAr (0.024) and SAdTAdSArTAr 

(0.022). These three weighted functions are suitable for the accuracy improvement 

of other objective measures. 

Contrary, on the FERIT-RTRK dataset, there is no improvement except for the 

SSIM measure. The gain achieved for this measure on this dataset is slightly 

worse than the gain achieved on the CSIQ dataset. According to the achieved gain, 
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the multiplicative weighted functions stand out – SAdTAdSArTAr (0.013), 

SAdTAd (0.01), TAdTAr (0.008) and SArTAr (0.008). Objective measure SSIM 

is the only measure which has improvement on both used datasets and in all 18 

used weighted functions. 

Table 2 

Improvement/deterioration of the performance of the objective measures on CSIQ and FERIT-RTRK 

datasets relative to the SROCC of all frames in all test sequences 

Weight, wi 

PSNR SSIM GMSD GMSM VQAB 

C
S

IQ
 

F
E

R
IT

 

C
S

IQ
 

F
E

R
IT

 

C
S

IQ
 

F
E

R
IT

 

C
S

IQ
 

F
E

R
IT

 

C
S

IQ
 

F
E

R
IT

 

SAr 
+ 

0.011 

- 

0.004 

+ 

0.005 

+ 

0.003 

- 

0.003 

- 

0.002 

+ 

0.002 

- 

0.002 

+ 

0.006 

- 

0.003 

SAd 
+ 

0.008 

- 

0.006 

+ 

0.004 

+ 

0.006 

- 

0.008 

- 

0.003 
0 

- 

0.004 

+ 

0.001 

- 

0.003 

TAr 
+ 

0.019 

- 

0.004 

+ 

0.011 

+ 

0.005 

+ 

0.001 

- 

0.001 

+ 

0.004 

- 

0.003 

+ 

0.012 

- 

0.002 

TAd 
+ 

0.019 

- 

0.005 

+ 

0.009 

+ 

0.003 

- 

0.001 

- 

0.001 

+ 

0.004 

- 

0.001 

+ 

0.009 

- 

0.007 

SArTAr 
+ 

0.024 

- 

0.012 

+ 

0.012 

+ 

0.008 

+ 

0.002 

- 

0.003 

+ 

0.002 

- 

0.003 

+ 

0.018 

- 

0.004 

SAdTAd 
+ 

0.018 

- 

0.015 

+ 

0.010 

+ 

0.010 

- 

0.003 

- 

0.004 

+ 

0.001 

- 

0.003 

+ 

0.008 

- 

0.006 

max(SAr,TAr) 
+ 

0.014 

- 

0.003 

+ 

0.011 

+ 

0.005 

+ 

0.001 

- 

0.001 

+ 

0.005 

- 

0.003 

+ 

0.007 

- 

0.001 

max(SAd,TAd) 
+ 

0.012 

- 

0.004 

+ 

0.006 

+ 

0.006 

- 

0.004 

- 

0.002 

+ 

0.003 

- 

0.002 

+ 

0.004 

- 

0.003 

SAr+TAr 
+ 

0.015 

- 

0.003 

+ 

0.009 

+ 

0.004 

- 

0.001 

- 

0.002 

+ 

0.005 

- 

0.002 

+ 

0.009 

- 

0.002 

SAd+TAd 
+ 

0.011 

- 

0.003 

+ 

0.005 

+ 

0.005 

- 

0.003 
0 

+ 

0.003 

- 

0.001 

+ 

0.005 

- 

0.003 

SAr+SAd 
+ 

0.009 

- 

0.004 

+ 

0.005 

+ 

0.004 

- 

0.006 

- 

0.002 

+ 

0.001 

- 

0.002 

+ 

0.002 

- 

0.002 

TAr+TAd 
+ 

0.020 

- 

0.004 

+ 

0.010 

+ 

0.004 

- 

0.001 

- 

0.002 

+ 

0.004 

- 

0.002 

+ 

0.011 

- 

0.003 

SAr+SAd+TAr+TAd 
+ 

0.015 

- 

0.004 

+ 

0.008 

+ 

0.005 

- 

0.002 

- 

0.002 

+ 

0.005 

- 

0.001 

+ 

0.007 

- 

0.002 

max(SAd,SAr) 
+ 

0.011 

- 

0.004 

+ 

0.005 

+ 

0.003 

- 

0.003 

- 

0.002 

+ 

0.002 

- 

0.003 

+ 

0.006 

- 

0.003 

max(TAd,TAr) 
+ 

0.020 

- 

0.004 

+ 

0.011 

+ 

0.004 

+ 

0.001 

- 

0.002 

+ 

0.005 

- 

0.003 

+ 

0.012 

- 

0.002 

TAdTAr 
+ 

0.030 

- 

0.011 

+ 

0.014 

+ 

0.008 
0 

- 

0.005 

+ 

0.002 
0 

+ 

0.014 

- 

0.006 

SAdSAr 
+ 

0.010 

- 

0.015 

+ 

0.006 

+ 

0.008 

- 

0.006 

- 

0.004 
0 

- 

0.006 

+ 

0.006 

- 

0.005 

SAdTAdSArTAr 
+ 

0.022 

- 

0.022 

+ 

0.019 

+ 

0.013 

- 

0.008 

- 

0.006 
0 

- 

0.007 

+ 

0.011 

- 

0.008 

3.3 Multiscale Analysis 

In further analysis, the objective quality of video sequences in different scales 

(resolutions) is evaluated. The level of agreement between subjective and 

objective quality scores is analyzed in five scales for the FERIT-RTRK dataset, 

and in four scales for CSIQ video dataset, because the resolution of videos from 
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FERIT-RTRK dataset is greater than videos from CSIQ dataset. The decimation 

of the original and test sequences was made with scaling factors 1/2, 1/4, 1/8, and 

1/16. In addition to decimation, bicubic interpolation was performed. Scale 2 

corresponds to scaling factor 1/2, while scale 5 corresponds to scaling factor 1/16 

[20-22]. 

The values of the VQAB measure are obtained by averaging of the lowest 20% 

frames quality scores in this analysis, as suggested in [15]. For all other measures, 

100% of the frames are used. 

Figure 6 shows the dependence of the level of agreement between subjective and 

objective quality scores (SROCC) over different scales (resolutions) with both 

used datasets. Correlation is calculated on complete datasets. From Figure 6 it is 

noted that the performance of objective measures significantly depends on the 

scale in which the original and compressed video was compared. The choice of 

the optimal scale depends on the objective measure, too. In this way, the 

observation from [20] that the assessment of image/video quality in different 

resolutions provides more flexibility in incorporating the variations of viewing 

conditions was confirmed. 

 
 (a) (b) 

Figure 6 

Rank order correlation (SROCC) between subjective and objective quality scores in different scales on: 

(a) CSIQ dataset and (b) FERIT-RTRK dataset 

The highest degree of agreement for CSIQ dataset is between subjective and 

VQAB objective quality scores (original resolution, SROCC=0.936). Applying the 

GMSD objective measure provides the highest degree of agreement of quality 

scores on the FERIT-RTRK dataset (scale 2, SROCC=0.881). 

In both video datasets, it is noticeable the performance improvement of the SSIM 

objective quality assessment measure, comparing with the original resolution; the 

comparison for the FERIT-RTRK dataset is carried out in scale 2 (Figure 6 (b) 

shows the SSIM’s SROCC jump from 0.741 to 0.862), and for the CSIQ video 

dataset in scale 3 (Figure 6 (a) shows the SSIM’s SROCC jump from 0.816 to 

0.931). 
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Observing the results of the PSNR measure, a higher correlation with subjective 

scores is obtained by analyzing lower resolutions, while other objective measures 

have better performance in higher resolutions. In this way, it can be concluded that 

in the comparison of the signals in higher scales (lower resolution), the analysis of 

the energy preservation of the signal is important, while in the lower scales 

(higher resolution), the analysis of the preservation of the signal structure is more 

important. Furthermore, on FERIT-RTRK dataset it can be seen that the degree of 

agreement between subjective and PSNR objective quality scores in scale 4 is 

close to the results of the best GMSD measure (0.874 vs. 0.881). 

Conclusions 

Three approaches for improving the performance of objective quality assessment 

measures are presented in the paper. The presented approaches are quality guided 

temporal pooling, information content-weighted temporal pooling, and multiscale 

analysis. The five objective video quality assessment measures and two publicly 

available video datasets with H.264, H.265, and MPEG-2 compressed video 

contents are used in the analysis. It has been shown that the performance of 

objective measures significantly depends on the choice of the dataset, which 

makes it necessary to use more reference video datasets in video quality analyzes. 

Since these datasets contain a relatively small number of test signals with H.264 

and H.265 compressed contents (60+72 sequences), it can be concluded that there 

is a need for new datasets, which will contain a significantly larger number of 

compressed test signals. 

In addition, from the analysis it can be concluded that the greatest potential for 

improving the performance of objective measures on both datasets has the 

multiscale approach, where the improvement depends on the choice of an 

objective measure. By applying this approach, the improvement of accuracy 

prediction achieved through the correlation of ranks was up to 0.12 (SSIM 

objective measure on both analyzed datasets). Quality guided temporal pooling, 

implemented through the use of the lowest quality scores, on the CSIQ dataset has 

led to the improvement of the performance of objective measures (rank correlation 

increased by up to 0.05), while on the FERIT-RTRK dataset the performance with 

such integration is in the level of performance without pooling. Information 

content-weighted temporal pooling does not give significant improvement (rank 

correlation increased by up to 0.03 on CSIQ dataset), and in this case, except for 

SSIM, information content-weighted temporal pooling did not lead to an 

improvement in the results of objective measures on the FERIT-RTRK dataset. 

The lack of improvement in the results of objective measures using temporal 

pooling on a FERIT-RTRK dataset is probably due to the format of the delivered 

sequences – the original and test sequences were delivered in a compressed mp4 

format. 

As these three approaches were analyzed separately, in further work we will 

analyze their combined effect in objective video quality assessment. 
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