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Abstract: Sales promotion aims to capture the market and increase sales volume. 

Therefore, an important task is the forecasting of the demand during the sales period. We 

present two dynamic methodologies for calculating the quantity which has to be placed on 

the shelves at the beginning of each day such that we keep some constraints expressing 

lower and upper bounds on the quantities. Both methodologies are new to this field and are 

useful because of some specific properties of the problem. Our new methods use historical 

data of the demands in previous promotions and the consumptions registered in the 

previous days. Since the promotion period is relatively short, other methods such as time 

series analysis can hardly be used. 
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1 Introduction 

Many businesses use sales promotions to increase the demand of a product or 

service. Promotions and sales are important strategies of a successful business. 

Their effects include growth within the market segment involved, the discovery of 

new products. Promotions attract new and old customers and can keep the 

company relevant when competitors appear. Price reductions can substantially 

boost the sales of the given product, but also cause brand switching. 

Effective sales promotions lead to inventory reductions, because customers buy 

more products. Therefore companies use these actions at the end of a buying 

season. For example, when Christmas Eve is past, very often, retailers offer 

discounts to make room on the shelves for other products. 

Paper [12] highlights how promotions affect the buying habits of costumers as a 

consequence of a changed price conditions. 

Some interesting statistics on demand in sales period can be found in [1]: 

“Demand during many promotions is often dramatically greater than median daily 

demand: demand in 54% of promotions is > 15 standard deviations greater than 
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daily median demand, and demand in 3% of promotions is > 100 standard 

deviations greater than normal daily demand. However, promotion demand 

represents a relatively small percentage of total yearly demand for most products. 

For 90% of products, promotion demand is <15% of total yearly demand and 

promotion demand is <20% of total demand among 90% of the products with one 

or more promotions.” 

The time series method forecasts the new demand values, on the basis of historical 

demand data. In [11] time series forecasting models with extending an exponential 

smoothing approach were proposed. However, exponential smoothing methods 

have been criticized for their inability to capture the effects of special events such 

as promotions, announcements. When demand for an item is being driven by such 

factors as trends and seasonal patterns, time series methods tend to work quite 

well [6]. However, business data often contain responses to actions, such as 

promotions, that cannot be captured as part of the level, trend and seasonal 

components. When a significant amount of demand is being driven by these types 

of events, time series methods will not work very well. 

Fildes and Goodwin ([4]) indicated promotional and advertising activity as one of 

the main drivers behind adjustments of the statistical forecasts by managerial 

judgments. 

An alternative approach to the problem of forecasting promotional sales is to use 

regression models, which use past promotional information to formulate causal 

models, Fildes et al. [5]. 

Although the information of human judgment cannot be captured by simple 

promotional models, yet Trapero et al. in [12] showed that a simple model could 

beat judgmental forecasting. Therefore, there is a need for developing more 

sophisticated promotional models. 

In a recent paper [3], different models of forecasting the demand during a 

promotion are developed and tested, including a moving average forecast and 

several regression models. In the paper it is investigated how different factors such 

as price variation, advertising influence the demand. 

Another recent paper on the topic of forecasting demand in sales period is [7]. The 

presented method consists of the identification of potentially influential 

categories, and then of the selection of the explanatory variables by using 

multistage LASSO regression and of the use of a rolling scheme to generate 

forecasts. The success of the method is also based on dealing with high 

dimensionality which brings improvements in forecasting accuracy compared to 

other methods which used also a reduced variable space. 

In [13] Trapero et al. proposed a Principal Component Analysis based 

promotional model that overcomes the limitations caused by multicollinearity and 

high dimensionality. 
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In this paper we address the problem of stochastic inventory control during a retail 

or promotion time. The pricing of the products in sales period is also an important 

optimization problem, but in this paper we suppose the promotion price was 

already fixed. This paper is dealing with the problem of daily updating the 

quantity of a given product on the shelves during a promotion sales period. A 

specific characteristic of this problem is that, products are sold at a lower price 

during a relatively short period only. We present two methodologies for making 

decisions on the quantity of product which has to be placed on the shelves. These 

are based on historical data of similar promotions that have occurred in the past. 

To our best knowledge we are the first who introduce the following models to the 

problem of inventory management during promotional sales. 

The dynamic of our models is as follows. At the beginning of each day, a quantity 

of a given product is placed on the shelves. The demand on each day is observed 

and based on this cumulative set of information one has to decide the quantity to 

be placed on the shelves at the beginning of the next day. This way the decision is 

made day by day and uses beyond the information accumulated from the previous 

days also historical data collected from previous sales periods. In addition the 

experts may put some constraints on the quantity of products being on the shelves. 

2 Dynamic Inventory Control in Sales Periods by 

Adapting the Lake Balaton Water Level Regulation 

Model 

2.1 Preliminaries 

In paper [8] the following dynamic control model was developed for regulation of 

the water level of Lake Balaton. 

Let us introduce the following notations: 

0V  initial water content of the lake, 

k  random water input in month ,k  

kz  water quantity to be released through the channel Sio in month 

,k  





k

i

ik V
1

0   
initial water content plus the cumulated monthly random water 

inputs at the end of month ,k  

ka  lower bound for the water quantity being in the lake at the end 

of month ,k  
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kb  upper bound for the water quantity being in the lake at the end 

of month .k  

For determining the optimal decisions 

Nzz ,,1   according to the first N  months 

one should solve the following stochastic programming problem: 









 


NkbzaP k

k

i

ikk ,,1,max
1

  

supposing that                                                 (1) 

,,,1,0 NkKzk   

where K  is the monthly capacity of the channel Sio. 

The authors of paper [8] proposed to accept the optimal value  11 zz  of the first 

decision variable only, apply it as water release in the actual month and then 

formulate the next stochastic programming problem of type (1) and so on. 

If one observed the realized values nxx ,,1   of the random water inputs n ,,1   

and the realized water releases were 

nzz ,,1   in the first n  months, then the 

knowledge of these values can also be utilized in the following way. Let us 

modify the initial water content of the lake for the water content at the end of the 

n th month, i.e. let be 







n

i

i

n

i

in zxVV
11

0  and 



k

ni

ink V
1

 . Then instead 

of stochastic programming problem (1) one can regard the problem 









 


nnk

k

ni

ikk xxNnnkbzaP  ,,,,1,max 11

1

  

supposing that                                                 (2) 

.,,1,0 NnnkKzk    

Now one may accept the optimal value of the first decision variable 

  11 nn zz  

only, apply it as water release in the actual month and then formulate the next 

stochastic programming problem of type (2) and so on. 

If the random process ,, 21   is Gaussian, these stochastic programming 

problems can be solved as it was shown in [8]. In this paper the special case of 

2 Nn  was taken and the authors successfully applied this method for the 

monthly dynamic control of the water level of the Lake Balaton for a fifty years 

long time horizon. 
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2.2 Adaptation of the Lake Balaton Water Level Regulation 

Model 

Let us now regard a line of goods in a department store which is on sale for a 

fourteen days’ time period. The main difference is that while the water level of the 

Lake Balaton can be controlled only by decreasing its value, in this case the 

amount of the line on the shelves can be controlled only by increasing its value. In 

the same time while the water level of the Lake Balaton increases (changes) 

randomly and it can be decreased deterministically, in this case the amount of the 

line on the shelves decreases randomly and it can be increased deterministically. 

For describing the stochastic programming models let us now introduce the 

following notations: 

0V  the starting amount of the line on the shelves at the beginning of the 

sale, 

k  the random consumptions of the line on the k  th day of the sale,  

kz  decision variable belonging to the k  th day of the sale, this is the 

quantity of the line to be placed on the shelves when opening the 

k th day of the sale, 





k

i

ik

1

  
the cumulated daily random consumption at the end of the k th day 

of the sale, 

K  the capacity of the shelves over the sale, 

ka  lower bound for the line amounts to be placed on the shelves at the 

end of the k  th day of the sale, 

kb  upper bound for the line amounts to be placed on the shelves at the 

end of the k  th day of the sale. 

The notations above are introduced for all days 14,,2,1 k  of the sale.  

If we suppose that the line of goods is put on the shelves each day morning then 

the following inequalities must be fulfilled: 

10 zV   1b  quantity at first day opening time, 

1210  zzV  2b  quantity at second day opening time, 

   

1110  NNzzV    Nb  quantity at N  th day opening time. 

Taking into account the daily random consumption values at the end of the day the 

following inequalities must be fulfilled: 
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110  zV  1a  quantity at first day closing time, 

21210   zzV  2a  quantity at second day closing time, 

   

NNzzV    110  Na  quantity at N  th day closing time. 

For determining the optimal decisions 

Nzz ,,1   according to the first  14N  

days one should solve the following stochastic programming problem: 

The problem which accords with/corresponds to problem (1) is formally the 

following: 











































N

N

i

iN

k

k

i
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k

i

i

azV

NkazVbzV

P

1

0

1

01

1

2

0 1,,1,

max



 

 

supposing that        (3) 

,011 Vbz  .0,,0,0 21  Nzzz   

If one observed the realized values nxx ,,1   of the random consumptions 

n ,,1   and the quantities 

nzz ,,1   of the line placed on the shelves on the first 

n  days of the sale, then the knowledge of these values can also be utilized in the 

following way. Let us modify the starting amount of the line on the shelves in the 

morning of the 1n  th day, i.e. let be 


 
n

i

i

n

i

in xzVV
11

0 . Then instead of 

stochastic programming problem (3) one can regard the problem 
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








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1

1

1

1
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1,,1,

max  

supposing that        (4) 

,11 nnn Vbz   .0,,0,0 21   Nnnn zzz   

Now one may accept the optimal value of the first decision variable 


  11 nn zz  

only, apply it as quantity of the line to be placed on the shelves in the actual day 

and then formulate the next stochastic programming problem of type (4) and so 

on. 
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If the random process ,, 21   is Gaussian, these stochastic programming 

problems can be solved. For detailed calculation procedure, see paper [8]. 

Relatively small values of n  and N  (say, 2 Nn ) may be enough for 

achieving good control in this case, too. 

2.3 Application of the Algorithm 

As it can be seen in Table 1, the random consumptions had relatively large 

standard deviations according to their mean values, so the modified Lake Balaton 

inventory control model was not applicable for these data. This model could be 

applied when the standard deviation of the random consumptions is not larger than 

one third of the mean value, otherwise one should be able to interpret negative 

valued consumptions. 

3 Dynamic Inventory Control in Sales Periods by 

using Information-driven Forecasting 

3.1 Preliminaries 

Sales periods are relatively short, one or two weeks typically, therefore, the 

popular time series forecasting methods cannot be applied for the goods in 

promotion sales. 

We distinguish the following two kinds of promotional sales. The first one is the 

case of a product which already exists on the market, the second one is the sale 

promotion applied to a new product which has to be introduced into the market.  

For the second case we have no proper historical data. To overcome this 

drawback, we can search for products which are similar to the new one, and use 

their historical data. Having these we may apply our methodology.  

We consider now the case of forecasting the demand of an existing product on the 

market, for which we have earlier data registered, during the sale periods of the 

same length. We associate a random variable iX  to the daily consumption 

registered at the end of each day. We can define a random vector  dXX ,,1 X , 

where d is the length of the sales period expressed in days.  

At the end of the i  th day, 1,,1  di   we have to decide on the quantity of 

product to place on the shelves. For this we have to forecast the consumption of 

day 1i based on the consumption of the first i  days. Based on the forecasted 
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consumption we make sequential decisions on the quantity which have to be 

displayed. 

We regard now the problem of forecasting the consumption of the 1i  th day. 

We consider the random vector:  11 ,,  iXX X  which is a margin of the 

random vector  dXX ,,1 X . 

The main idea behind our method is that we use 1, 2, 3 (rarely 4) out of the 

previous days to forecast the consumption of day 1i . We emphasize here that 

we do not use necessarily the days i, i-1, i-2. Instead we will choose those days 

from all previous days which minimize the uncertainty of the day i+1. 

For this task, we use the following informational theoretical concepts. 

The uncertainty amount of a random vector can be quantified by its entropy. The 

entropy does not depend on the values of the random vector; it depends only on 

the probabilities with which the different values are taken on. 

The concept of entropy has its roots back in 1854 in a memoir of Rudolph 

Clausius. However, in this paper we will use the expression given by Claude 

Shannon published in his famous paper [10]. More general definitions for entropy 

were also given by Rényi [9]. 

We introduce the reader into some information theoretical concepts, which have to 

be reminded for the understanding of our method. The interested reader can find 

more details about these concepts in [2]. 

In the present work, we use the following formula for entropy, which is related to 

a random vector with m realizations. If i represents the range of the variable iX  

then the range of X  is a subset of i

d

i


1

 

  



m

k

kk ppH
1

lnX   

where m  indicates the number of all distinct realizations of the random vector X 

and kp  denotes the probability of the k th realization of the random vector X (the 

ordering of the realization has no importance, but is fixed). 

In order to quantify how much the uncertainty of a given random variable is 

reduced by knowing the values taken on by the other random variables we use the 

concept of conditional entropy denoted by  iViXH X| , where we use the 

notation iV X for the random vector of all random variables with indices in V 

except iX .  
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For a better understanding of the concept of conditional entropy we first define the 

following random variables. Let us fix Vi and an arbitrary realization k

iV x  of 

iV X . The conditional random variable denoted by k

iViX x|  takes on the values 

jix  by probabilities   :,,1, s

k

iViViix
ijxXPp

j
k

iVji

 


xX
x

 

k

iViX x| :















k

iVsi
k

iVji
k

iVi

sj

xxx

iii

ppp

xxx

xxx |||
1

1




. 

Here k

iV x  stands for the k th realization of the random vector .iV X  This way a 

conditional random variable k

iViX x|  is assigned to each realization k

iV 
x , 

iVmk  ,,1 . We take now their entropies denoted by  k

iViXh x| , 

iVmk  ,,1  and define a new random variable as follows. 

 
     























11

1|||
:|

~
1

Vm
iV

k
iViV

V

ppp

XhXhXh
Xh

m

iVi

k

iViiVi

iVi

xxx

xxx
X




, 

where   .,,1, iV

k

iViV mkPp k
iV

 


xX
x

 

Finally, we arrive to the definition of conditional entropy  iViXH X|  that is 

defined as the expected value of  iViXh X|
~

. 

From these it can be seen, that the conditional entropy  iViXH X|  quantifies the 

amount of the uncertainty of iX  when there are given the realizations of iVX  . As 

the smaller the conditional entropy is the better we can reduce the uncertainty of 

iX  by knowing realizations of iV X . 

This leads to the introduction of the concept of mutual information  iViXI X, , 

which is defined as the following difference: 

      iViiiVi XHXHXI   XX |, . 

3.2 The Central Idea of our Method 

The main idea of our method is the way we decide on the quantity which has to be 

placed on shelves next day. The decision is based on the consumptions registered 

in few previous days. These days are chosen in such a way that these minimize the 

conditional entropy of the next day’s consumption. This is equivalent with 

maximizing the information gain. 
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Since the sales period is relatively short, one or two weeks long, we use only one, 

two or three previous days in forecasting. 

From a theoretical point of view taking more than three days leads to over fitting 

and poor generalization of the model.  

3.3 The Consumption Forecasting Algorithm 

Based on the historical data we have the joint empirical probability distribution of 

the random vector  dXX ,,1 X , where the random variables diX i ,,1,   

represent the daily consumptions. 

We introduce the following notations. 

The realized consumption of the i th day in the actual sales period is denoted by 

iC . Forecasting the consumption of the i+1 th day means choosing one of the 

possible realizations of the random variable 1iX  in a certain way. Let 

11 ,,1   i

k

i skQ   denote the possible values of 1iX . The forecasted 

consumption of the i+1 th day is denoted by 1iQ . 

We introduce the following notations: 

 kk XX ,,1  ,  

  mlXXXX kmlmlk  ,,|,2  

  nmlXXXXXX knmlnmlk  ,,,|,,3  

 In the first day we usually consider the mean value of 1X  as forecasted 

consumption. This will be the quantity 1Q . 

  In the second day we can use the registered consumption 1C  of the first 

day and forecast the second day consumption by the following 

maximization: 

 1122
,,1

2 |maxarg
2

CXQXPQ k

sk


 

 

 From i=3 to n  

Step 1: Choose a number f  from 1 to 3, this is the number of the 

previous days used in the forecast – this decision can be made by 

interacting with the user. 

Step2. The selection of the informative variables: 
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if 1f ,  li
X

l XXHX
il

|minarg 1


   

if 2f ,   
 

 mli
XX

ml XXXHXX
iml

,|minarg, 1
, 2




   

if 3f ,   
 

 nmli
XXX

nml XXXXHXXX
inml

,,|minarg,, 1
,, 3




   

Step 3. The forecast of the consumption of day i+1: 

 




 


CX|maxarg 11
,,1

1

1

k

ii
sk

i QXPQ
i

. 

Here the notation   CX stands for 

 ll CX  , if 1f  ,   

mmll CXCX   , , if 2f ,   

nnmmll CXCXCX   ,, , if 2f . 

The algorithm was implemented in such a way that the user can make interactive 

decisions when the code is running. In Step 1 the user can specify, based on the 

value of conditional entropies, how many previous days should be taken into 

account in the forecast. 

In Step 3 two, three or four dimensional marginal probability distributions are 

used, depending on conditioning one, two or three earlier days consumptions. We 

may face to the following problems: 

a) 1iX takes on more values with the same probability. In this case, we take 

their mean value as forecast. 

b) In the marginal probability distribution of the historical data never occurs 

the realization   CX . We overcome this problem by using lower marginals.  

For example, it may happen that the probability  

 nnmmll

k

ii CXCXCXQXP  

 ,,|11  

cannot be calculated since  the conditioning realization did not occur in the 

historical data. For these cases we have to apply a forecasting scheme which is 

based on lower marginal probability distributions.  

Let us denote by r the dimension of the largest marginal probability distribution of 


X  with the property that the corresponding conditioning set occurs with positive 

probability. 

If the conditioning set contains 3 variables, r can be 2 or 1.  
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For illustration let us suppose that r=2. In this case at least one of the following 

cases occurs. There exists at least one k such that 

  0,|11  

 mmll

k

ii CXCXQXP ,     (5) 

or 

  0,|11  

 nnll

k

ii CXCXQXP ,      (6) 

or 

  0,|11  

 nnmm

k

ii CXCXQXP .     (7) 

Let us denote by r

X i
P

1
the sum of the above nonzero probabilities for all 

1,...,1  isk . 

For each k we calculate a probability k
iQ

p
1

 as the sum of nonzero probabilities of 

(5)-(7) for which k

ii QX 11    is taken on, divided by r

X i
P

1
. Using these we define 

the following random variable. 






















1
11

1
1

1

|

11

1

1
:

is
i

k
ii

i

QQQ

s

i

k

ii

r ppp

QQQ




  

The forecasted consumption of the i+1 th day is k
i

i

Q
sk

i pQ
1

1,,1
1 maxarg




 


. 

3.4 Decision Making Procedure 

Let us suppose that we decided on the amounts of goods to be placed on shelves in 

the first i  days. We have to decide on the amount of goods to be placed on the 

shelves in the morning of the 1i  th day, based on the forecasted consumption. We 

want the end-of-day amount on display to be equal to the arithmetic mean of the 

prescribed lower and upper levels. If 1iz  denotes the quantity of the line to be 

placed on the shelves at the beginning of the 1i  th day its value have to fulfill the 

following equality: 

,
2

11
11110




 
 ii

iiii

ba
QzCCzzV      (8) 

where 0V  is the starting amount of line on the shelves at the beginning of the sale; 



izz ,,1   are the decisions applied in the first i  days; iCC ,,1   are the realized 

random consumptions in the first i  days; 1iQ  is the forecasted consumption in 

the 1i  th day, and 11,  ii ba  are the prescribed lower resp. upper bounds on the 

amount of goods placed on display at the end of the 1i  th day. 
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Solving the equation (8) we get for the optimal decision: 

   1110
11

1
2





 


 iii
ii

i QCCzzV
ba

z  . 

3.5 Data Preprocessing 

In the practical application of our model the following problem may appear which 

have to be solved before running the algorithm. 

The problem is caused by the relatively small learning data set, and the relatively 

large range of values which are taken on by each random variable. Therefore we 

decided to group the values into intervals. Based on the historical data the range of 

the consumption for each day was divided into 4 intervals as follows.  

For each day there was calculated the minimum consumption, maximum 

consumption, mean value and standard deviation. These divide the range into four 

intervals. The intervals were delimited by the minimum consumption, the mean 

value minus the standard deviation, the mean value, the mean value plus the 

standard deviation and the maximum consumption. Each interval was 

characterized by the mean value calculated from the historical data. 

First we forecasted an interval then on the basis of this we accepted the mean 

value assigned to this interval as forecast for the consumption. 

3.6 Application of the Algorithm 

Our dynamic decision making algorithm has been applied to the real-life data set 

of a 14 day sales period. We got observed data for 46 sales periods. Data of 

randomly selected 40 sales periods was used as learning data set and data of the 

remaining 6 sales periods was used as testing data set. In Table 1 there are given 

the mean values and the standard deviations of the daily consumptions and the 

prescribed lower resp. upper bounds for the amount of goods to be placed on the 

shelves. The runs of our dynamic control for the testing data sets can be seen on 

Figures 1-6. 

Table 1 

The mean values and standard deviations of the daily consumptions and the prescribed lower and upper 

bounds for the amount of goods to be placed on the shelves 

  Exp. val.  Std. dev. Lower bound Upper bound 

1 Friday 6.9500 3.5515 6 20 

2 Saturday 5.9000 3.7403 6 20 

3 Sunday 3.6000 3.3344 6 20 

4 Monday 3.2250 2.8328 6 18 
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5 Tuesday 3.9250 3.1816 5 18 

6 Wednesday 3.8250 3.2415 5 18 

7 Thursday 4.4500 3.9481 5 16 

8 Friday 3.5500 3.2734 5 16 

9 Saturday 3.1750 2.5709 5 16 

10 Sunday 2.3750 1.8904 5 14 

11 Monday 2.1000 1.7802 4 14 

12 Tuesday 3.2500 2.4469 4 14 

13 Wednesday 2.3250 1.9133 4 12 

14 Thursday 2.3250 1.9792 4 12 

 

Figure 1 

Run of the dynamic control for the first testing data set 

 

Figure 2 

Run of the dynamic control for the second testing data set 
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Figure 3 

Run of the dynamic control for the third testing data set 

 

 

 

Figure 4 

Run of the dynamic control for the fourth testing data set 
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Figure 5 

Run of the dynamic control for the fifth testing data set 

 

Figure 6 

Run of the dynamic control for the sixth testing data set 

4 Some Methods to Improve the Quality of the 

Registered Data and Ideas for Future Work 

One of the problems, which occurred, is that the registered consumption was 

messy, due the fact that there were days when at the end of the day the shelves 

were empty. In such cases the registered consumptions were considered as the 

quantities displayed at the beginning of these days. We recommend that in such 

cases the registered quantity should somehow indicate this fact, for example by 
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

iC , and this fact should be taken into account in the procedure of forecasting the 

future consumptions. 

Very often, the promotional sale for a given line, has effects on the demand of 

other goods. It would be important to investigate these effects and include them in 

the calculation. 

Conclusions 

We presented two new methods of dynamic forecasting for the consumptions 

within sales periods and a decision procedure based on the forecasted 

consumption and the prescribed levels. The first method can be applied in cases 

when the probability distribution of the random consumptions can be supposed to 

be normal, i.e. the standard deviation of the data is relatively small according to 

the mean value. 

The advantage of the second method is that it needs no hypothesis on the 

theoretical probability distribution, but for accurate forecasting, it needs a larger 

historical dataset. The dataset could be enlarged by other observed sales periods 

for similar items. 

Both methods presume that the sales periods were observed under equal market 

and advertising conditions. 
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