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The sliding mode control of Variable Structure Systems has a unique role in control 

theories. First, the exact mathematical treatment represents numerous interesting 

challenges for the mathematicians. Secondly, in many cases it can be relatively easy to 

apply without a deeper understanding of its strong mathematical background and is 

therefore widely used in the field of power electronics. This paper is intended to constitute 

a bridge between the exact mathematical description and the engineering applications. The 

paper presents a practical application of the theory of differential equation with 

discontinuous right hand side proposed by Filippov for an uninterruptible power supply. 

Theoretical solutions, system equations, and experimental results are presented. 
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1 Introduction 

Recently most of the controlled systems are driven by electricity as it is one of the 

cleanest and easiest (with smallest time constant) to change (controllable) energy 

source. The conversion of electrical energy is solved by power electronics [1]. 

One of the most characteristic common features of the power electronic devices is 

the switching mode. We can switch on and off the semiconductor elements of the 

power electronic devices in order to reduce losses because if the voltage or current 

of the switching element is nearly zero, then the loss is also near to zero. Thus, the 

power electronic devices belong typically to the group of variable structure 

systems (VSS). The variable structure systems have some interesting 

characteristics in control theory. A VSS might also be asymptotically stable if all 

the elements of the VSS are unstable itself. Another important feature that a VSS - 

with appropriate controller - may get in a state in which the dynamics of the 

system can be described by a differential equation with lower degree of freedom 

than the original one. In this state the system is theoretically completely 

independent of changing certain parameters and of the effects of certain external 
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disturbances (e.g. non-linear load). This state is called sliding mode and the 

control based on this is called sliding mode control which has a very important 

role in the control of power electronic devices. 

The theory of variable structure system and sliding mode has been developed 

decades ago in the Soviet Union. The theory was mainly developed by Vadim I. 

Utkin [2] and David K. Young [3]. According to the theory sliding mode control 

should be robust, but experiments show that it has serious limitations. The main 

problem by applying the sliding mode is the high frequency oscillation around the 

sliding surface, the so-called chattering, which strongly reduces the control 

performance. Only few could implement in practice the robust behavior predicted 

by the theory. Many have concluded that the presence of chattering makes sliding 

mode control a good theory game, which is not applicable in practice. In the next 

period the researchers invested most of their energy in chattering free applications, 

developing numerous solutions [4-8]. 

According to [9]: Uninterruptible power supplies (UPS’s) are being broadly 

adopted for the protection of sensitive loads, like PCs, air traffic control system, 

and life care medical equipment, etc., against line failures or other ac mains’ 

perturbations. Ideally, an UPS should be able to deliver: 1) a sinusoidal output 

voltage with low total harmonic distortion during normal operation, even when 

feeding nonlinear loads (particularly rectifier loads). 2) The voltage dip and the 

recovery time due to step load change must be kept as small as possible, that is, 

fast dynamic response. 3) The steady-state error between the sinusoidal reference 

and the load regulation must be zero. To achieve these, the Proportional Integral 

(PI) controller is usually used [10]. However, when the system using PI controller 

under the case of a variable load rather than the nominal ones, cannot obtain fast 

and stable output voltage response. In the literature there can be found some 

solutions to overcome this problem [11-15]. 

The structure of this paper is as follows. After the introduction, the second section 

summarizes the mathematical foundations of sliding mode control based on the 

theory of the differential equations with discontinuous right-hand sides, explaining 

how it might be applied for a control relay. The third section shows how to apply 

the mathematical foundations on a practical example. The fourth section presents 

experimental results of an uninterruptable power supply (UPS). 
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2 Mathematical Foundations of Sliding Mode Control 

2.1 Introductory Example 

The first example introduces a problem that can often be found in the engineering 

practice. Assume that there is a serial L-C circuit with ideal elements, which can 

be shorted, or can be connected to the battery voltage by a transistor switch (see 

Figure 1, where the details of the transistor switch are not shown). Assume that 

our reference signal has a significantly lower frequency than the switching 

frequency of the controller. Thus we can take the reference signal as constant. 

 

Figure 1 

L-C circuit 

Assume that we start from an energy free state, and our goal is to load the 

capacitor to the half of the battery voltage by switching the transistor. The 

differential equations for the circuit elements are: 

cc iu
dt

d
C   and 

LL ui
dt

d
L   (1) 

Due to the serial connection ic = iL, thus the differential equation describing the 

system is: 

ccAB u
dt

d
LCuu

2

2

  (2) 

Introduce relative units such way, that LC = 1 and Ubat = 1. Introduce the error 

signal voltage ue = Ur - uc, where Ur = 1/2 is the reference voltage of the 

capacitor. Thus, the differential equation of the error signal has the form: 

ee u
dt

d
uu

2

2


 (3) 
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It is easy to see that the state belonging to the solution of equation (3) moves 

always clockwise along a circle on the phase plane ee u
dt

d
u ,  (see Figure 2). 

The center of the circle depends on the state of the transistor. The state-trajectory 

is continuous, so the radius of the circle depends on in what state the system is at 

the moment of the last switching. Assume that we start from the state 

 

 

Figure 2 

Possible state-trajectories 

0,2/1  ee u
dt

d
u  and our goal is to reach by appropriate switching the state 

0,0  ee u
dt

d
u . Introduce the following switching strategy: 

)sign(
2

1
su   (4) 

,where 

ee u
dt

d
us 

 

This means that if the state-trajectory is over the s = 0 line, then we have to switch 

the circle centered at O1, if it is below the line, then we have to switch the circle 

centered at O2. Examine how we can remove the error. Consider Figure 3, 

according to (4) at first we start over the s = 0 line on a circle centered at O1. 
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Figure 3 

Removing the error 

Reaching the line we switch to the circle centered at O2 so that the state-trajectory 

remains continuous. After the second switching we experience an interesting 

phenomenon. As the state trajectory starts along the circle centered at O1, it 

returns immediately into the area, where the circle centered at the O2 has to be 

switched, but the state-trajectory cannot stay on this circle either, new switching is 

needed. For the sake of representation, the state-trajectory on Figure 3 reaches 

significantly over to the areas on both sides of the s = 0 line. In ideal case the state 

trajectory follows the s = 0 line on a curve broken in each points consisting of 

infinitely short sections switched by infinitely high frequency. In other words, the 

trajectory of the error signal slides along the s = 0 line and therefore is called 

sliding mode. 

Based on the engineering and geometric approach we feel that after the second 

switching, the behavior of the error signal can be described by the following 

differential equation instead of the second order (3): 

ee u
dt

d
u 0

 (5) 

This is particularly interesting because (5) does not include any parameter of the 

original system, but the   we have given. Thus we got a robust control that by 

certain conditions is insensitive to certain disturbances and parameter changes. 

Without attempting to be comprehensive investigate the possible effects of 

changing some attributes and parameters of the system. If we substitute the ideal 

lossless elements by real lossy elements, then the state-trajectory instead of a 

circle moves along a spiral with decreasing radius. If the battery voltage 

fluctuates, the center of the circle wanders. Both changes affect the section before 

the sliding mode and modifies the sustainability conditions of the sliding mode, 

but in both cases, the sliding mode may persist (the state trajectory cannot leave 

the switch line), and if it persists, then these changes will not affect the behaviour 

of the sliding mode of the system. 

The next section will discuss how we can prove our conjecture mathematically. 
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2.2 Solution of Differential Equations with  

Discontinuous Right-Hand Sides 

Consider the following autonomous differential equation system: 

))(()( tt
dt

d
xfx   and 

00)( Xx  Tt  (6) 

 

,where 
nx  

nn :)(xf  

If f(x) is continuous then we can write (6) as the integral equation: 

 dt
t

T
0

))(()( 0 xfXx
 (7) 

The approach of (6) according to (7) is called Carathéodory solution, which under 

certain conditions may also exist when f(x) is discontinuous [16]. Recently, 

several articles and PhD theses dealt with it how to ease the preconditions which 

guarantee the existence of (7) concerning f(x), but for the introduced example 

none of the cases might be applied, we need a completely different solution. 

Filippov recommends a solution, which is perhaps closer to the engineering 

approach described in the previous section [17], [18]. Filippov is searching the 

solution of (6) at a given point based on how the derivative behaves in the 

neighborhood of the given point, allowing even that the behavior of the derivative 

may completely differ from its neighborhood on a zero set, and regarding the 

solution ignores the derivative on this set. Filippov’s original definition concerns 

non-autonomous differential equations, but this article deals only with 

autonomous differential equations. 

Consider (6) and assume that f(x) is defined almost everywhere on an open subset 

of 
n . Assume also that f(x) is measurable, locally bounded and discontinuous. 

Define the set K(x) for x   f(x) by: 

)),((conv:)(
00

NQK
N







xfx 
 (8) 

,where ),( xQ  denotes the open hull with center x and the radius ,  is the 

Lebesgue measure, N is the Lebesgue null set and the word "conv" denotes the 

convex closure of the given set. 

Filippov introduced the following definition to solve the discontinuous differential 

equation systems: 

An absolutely continuous vector-valued function nGTTt ],[:)( 20x  is the 

solution of (6) if 
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))(( tK
dt

d
xx 

 (9) 

for almost every t   ],[ 20 TT . Note that if f(x) is continuous, then set K(x) has a 

single element for every x, namely f(x), thus the definition of Filippov is 

consistent with the usual differential equations (with continuous right-hand side). 

However, if f(x) is not continuous, then this definition allows us searching a 

solution for (6) in such a domain of x, where f(x) is not defined. 

2.3 Control Relays 

Apply the definition of Filippov as a generalization of the introductory example in 

the case of such a controller with state feedback, where in the feedback loop only 

a relay can be found (see Figure 4). Assume that the state of the system can be 

described by the differential equation (6) where the vectorfunction f(x) is 

sbtanding on the right-hand side rapidly varies depending on the state of the relay. 

The control (switching) strategy should be the following. In the domain of the 

space 
nG   defined by the fedback state variables define an n-1 dimensional 

smooth regular hypersurface S (which can also be called as switching surface) 

using continuous ns :)(x  scalar-vector function in the following way: 

 

 

Figure 4 

Controller with relay 

}0)(:{:  xx sS  (10) 

The goal of the controller is to force the state-trajectory to this surface. Mark the 

points of the surface S with xs. With the help of this surface we can divide the 

domain G into two parts: 

}0)(:{:  xx sG  (11) 

}0)(:{:  xx sG  
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Let the differential equation for x on domain G and our switching strategy have 

the following form: 














G

G

dt

d

xxf

xxf
xfx

if),(

if),(
)(

 (12) 

,where f 
+
(x) and f 

-
(x) are uniformly continuous vector-vector functions. 

Note that f(x) is not defined on the surface S, and we did not specify that f 
+
(x) and 

f 
-
(x) must be equal on both sides of the surface S. 

Outside the surface S we have to deal with an ordinary differential equation. 

Solution of (12) might be a problem in the xs(t) points of the surface S. According 

to definition (9), K is the smallest closed convex set, which you get in the 

following way: let’s take an arbitrary 0  hull of all xs(t) points of the xs 

belonging to the surface S, exclude f(xs), where f(x) is not defined (remark: it is a 

null set N domain), and we complete the set of f(x) vectors belonging to the 

resulting set to a closed convex set. Obviously, the smaller the value of 0  is, 

the smaller the resulting closed convex set is. Finally, we need to take the 

intersection of the closed convex sets in the hull of all 0  and N. Since f(x) is 

absolutely continuous, the following limits exist at any point of the surface S: 













G

G

S

S

xxfxf

xxfxf

s

s

xx

xx

if)()(lim

if)()(lim

 (13) 

It means that the )),((
00

NQ
N







xf  set belonging to any point xs(t) of the 

surface S has only two elements, f
 +

(xs) and f
 -
(xs). We have to take the convex 

closure of these two vectors, which will be the smallest subset belonging to all 

0  values. In summary, the differential equation (6) with a (12) form 

discontinuity in the xs(t) points of S surface according to definition (9) can be 

described in the following form: 

)()1()( SSS
dt

d
xfxfx   

 (14) 

To illustrate (14) see Figure 5, where we drew f 
+
(xSP) and f 

-
(xSP) vectors 

belonging to the point P of surface S. We marked the normal vector belonging to 

the point P of the surface with np. The change of the state trajectory in point xSP is 

given by the equivalent vector feq(xSP), which is the convex sum of vectors f 
+
(xSP) 

and f 
-
(xSP). 
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Figure 5 

The state trajectory sliding along the surface S 

Denote by Lfs(x) the directional derivative of the scalar function s(x) concerning 

the vector space f(x): 

)))(grad()(()( xxfx ssL f 
 (15) 

,where (a ● b) denotes the scalar product of vectors a and b. Since s(x) is 

uniformly continuous, the following limits exist at any point of the surface S: 

















GsLsL

GsLsL

Sff

Sff

xxx

xxx

s

s

xx

xx

if)()(lim

if)()(lim
 (16) 

The value of  should be defined such that S
dt

d
x  and feq(xS) are orthogonal to the 

normal vector of the surface S (see Filippov’s 3. Lemma [18]): 

0)))(grad()(()(  SSeqSf ssL xxfx
 (17) 

The equation (17) can be interpreted in the following way: in sliding mode, in the 

xs points of the sliding surface the change of the state trajectory can be described 

by an equivalent feq(xS) vector function that satisfies condition (17). Based on (14) 

and (17), we obtain 

0)()1()(   SfSf
sLsL xx 

 (18) 

 can be expressed from (18): 

)()(

)(

SfSf

Sf

sLsL

sL

xx

x








 (19) 

If 0)(  Sf
sL x  and 0)(  Sf

sL x  then on both sides of the surface S the 

vector space f(x) points towards the surface S (see Figure 6). Therefore, if the state 
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trajectory once reaches the surface S, it can not leave it. The state trajectory slides 

along the surface and therefore this state is called sliding mode. 

 

 

Figure 6 

The f(x) vector space pointing towards the surface S 

Note that the two conditions separately defined on both sides of the surface S. 

 GQsL Sf
),(if,0)( xxx  (20) 

 GQsL Sf
),(if,0)( xxx   

can be substituted by one inequality: 

SQs
dt

d
S  ),(if,0)( 2 xxx

 (21) 

Which can be interpreted as Lyapunov's stability criterion concerning whether the 

system remains on the surface S. 

3 The Solution of the Differential Equation of the 

Introductory Example 

Steps presented in Section II are applied for a circuit seen in Figure 1. As later on 

we can see our experimental setup for UPS (shown in Fig. 7) can be modeled with 

a simple L-C circuit. 

There are two energy storage elements (L and C) in the circuit of the introductory 

example, therefore the behavior of the circuit can be described by two state 

variables. The goal is to remove the voltage error, so it is practical to choose the 

error signal and the first time derivative of it as the state variables. 



































c

cr

e

e

u
dt

d

uU

u
dt

d

u

x

 (22) 
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The state equation of the error signal, assuming that the reference signal Ur is 

constant: 

)(1
0

1
10

22
ABr

e

e

e

e

uU

LC
u

dt

d

u

a
LC

u
dt

d

u

dt

d




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











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





































 (23) 

,where a22 = 0, if we neglect the losses assuming ideal L-C elements, while a22 = -

R/L, if we model the losses of the circuit with serial resistance. 

The design of a sliding mode controller (SMC) consists of three main steps. First, 

the design of the sliding surface the second step is the design of the control law 

which holds the system trajectory on the sliding surface and the third and key step 

is the chattering-free implementation [19]. 

Based on (4), let the scalar function defining the sliding surface be (first step in 

the design of the SMC): 

 















e

e

u
dt

d

u

s 1)(x

 (24) 

Rewriting the matrix equation (23) to the form (12), we obtain (second step in the 

design of the SMC): 










































2 state in is switch  theif,)(

1 state in is switch  theif,)(

)(

2

1

2

1

f

f

uf

f

dt

d

xf

xf

xfx

 (25) 

,where 

eu
dt

d
f 1

 

ree U
LC

u
dt

d
au

LC
f

11
222 

 (26) 

batU
LC

u
1



 

The directional derivative of the scalar function s(x) concerning the vector space 

f(x) on both sides of the surface S is: 

)()
1

()( 2122   uffuu
dt

d
au

LC
u

dt

d
sL ssesesessf

x
 (27) 
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ssesesessf
ffu

dt

d
au

LC
u

dt

d
sL 2122 )

1
()(   x

 

Note that in our case f 
+
(x) and f 

-
(x) can be defined on the surface S, therefore we 

do not need to calculate the limits in (16), the points eses u
dt

d
u ,  belonging to the 

surface S can be directly substituted. At the same time, (21) is met only in the 

following domain: 

 uu
dt

d
au

LC
u

dt

d
eseses )

1
(0 22

 (28) 

It means that, by the given control relay, only on a limited part of the surface S can 

be in sliding mode. By completing the relay control laws with additional 

members, we can reach that the condition of sliding mode is fulfilled on the whole 

S surface [20]. In case of the control relay, based on (19) and (27), we get: 






u

ff ss




 21

 (29) 

Based on (14), (25), (27), and (29) the differential equation describing the system 

in sliding mode will be: 
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

 (30) 
 

The differential equation (30) is basically the same as the equation of the sliding 

line, and thus we can describe the original system as a first order differential 

equation instead of a second order one: 

esess u
dt

d
us  0)(x

 (31) 

This way we proved, that the state belonging to the smooth regular sliding line S 

can be accurately followed by a state trajectory broken in each points consisting of 

infinitely short sections switched by infinitely high frequency. The solution of 

(30) is: 

t

eses eUu 

1

0




 (32) 

,where Ues0 is the ues error signal at the moment when the state trajectory reaches 

the surface S. Based on (32) we can see that   is the characteristic time constant 

of the sliding line. Note that equation (32) does not include any parameter of the 

original system. This means that in the above-described ideal sliding mode the 
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relay control law leads to a robust controller, insensitive to certain parameters and 

disturbances. The above derivation is only concerned with how the system 

behaves on the sliding surface, but we did not deal with the practically very 

important question of how to ensure that the state trajectory always reaches the 

sliding surface and stays on it. 

Of course, in reality such an ideal sliding mode does not exist. From engineering 

point of view the challenge is the realization of a so-called chattering-free 

approximation of it. 

4 Uninterruptible Power Supply 

The measurement setup is an uninterruptable power supply. A simplified diagram 

of the inverter and the filter is shown in Figure 7. This circuit can be modelled as a 

simple L-C circuit seen in Figure 1. 

 

Figure 7 

Simplified diagram of the inverter 

Ideally the sliding mode needs an infinitely high switching frequency. The 

frequency is limited by a hysteresis relay. The minimum interval between two 

switches is determined by the hysteresis. Because of the hysteresis the error signal 

trajectory is chattering around the origin and harmonics will appear in the output 

voltage. As the third step in the design of a sliding mode controller to realize a 

chattering-free implementation, a proper filter is used with respect to the 

hysteresis, thus harmonic distortion remains at an acceptable level. Positive and 

negative half periods can be separated by dead-band (see Figure 8). 
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Figure 8 

Dead-band hysteresis relay 

As a first step the equations of the UPS shown in Figure 7 are rearranged to the 

form described in Section III. The load is connected to the inverter through a 

transformer. The Ls in Fig. 7 is the leakage inductance of the transformer, which 

has a special structure to increase and set the value of Ls. The main field 

inductance Lp cannot be ignored from the point of view of the resonant circuit. 

Because of the main field inductance instead of (2) the filter circuit can be 

described by the following differential equation: 

o
o

psi u
dt

ud
CBLBu 

2

2

 (33) 

,where 

ps

p

LL

L
B


  (34) 

Let us use per unit system: 

t
CBL

t
ps

rel

1
  (35) 

From now on we calculate only in per unit system and do not denote it. The 

differential equation (33) in per unit system: 

ooi uuBu    (36) 

, where 
   

is the operator: d/dt. (36) corresponds to (3). Thus we can use the 

results described in Section III. The difference in this case is that we have more 

switching states and the reference signal is a sine wave. Take the influence of this 

sine wave into consideration. 

If uref is the reference signal, we obtain the following equations: 

)sin(   tUu refref
 (37) 
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orefe uuu   (38) 

orefe uuu   2  (39) 

irefee Buuuu  )1( 2  (40) 

Solution of the differential equation: 

irefe BuutAtAu  sincos 21
 (41) 

Values of constants A1 and A2  can be determined using the initial conditions: 

irefe BuUUA  sin01
 (42) 

 cos02 refe UUA    (43) 

,where ue(t=0)=Ue0 and 
0)0( ee Utu   . Using (41), the error signal trajectory 

can be described as follows: 

2

2

2

1

22 )()( AAuuBuuu refeirefe    (44) 

The curve defined by (44) can be plotted as a (A1
2
+A2

2
)

1/2
 radius circle in the 

phase plane 
ee uu  , the center of which runs along an ellipse given by the 

parameter equation system below: 

irefe ButUu  )sin(   (45) 

)cos(   tUu refe
  (46) 

The ellipse has three possible positions in the phase plane, depending on the value 

of ui (see Figure 9). 

 

Figure 9 

Ellipses describing the movement of the center of the circle 
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4.1 Robustness Analysis 

Let us check the condition of the sliding mode based on (21).  Deriving (24) and 

eliminating the second order term using (40), we obtain: 

])sin()1([)( 2

eirefe uButUus   x  (47) 

(47) corresponds to (5). According to Lyapunov's stability, if s(x)>0 (similar to 

(28)): 

irefee ButUuu   )sin()1( 2  (48) 

If s(x)<0: 

irefee ButUuu   )sin()1( 2  (49) 

Both inequalities define a half plane, and the boundaries are perpendicular to the 

sliding surface changing their position according to a sine wave. The phase plane 

is divided into four sections (see Figure 10). 

 

 

Figure 10 

Phase plane of the error signal 

Introduce the following switching strategy: 










0)( if,

0)( if,

x

x

sU

sU
u

b

b

i
 (50) 

Usually Uref < Ub and ω < 1. Thus the half planes defined by (48) and (49) always 

have an intersection which goes through the origin where (21) is valid on both 

sides of the switching surface. The sliding mode occurs on the common boundary 

of sections II. and IV. 
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4.2 Experimental Verification 

Using the sliding mode control an experimental measurement is carried out for the 

UPS. The parameters of the experimental setup: 

 

Sn= 10 kVA Un= 230 V ω= 314 rad/sec λ= 1/24  

B= 0,9 Ls= 0,35 mH Cp= 3200 µF Lp= 3,2 mH 

Based on (32) and the per unit system (35) the characteristic time constant of the 

sliding line: 

sec42  psCBLT  (51) 

During the measurement the current and the voltage of the load are measured. 

Operational amplifiers are used to provide the value of S(t), which signal of the 

controller is measured with an oscilloscope. Using the notation of Figure 7 the 

measurements with the oscilloscope are shown in Figure 11 and 13. The harmonic 

distortion is less than 1.5%. The error trajectory cannot be measured directly, thus 

they are modeled by computer simulation. Figure 12 shows the steady-state 

trajectory and switching lines of the dead-band hysteresis relay. Switching delays 

can also been seen. 

 

 

Figure 11 

Experimental results for steady-state 

 

Figure 12 

Steady-state error-trajectory 
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Figure 13 and Figure 14 show the system’s response for a 100 % ohmic step 

change in the load. As we can see first the system has to reach the sliding surface 

and then it can follow the switching strategy of the case above. It takes only some 

switching, about 10% of the time period until the system settles. 

 

Figure 13 

Experimental results for step-change 

 

Figure 14 

Step-change error-trajectory 
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Conclusions 

When a VSS is in sliding mode its trajectory lies on the switching line. The 

theoretical sliding mode is an idealization. In practice, when switching delays are 

present the steady state trajectory chatters around the origin. In spite of the 

chattering the harmonic distortion is less than 2%. The response time for step 

change of the load is very short due to the instantaneous nature of the sliding 

mode control. Apart from the short transient process the uninterruptable power 
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supply is insensitive to the load variation. Though sliding mode controller is very 

simple, it provides a good performance. By the application of the definition of 

Filippov to the UPS, the paper presented a practical application of the theory of 

differential equation with discontinuous right hand side proposed by Filippov 
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