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Abstract: Accurate design of heat treatment operations requires the knowledge of the Heat 

Transfer Coefficients (HTC), which quantity can be determined by performing Inverse Heat 

Transfer Calculations. The novel approaches for the estimation of HTC are based on 

heuristic optimisation methods, but the usage of these techniques raises several questions. 

In the case of genetic algorithms, there are not any rules of thumb for selecting the 

appropriate population size, mutation rate, stopping condition, and similar. The most 

efficient way to fine-tune these parameters is to run thousands of experimental tests and 

evaluate the results. However, in the case of inverse heat conduction, this has not been a 

viable option because of the high computational demand of fitness calculation which leads 

to a runtime of dozens of years. This paper presents a solution to this problem using a 

novel data-parallel direct heat conduction problem solver method implemented on multiple 

graphics accelerators. The ~100× speed-up achieved by this parallel algorithm made it 

possible to finish the necessary experimental tests in 15 weeks (instead of 29 years). Data 

gathered during these experiments are directly useful in practice. Based on these, it is 

possible to make recommendations for optimal genetic algorithm configuration 

parameters.  
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1 Introduction 

It is a well-known fundamental experience that material properties are not 

constantly determined by their chemical composition, but they are influenced by 

their microstructure [1]. Heat treatment (heating up the object to a specific 

temperature and cooling it down under strict temperature control) is one of the 

most efficient methods to produce the desired microstructure of the material.  

The proper design of the heat treatment process requires an accurate knowledge of 

the thermal boundary conditions, including the Heat Flux (HF) or the Heat 

Transfer Coefficient (HTC). HTC describes heat exchange between the surface of 
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an object and the surrounding medium. The determination of HTC faces a typical 

Inverse Heat Conduction Problem (IHCP). The IHCP methods are using the 

temperature signals recorded and estimated by simulations at given locations of 

the work-piece in order to predict HTC functions. Several IHCP approaches are 

based on optimization methods, where the goal function has to be minimised is 

given as the deviation of the measured and predicted temperature data [2], [3].  

It is usual to solve this problem with some kinds of heuristic search algorithms, 

like Genetic Algorithms (GAs) [4]–[6] or Particle Swarm Optimisation (PSO) [4], 

[7]–[9]. In the case of GAs, every chromosome encodes one possible HTC 

function. Using the Direct Heat Conduction Problem (DHCP) calculations, it is 

feasible to generate the theoretical thermal history based on each HTC variants; 

and it is also possible to compare this theoretical history to the real measured 

temperature values. Our goal is to find the HTC function generating the cooling 

curve, which is the most similar to the measured one. 

Beyond the generally known challenges of these heuristic methods (stability, 

unpredictable convergence, and others), the applications raise several technical 

issues:  

 It is difficult to choose the appropriate variant for a practical task [10]. 

 Moreover, after selecting the suitable method, there are not any 

unequivocal rules to set the best working parameters (population size, 

mutation probability, and stopping condition) [11], [12]. 

The proposed methodology is based on an evaluation of virtual tests generated by 

a huge variety of different configurations (including population size, mutation 

probability/rate, and stopping condition). Due to the high computational 

requirements of IHCP solvers, parallel processing DHCP is suggested. A novel 

data-parallel DHCP solver has been developed and implemented as a GPU 

application. The recommendations for the appropriate genetic algorithm 

configurations are given by the results of the computational experiments. 

The rest of this paper is structured as follows: Section 2 contains details of the 

problem formulation based on the GA approach, and Section 3 presents the issues 

raised by fitness calculation and a brief presentation about the already mentioned 

GPU based DHCP solver implementation. The final section focuses on the 

methodology followed by the experimental tests and the conclusions. 
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2 Methodology 

2.1 Genetic Algorithms 

GA is one of the most popular biologically inspired methods based on the 

language of natural genetics and biological evolution. As a heuristic search 

method, it uses a set of individuals (chromosomes) referred to as a population. 

Every chromosome represents a potential solution for the raised problem. 

Chromosomes encode the corresponding potential solution in their genes as 

numbers. After a random initialization, these genes change according to a 

previously fixed rule set when trying to find the optimal solution for the original 

problem. 

A full GA search needs several iterations, where every iteration consists of the 

same main steps. Randomly selected pairs (given by the selection operator) of 

individuals are mated using a process of crossover (using the crossover operator). 

As a result of these steps, new individuals inherit genes from either parent. To 

help the algorithm map as large a part of the parameter space as possible, these 

individuals undergo a random mutation, in which some of their genes change by a 

random amount (specified by the mutation operator). 

An essential part of the method is the fitness calculation. This assigns a 

comparable value to every chromosome based on their genes. This fitness value 

plays a major role in the selection phase (individuals with better fitness value 

usually have a higher probability of being selected). It is also common to use these 

fitness values to set up some form of stopping condition. For example, the GA 

stops when the increase of the best fitness value slows down. 

2.2 Problem Formulation 

2.2.1 Chromosome Representation 

Each chromosome represents a possible solution for the problem. There are 

several methods for chromosome representation (how the information is encoded 

into the genes) based on the problem itself (input data characteristics – type, 

amount, structure, and similar.) and the chosen implementation. 

In the case of 2D IHCP, the feasible solutions are the potential HTC functions. 

These are two-dimensional functions, where the actual value depends on the local 

coordinate and the time (Eq. 1). 

 
endtz ttLzHTC  0,0?,

 (1) 
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Where 

 z – local coordinate; 

 L – length of the work object; 

 t – time; 

 tend – time period of the experiment. 

Although it is a continuous function, the discrete DHCP process uses some 

simplifications: 

 Local coordinate discretization: if the DHCP process uses an n×m sized 

matrix to simulate the heat movement inside the work-piece (see Section 

3.1), only the positions 0, L/m, 2L/m, …, L are used as local coordinates. 

 Time discretization: the DHCP process starts the simulation at time point 

0 and executes an elementary heat-transfer step for every dt second. 

Therefore, it will need the HTC values at time coordinates 0, dt, 2dt, …, 

tend. 

Theoretically, it is possible to encode all of these HTC values as separate floating 

point values in the genes, but this leads to an unmanageably large number of 

parameters. To significantly decrease the size of the parameter space, it is enough 

to store fewer parameters as control points and use bilinear interpolation to 

estimate the necessary values: 

 For local coordinate discretization, we store the HTC values for only Z 

number of local coordinates (where  Z < m). These positions are fixed in 

advance, conveniently according to the positions of thermocouples built 

inside the real-world object. 

 A dynamic resolution model is used to reduce the number of necessary 

time coordinates. This means that we use K control points (according to 

different time moments) in each location; and as a novel idea, the number 

of K varies during the search. In the first phase, K equals to 3 to find a 

rough estimation. When the genetic algorithm cannot fine-tune the best 

solution with this setting, it increases the value of K to 5 and continues 

the search. One search contains 4 phases, using K1=3, K2=5, K3=9, K4=17 

values. Consequently, every chromosome encodes Z×K control points; 

where every control point consists of two floats: time and HTC values 

(location values are fixed in advance). 

2.2.2 Initialization 

The first step of any heuristic algorithm is to initialize the elements 

(chromosomes, particles). As an essential concept, it is assumed that there is no 

prior information about the characteristics of the searched HTC function. 
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Therefore, the only possible way is to generate random numbers for the initial 

gene values based on the following rules: 

 genes containing HTC values should have a random value between 0 and 

7000 (W/m2/K); 

 genes containing time values should have a random value between 0 and 

180 (sec). 

To find the ideal number of chromosomes in a population is one of our goals. As a 

free parameter, we will reference this number as |P|. Section 4.2.1 presents the 

details of the tests related to this value. 

2.2.3 Elitism, Selection and Crossover Operators 

Because of the large search space, we would like to guarantee that the best 

individuals will survive. To ensure this, the elitism technique [13] is used to move 

the top 10% of the chromosomes (having the best fitness values) to the next 

generation without crossover or mutation. As a side-effect, the fitness values for 

the best chromosomes become monotonically increasing. 

In the next step, the selection operator is responsible for randomly choosing 

individuals from the population as parents. Individuals with better fitness values 

will be selected with a greater probability than others (chromosomes involved in 

elitism are still able to be selected as parents). Our implementation uses fitness 

proportionate selection (also known as the roulette wheel selection), where the 

fitness level of chromosomes is used to associate a probability of selection (Eq. 2). 
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Where 

 pi = probability to select the i-th chromosome for crossover; 

 fi = fitness value for the i-th chromosome; 

 fbest = the best fitness value of the population; 

 │P│= number of chromosomes. 

When preparing the chromosomes to the next generation, it is necessary to select 

two different ones based on the given probabilities and to use the crossover 

operation on these to create one offspring for the next generation. The uniform 

crossover operation [14] is used on the selected parents, which means that each 

gene (in this particular case, a float value) of the offspring is randomly picked 

from either of the two parent genes from the same position (the probability of 

inheriting from either of the parents is 50-50%). This means that there is no 

linkage between genes, the inheritance of these is independent from the others. 
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We must repeat the presented selection and crossover steps until the next 

generation of |P| instances has been created. 

2.2.4 Mutation Operator 

To ensure exploration, it is necessary to use some kinds of mutation operators. 

Accordingly, every newly created (by selection and cross-over) chromosome of 

the next generation goes through an additional random process which can modify 

its genes. The proposed algorithm uses gene level mutations. 

This means that each gene of the new chromosome can be changed with a certain 

probability. It is hard to determine the appropriate probability rates and extent of 

the changes. Finding these is one the primary goals of this research. 

In all experiments, we use three levels of mutations: 

 Large mutation: 

o probability: ML (0 ≤ ML ≤ 1), 

o rate of change: random value between -RL … +RL. 

 Medium mutation: 

o probability: MM (0 ≤ MM ≤ 1), 

o rate of change: random value between -RM … +RM. 

 Small mutation:  

o probability: MS (0 ≤ MS ≤ 1), 

o rate of change: random value between -RS … +RS. 

Section 4.2.2 presents the details of the tests relating to these values. 

2.2.5 Stopping Criteria 

The stopping criteria give the answer to the question raised at the end of every 

iteration - whether it is worth continuing the search or not. Obviously, if one of the 

chromosomes reaches the theoretically best fitness value, then it contains the 

desired solution, and it is necessary to stop the search. However, due to the nature 

of heuristic algorithms, there is no guarantee that this is going to happen. 

Therefore, this criterion is insufficient. 

Another approach is to wait until the GA cannot produce any progress with 

respect to the best fitness of the population. One of the characteristics of this 

technology is that in most cases, the best fitness value of the population converges 

to the desired fitness value more and more slowly. Because of the unique dynamic 

resolution model, it also requires investigation than when it is worth to switch to 

the next phase.  
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Setting up these limitations is hard, so, the implementation uses two free 

parameters to handle this: the search will start the next phase when the achieved 

improvement of the best fitness value during the last STOPiter number of iterations 

is less than  STOPrate. 

Section 4.2.3 presents the details of the tests relating to these values. 

3 GPU-based Fitness Calculation 

3.1 Fitness Definition 

The result of the fitness function depends on the difference between the generated 

thermal history (using the DHCP solver and the HTC value encoded into the 

chromosome) and the measured temperature signals. This section presents the 

details of this DHCP solver. 

A two-dimensional axis-symmetrical model is considered to estimate the 

temperature distribution in a cylindrical work-piece. The mathematical 

formulation of the nonlinear transient heat conduction problem can be described 

as follows (Eq. 3): 
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With the following initial and boundary conditions (Eq. 4-5): 
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Where 

 r, z – local coordinates; 

 t – time; 

 R – radius of the workpiece; 

 ρ – density of the object; 

 T0 – initial temperature of the workpiece; 

 Tq – temperature of the cooling medium; 

 T(r,z,t) – temperature of the workpiece at given location/time; 
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 k(T) – thermal conductivity (varying with temperature); 

 Cp(T) – heat capacity (varying with temperature); 

 HTC(z,t) – heat conduction (varying with local coordinate and time). 

The solution of (Eq. 3) is obtained by a weighted Schmidt explicit finite difference 

method. 

The fitness value of the individual is determined as the deviation between the 

measured and generated thermal history. Based on these values and the results of 

the explicit finite difference method, the fitness value for a given HTC is (Eq. 6): 
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Where 

 N –total number of measured temperatures (the number of points 

multiplied by the number of measurements at each point); 

 Tk
m – measured values; 

 Tk
c – calculated values. 

Our goal is to find the best HTC with minimal fitness value. 

3.2 GPU-based Implementation 

By using the finite difference method, it is possible to calculate the heat transfer 

between two points for a given small time step. To be able to ensure accuracy, a 

sufficiently small-time interval is necessary (dt ≤ 0.01 sec). According to real-

world measurements, it is usually required to continue the simulation of the 

cooling process for an extended period (tend ≥ 120 sec). For this purpose, the 

algorithm has to run the calculations mentioned above in a loop to specify the heat 

movement between the finite items for each time steps. 

As visible, one DHCP calculation needs a lot of iterations (iteration count ≥ 120 / 

0.01 = 12000). Using a traditional CPU-based sequential algorithm, it takes about 

0.24 sec to calculate all the necessary Tk
c values and to specify the fitness value 

for a given chromosome. 

According to the GA operating rules, we have to calculate the fitness value for 

every chromosome in every iteration. To achieve our goals, we have to launch 

hundreds of GA searches and to observe the effects of the different parameter 

configurations. In hindsight, we know that in practice this needs about 3.76 * 109 

fitness calculations. For a single core CPU algorithm, the estimated run-time for 

the whole examination is about 28.7 years. This is obviously unacceptable. 
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To speed-up this process, a graphics accelerator based implementation has been 

designed. Nowadays, Graphics Processing Units (GPUs) are highly paralleled 

devices containing thousands of processing elements and applicable for general 

purpose numerical computing. This leads to enormous processing power, but it is 

required to adapt the already existing sequential algorithms to massively parallel 

ones to utilise these resources fully. 

It is easy to see that the proposed method is well-parallelizable and applicable for 

adaptation to a data-parallel fashion. The DHCP algorithm solves the same 

differential equation for all finite elements of the grid (with different input data). 

This data-parallel fashion is ideal for GPU implementation: one GPU thread is 

assigned to one element of the finite grid, and it is responsible for computing the 

temperature changes for this referenced location. In the case of a 10×34 sized grid 

(n = 10, m = 34 because of optimisation reasons), this needs 340 threads running 

the same function to calculate the heat movement for a given time interval. 

3.3 Higher Level Parallelization 

Running 340 threads on a modern GPU is not enough to fully utilise its processing 

power. In the case of NVidia GTX Titan Black cards, the number of cores is 2880. 

Thereby, executing 340 parallel threads leads only to very low (used cores / all 

cores = 340 / 2880 = 11.8%) theoretical occupancy (the practical utilisation is 

even worse). 

It is worth noting that the proposed DHCP algorithm is a part of the fitness 

calculation process. During the GA, it is necessary to calculate the fitness for all 

chromosomes at the end of all iterations. In the case of 100 or more individuals, 

the number of parallel threads becomes 340x1000 = 34000 or more. This is 

enough parallelism to design and implement an efficient GPU-based 

implementation. We used the CUDA framework [15] and NVidia graphics cards 

for this purpose. 

As a result of further optimisations, a novel data-parallel algorithm had been 

developed [16] with multi-GPU support [17] to speed-up the fitness calculations, 

and it is also possible to use all GPU devices and CPU cores together. By using 

two GPUs and four CPU cores, the run-time is about 100× less than the run-time 

of the original sequential method. 

This implementation makes it possible to run thousands of GA searches within a 

reasonable period (14.5 weeks instead of 28.7 years) to evaluate all configurations 

to be examined.  
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4 Experimental Results 

This paper follows the following terminology: 

 Heat transfer simulation – using the DHCP solver to generate the 2D 

temperature history (Tk
c) based on the given parameters (HTC, material, 

and cooling medium attributes). 

 Fitness calculation – calculating the fitness value (F) for a chromosome 

encoding an HTC. This takes the following steps: 1) running a heat 

transfer simulation using the given HTC values; 2) comparing the 

resulting thermal history to the reference curve. 

 Iteration – one iteration of the GA. This takes the following steps: 1) 

selection; 2) crossover; 3) mutation; 4) fitness calculation for each 

chromosome. 

 Search – the execution of a full GA process using a given configuration 

(population size, mutation rate, stopping condition). Main steps: 1) create 

initial population; 2) execute iterations; 3) stop the execution if one of the 

stopping conditions becomes true. 

 Session – run several searches using the same configuration and evaluate 

the results (best-achieved fitness, an average of best fitnesses of all 

searches, average iteration count). 

 Experiment – run several sessions using different configurations. 1st 

experiment: population size test; 2nd experiment: mutation probability 

test; 3rd experiment: stopping condition test. 

4.1 Methodology 

The estimation of the optimal population size, mutation probability and stopping 

condition for the proposed GA solving the IHCP is outlined. Due to the random 

behaviour of the genetic algorithms, it is difficult to define the most efficient 

configuration (the consecutive searches launched with the same parameters would 

give different results). 

Several studies focusing on the evaluation of heuristic search algorithms suggest 

empirical validation of the parameters [10], [18]–[20]. According to the random 

behaviour of heuristics, it is usually not enough to run one search per 

configuration. It is necessary to execute as many examinations as possible and 

gather the following data: 

 Best fitness value – the best-achieved fitness of the entire population; 
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 Number of iterations – as a secondary objective, we would like to find a 

parameter set, which is not just accurate but also fast; therefore, the 

number of iterations taken by the GA is important. 

 Number of fitness function calculations – the number of iterations do not 

determine the required run-time. It is mostly based on the number of 

fitness function calculations (FFC), which is the multiplication of 

iteration count and population size. 

Unlike many papers [20], we are not dealing with direct run-time. It is an 

architecture specific measure, and it is very hard to compare the results of 

different systems. We prefer the analysis of the number of FFC requirements 

because this is by far the most resource intensive part of the algorithm. The cost of 

one fitness function evaluation (running the DHCP solver) is independent of the 

actual HTC values. Therefore, the comparison of the number of these function 

calls is a good substitution for a platform independent run-time analysis. 

The FFC count is also important to determine the end of a session testing a given 

configuration. It is necessary to run many simulations using the same 

configuration, but it is essential to set a limit for the number of these. It is 

common to set up a run-time limit, but as mentioned before it is unstable and 

platform specific. It is also unfair to limit the number of iterations because GAs 

with small population size needs fewer computations per iterations. 

As a solution, the FFC count becomes the limiting factor. Every session testing a 

given configuration has a limit for FFC number (actually 50,000,000 calculations 

per session). The testing framework starts new GA searches one after the other 

monitoring the number of FFC count. When this accumulated number exceeds the 

predetermined limit, it starts the next session using the next configuration. 

In the literature, there is no consensus on how to evaluate the efficiency of 

heuristics. Some papers [21] deal only the best fitness values found by a given 

configuration. Obviously, smaller fitness values mean better results, but according 

to the random behaviour of GAs, the comparison is based only on the best results 

found in all configurations is unsatisfactory. It does not give a clear estimation of 

the expected future performance. We followed the methodology of several papers 

[12], [22] comparing the average fitness values found by all GA searches of a 

session. Where required, we performed statistical tests to analyse the raw results. 

4.2 Experimental Results 

4.2.1 Population Size 

We ran several sessions using the following parameters: 

 Population size: 100, 200, 300, …, 2000 
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 Mutation rate: ML=0.l; RL=0.001;MM=0.01;RM=0.01;MS=0.001;RS=0.1 

 Stopping condition: STOPiter = 30; STOPrate = 0.01 

Table 1 and Fig. 1 show the experimental results. 

Table 1 

Best and average fitness values and the average iteration count of GAs with given population size. FFC 

count is equal to population × iteration. 

Population Best fitness Avg fitness Avg iteration Avg FFC count 

100 1936.2 4162.3 190 19000 

200 699.4 5339.3 510 101959 

300 480.5 4289.6 733 219982 

400 259.3 3659.0 937 374824 

500 307.8 3328.3 976 487932 

600 239.1 520.2 1792 1075340 

700 296.5 434.2 1927 1349176 

800 249.8 374.3 1891 1513153 

900 255.9 356.2 1798 1618403 

1000 223.7 311.3 1859 1859185 

1100 229.4 311.8 1846 2030116 

1200 221.8 285.7 1807 2168800 

1300 236.2 301.5 1745 2268795 

1400 226.8 288.5 1689 2365236 

1500 207.0 264.4 1708 2562000 

1600 216.7 262.7 1663 2660716 

1700 164.5 254.7 1655 2813122 

1800 221.1 252.9 1621 2916900 

1900 203.9 249.4 1680 3191169 

2000 225.1 262.0 1578 3156750 
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Figure 1 

The solid red line shows the average fitness values, and the dashed blue one shows the best fitness 

values of GAs with the given population size. The yellow area shows the average FFC count. 

In the case of small population sizes, the results are not satisfactory. There are not 

enough chromosomes to ensure convergence to a valid solution. These simulations 

are usually stopped in an early phase (sometimes without any progress). As can be 

seen in Fig. 1, where there is a significant improvement near population size 600. 

From 700 to 1500 the results become even better, but this trend slows down. Both 

the best fitness and the average fitness values become similar for larger population 

sizes. 

The average number of necessary iterations is decreasing, but because of the 

higher population size, the number of FFCs (which requires the most computation 

effort) is increasing. Our first priority is accuracy, but efficiency is also important. 

Therefore, we should find the point with the smallest population size (and 

computation effort) after which there is no significant accuracy improvement. 

Because of the spread of the results, the naïve comparison of the best fitness and 

average fitness values are not sufficient. One-way ANOVA tests were run using 

α=0.05 significance level on the results of all searches [22], [23]. The null 

hypotheses was that the expected value of the average fitness is the same for all 

population sizes between P and 2000. In the case of small P values (P ≤ 1300), it 

is obviously not true. When P=1400, the result of the ANOVA is: F=2.56 while 

Fcritial=2.17; therefore, we have to reject the null hypotheses (F > Fcritial) weakly. 

However, in the case of P=1500: F=0.55 and Fcritial=2.30, the test shows (F < 

Fcritial) that it is very likely that the expected value of the average fitness is the 
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same for both groups. In the case of larger P values, the results are similar. Thus, 

we can state that it is not worthwhile using a larger population size than 1500 

because these sessions do not give a significant increase in accuracy, but have 

higher computational demand. 

In the literature, it is also common to use two-tailed t-tests to compare the results 

of different parameter sets [21], [24].  By using these tests, the final verdict is the 

same. In comparing the results of the simulation with population size 1400 to the 

simulation using 2000 chromosomes, the t-test indicated some differences 

between the expected value of average fitness (tstat = 2.085 and tcritical=2.028, tstat > 

tcritical - therefore, we have to reject the null hypothesis). Nonetheless, in the case 

of P=1500 (tstat = 0.184 and tcritical=2.032, tstat < tcritical) and larger P values, the t-

tests show that the expected average fitness is the same as for population size 

2000. 

Based on these, our recommendation for population size is│P│=1500. 

4.2.2 Mutation Probabilities 

The purpose of the second experiment was to find the optimal mutation 

probabilities. Several sessions were run using the following parameters: 

 Population size: 1500 (based on the result of the 1st experiment); 

 Mutation rates: ML=p/1000; RL=0.01; MM=p/2000; RM=0.05; 

MS=p/10000; RS=0.25; where p = 0, 1, 2, … 9; 

 Stopping condition: STOPiter = 30; STOPrate = 0.01. 

In the case of GAs, it is always required to find the proper balance between 

exploration and exploitation ability of the search algorithm. Mutation is mostly 

responsible for the exploration part. 

Table 2 

Best and average fitness values and the average iteration count of GAs with given mutation 

probability. FFC count is equal to population × iteration. 

p value Best fitness Avg fitness Avg Iteration Avg FFC count 

0 534.0 772.7 292 438491 

1 134.7 171.3 1918 2877333 

2 119.0 152.9 2114 3170719 

3 125.6 151.6 1988 2981559 

4 122.9 149.6 1991 2985882 

5 124.7 152.5 1862 2792417 

6 127.7 155.0 1851 2777000 

7 117.5 158.3 1758 2637632 

8 137.9 158.6 1710 2565225 

9 129.1 155.3 1686 2528775 
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The experimental results (Table 2) show the expected behaviour based on the 

literature. In the case of too small mutation rates, the exploitation failed. 

Chromosomes cannot get away from a local optimum. In the opposite case, too 

large mutation rates caused an “over randomised” search. These searches were 

more like a random search than a well-balanced GA. Both extremes led to poor 

performance. 

Due to its nature, the analysis of the optimal mutation rate is simple compared to 

the population size analysis: p=4 gives the best average fitness values, and both 

lower and higher mutation rates give worse results. 

According to this, the recommended mutation rate is ML=0.004; RL=0.01; 

MM=0.002; RM=0.05; MS=0.0004; RS=0.25. 

4.2.3 Stopping Criteria 

The primary aim was to find the parameter set which gives the highest accuracy 

(lowest fitness value). As an effect of the used elitism technique, the fitness value 

is monotonically decreasing during the search. Therefore, it is evident that if only 

accuracy is taken into account, it is worth running the algorithm as long as 

possible. 

 

Figure 2 

Best fitness values by iterations for a given GA search. Vertical lines show the phase switching points. 

It is visible that all phases have the same characteristic. 
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However, a novel technique dynamically changing the number of control points is 

also used. Fig. 2 shows the fitness values by iteration number for a given GA 

execution. The common characteristic of these phases is well visible: every phase 

starts with a fast decreasing period and some iterations later this slows down. This 

raises an additional question. At which point is it worth stepping over to the next 

phase (and using more control points)?  

If this happens too late, the full GA convergence becomes slow. Early phases use 

only a few control points, which has a significant limitation in describing the HTC 

function. When the GA reaches this limit, the decrease of the fitness value 

becomes almost negligible. It is not worth leaving the algorithm to fine-tune these 

results because it would be more efficient to change to the next phase which has 

fewer limitations. 

It is also worth avoiding the opposite situation and switching to the next phases 

too early. First, notice that this dynamic resolution model is an essential part of the 

algorithm. Without this (STOPiter=0 in Table 3) the GA cannot start to converge 

(in the case of 340 starting parameters, the search space is too large). Too early 

phase switching leads to similar problems: the algorithm will not be able to 

converge (STOPiter=1 in Table 3), or it converges, but starts the last phase with a 

relatively poor fitness value, and it takes many iterations to improve this. 

Table 3 

Fitness values after the given number of iterations using different STOPiter parameters. The first test 

(STOPiter=0) does not use the dynamic resolution method. 

STOPiter 10000 20000 30000 40000 50000 60000 

0 1855.68 1619.75 1444.06 1318.32 1217.46 1122.83 

1 4375.95 4002.08 3798.09 3616.72 3475.45 3276.50 

10 67.25 61.74 59.76 58.66 57.71 57.09 

50 64.72 59.31 57.38 56.29 55.66 55.25 

100 62.10 57.30 55.44 54.39 53.76 53.38 

200 108.40 53.12 51.33 50.40 49.84 49.31 

300 213.28 52.95 50.95 50.00 49.18 48.65 

500 213.71 86.29 51.69 49.12 48.19 47.60 

600 212.72 100.53 53.37 48.38 47.28 46.61 

700 222.54 122.04 63.93 48.87 47.86 47.23 

900 221.47 173.51 83.78 53.30 48.61 47.40 

1000 228.76 174.47 85.74 52.03 48.83 47.77 

Table 3 shows the experimental results. The GA had to finish all phases (except 

the last one) when the improvement of the best fitness value was less than 1% 

(STOPrate=0.01) in the last STOPiter iterations. There was no similar limitation for 

the final phase, and the GA was left running for 60000 iterations. 
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Figure 3 

Best achieved fitness values by STOPiter parameter values after given iteration numbers. Blue triangles 

show the final results (after 60000 iterations), black rectangles show a middle-state after 40000 

iterations, red circles show the state between them (50000 iterations). 

As is visible from the table and Fig. 3, the optimal value was 600. Lower 

parameters give poor final fitness. A slight weakening is also visible in the case of 

higher numbers. It is not significant, but it is worthwhile seeing that without this 

increment (and considering the fitness values identical for these parameters), we 

should recommend the same because of the faster convergence. The secondary 

objective is to find the fastest parameters, and it is visible that GA with 

STOPiter=600 finds the best fitness values earlier. 

Based on the results, the recommended stopping criteria is STOPiter=600. 

Conclusions 

Using GA to solve the IHCP is already a known procedure. Nevertheless, the best 

configuration parameters were unknown to use this method efficiently, and the 

high computation demand makes it impossible to determine these using 

experimental test. 

The determination of GA’s configuration parameters providing the highest 

efficiency to solve a 2D axis-symmetrical IHCP problem is outlined. A 

computational framework was developed by which thousands of GA searches 

have been analysed and the performance of several configurations (population 

size, mutation probability, stopping condition) has been evaluated.  

As a final result, the following recommendations are made: 

 Population size: │P│=1500 
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 Mutation rate: ML=0.004; RL=0.01; MM=0.002; RM=0.05; MS=0.0004; 

RS=0.25 

 Stopping condition: STOPiter=600 

Using these parameters, stable and efficient GA searches can be expected without 

wasting resources for unnecessary computations. 

The most advanced part of the framework is the hybrid (CPU and GPU) parallel 

DHCP solver module. One of the design concerns was the ability to use this 

module with other search methods, like PSO, or Fireworks. As a further plan, a 

request to extend the research with the investigation of these heuristics is made. 

It is also possible to improve the efficiency of the already existing DHCP solver. 

Using more than two graphics cards can linearly improve the computing 

performance, and the new NVLINKTM technology developed by NVIDIA 

provides improved GPU-to-GPU link bandwidth and tight integration with IBM 

Power CPU makes it possible to decrease the memory transfer deficits 

significantly. 
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