
Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 133 –

Configuring Genetic Algorithm to Solve the

Inverse Heat Conduction Problem

Sándor Szénási, Imre Felde

Óbuda University, Bécsi út 96/b, H-1034 Budapest, Hungary

E-mail: szenasi.sandor@nik.uni-obuda.hu, felde.imre@nik.uni-obuda.hu

Abstract: Accurate design of heat treatment operations requires the knowledge of the Heat

Transfer Coefficients (HTC), which quantity can be determined by performing Inverse Heat

Transfer Calculations. The novel approaches for the estimation of HTC are based on

heuristic optimisation methods, but the usage of these techniques raises several questions.

In the case of genetic algorithms, there are not any rules of thumb for selecting the

appropriate population size, mutation rate, stopping condition, and similar. The most

efficient way to fine-tune these parameters is to run thousands of experimental tests and

evaluate the results. However, in the case of inverse heat conduction, this has not been a

viable option because of the high computational demand of fitness calculation which leads

to a runtime of dozens of years. This paper presents a solution to this problem using a

novel data-parallel direct heat conduction problem solver method implemented on multiple

graphics accelerators. The ~100× speed-up achieved by this parallel algorithm made it

possible to finish the necessary experimental tests in 15 weeks (instead of 29 years). Data

gathered during these experiments are directly useful in practice. Based on these, it is

possible to make recommendations for optimal genetic algorithm configuration

parameters.

Keywords: inverse heat conduction problem; genetic algorithm; parameter optimisation;

population size; mutation rate; stopping condition; graphics accelerators; CUDA

1 Introduction

It is a well-known fundamental experience that material properties are not

constantly determined by their chemical composition, but they are influenced by

their microstructure [1]. Heat treatment (heating up the object to a specific

temperature and cooling it down under strict temperature control) is one of the

most efficient methods to produce the desired microstructure of the material.

The proper design of the heat treatment process requires an accurate knowledge of

the thermal boundary conditions, including the Heat Flux (HF) or the Heat

Transfer Coefficient (HTC). HTC describes heat exchange between the surface of

S. Szénási et al. Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem

 – 134 –

an object and the surrounding medium. The determination of HTC faces a typical

Inverse Heat Conduction Problem (IHCP). The IHCP methods are using the

temperature signals recorded and estimated by simulations at given locations of

the work-piece in order to predict HTC functions. Several IHCP approaches are

based on optimization methods, where the goal function has to be minimised is

given as the deviation of the measured and predicted temperature data [2], [3].

It is usual to solve this problem with some kinds of heuristic search algorithms,

like Genetic Algorithms (GAs) [4]–[6] or Particle Swarm Optimisation (PSO) [4],

[7]–[9]. In the case of GAs, every chromosome encodes one possible HTC

function. Using the Direct Heat Conduction Problem (DHCP) calculations, it is

feasible to generate the theoretical thermal history based on each HTC variants;

and it is also possible to compare this theoretical history to the real measured

temperature values. Our goal is to find the HTC function generating the cooling

curve, which is the most similar to the measured one.

Beyond the generally known challenges of these heuristic methods (stability,

unpredictable convergence, and others), the applications raise several technical

issues:

 It is difficult to choose the appropriate variant for a practical task [10].

 Moreover, after selecting the suitable method, there are not any

unequivocal rules to set the best working parameters (population size,

mutation probability, and stopping condition) [11], [12].

The proposed methodology is based on an evaluation of virtual tests generated by

a huge variety of different configurations (including population size, mutation

probability/rate, and stopping condition). Due to the high computational

requirements of IHCP solvers, parallel processing DHCP is suggested. A novel

data-parallel DHCP solver has been developed and implemented as a GPU

application. The recommendations for the appropriate genetic algorithm

configurations are given by the results of the computational experiments.

The rest of this paper is structured as follows: Section 2 contains details of the

problem formulation based on the GA approach, and Section 3 presents the issues

raised by fitness calculation and a brief presentation about the already mentioned

GPU based DHCP solver implementation. The final section focuses on the

methodology followed by the experimental tests and the conclusions.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 135 –

2 Methodology

2.1 Genetic Algorithms

GA is one of the most popular biologically inspired methods based on the

language of natural genetics and biological evolution. As a heuristic search

method, it uses a set of individuals (chromosomes) referred to as a population.

Every chromosome represents a potential solution for the raised problem.

Chromosomes encode the corresponding potential solution in their genes as

numbers. After a random initialization, these genes change according to a

previously fixed rule set when trying to find the optimal solution for the original

problem.

A full GA search needs several iterations, where every iteration consists of the

same main steps. Randomly selected pairs (given by the selection operator) of

individuals are mated using a process of crossover (using the crossover operator).

As a result of these steps, new individuals inherit genes from either parent. To

help the algorithm map as large a part of the parameter space as possible, these

individuals undergo a random mutation, in which some of their genes change by a

random amount (specified by the mutation operator).

An essential part of the method is the fitness calculation. This assigns a

comparable value to every chromosome based on their genes. This fitness value

plays a major role in the selection phase (individuals with better fitness value

usually have a higher probability of being selected). It is also common to use these

fitness values to set up some form of stopping condition. For example, the GA

stops when the increase of the best fitness value slows down.

2.2 Problem Formulation

2.2.1 Chromosome Representation

Each chromosome represents a possible solution for the problem. There are

several methods for chromosome representation (how the information is encoded

into the genes) based on the problem itself (input data characteristics – type,

amount, structure, and similar.) and the chosen implementation.

In the case of 2D IHCP, the feasible solutions are the potential HTC functions.

These are two-dimensional functions, where the actual value depends on the local

coordinate and the time (Eq. 1).

endtz ttLzHTC 0,0?,

 (1)

S. Szénási et al. Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem

 – 136 –

Where

 z – local coordinate;

 L – length of the work object;

 t – time;

 tend – time period of the experiment.

Although it is a continuous function, the discrete DHCP process uses some

simplifications:

 Local coordinate discretization: if the DHCP process uses an n×m sized

matrix to simulate the heat movement inside the work-piece (see Section

3.1), only the positions 0, L/m, 2L/m, …, L are used as local coordinates.

 Time discretization: the DHCP process starts the simulation at time point

0 and executes an elementary heat-transfer step for every dt second.

Therefore, it will need the HTC values at time coordinates 0, dt, 2dt, …,

tend.

Theoretically, it is possible to encode all of these HTC values as separate floating

point values in the genes, but this leads to an unmanageably large number of

parameters. To significantly decrease the size of the parameter space, it is enough

to store fewer parameters as control points and use bilinear interpolation to

estimate the necessary values:

 For local coordinate discretization, we store the HTC values for only Z

number of local coordinates (where Z < m). These positions are fixed in

advance, conveniently according to the positions of thermocouples built

inside the real-world object.

 A dynamic resolution model is used to reduce the number of necessary

time coordinates. This means that we use K control points (according to

different time moments) in each location; and as a novel idea, the number

of K varies during the search. In the first phase, K equals to 3 to find a

rough estimation. When the genetic algorithm cannot fine-tune the best

solution with this setting, it increases the value of K to 5 and continues

the search. One search contains 4 phases, using K1=3, K2=5, K3=9, K4=17

values. Consequently, every chromosome encodes Z×K control points;

where every control point consists of two floats: time and HTC values

(location values are fixed in advance).

2.2.2 Initialization

The first step of any heuristic algorithm is to initialize the elements

(chromosomes, particles). As an essential concept, it is assumed that there is no

prior information about the characteristics of the searched HTC function.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 137 –

Therefore, the only possible way is to generate random numbers for the initial

gene values based on the following rules:

 genes containing HTC values should have a random value between 0 and

7000 (W/m2/K);

 genes containing time values should have a random value between 0 and

180 (sec).

To find the ideal number of chromosomes in a population is one of our goals. As a

free parameter, we will reference this number as |P|. Section 4.2.1 presents the

details of the tests related to this value.

2.2.3 Elitism, Selection and Crossover Operators

Because of the large search space, we would like to guarantee that the best

individuals will survive. To ensure this, the elitism technique [13] is used to move

the top 10% of the chromosomes (having the best fitness values) to the next

generation without crossover or mutation. As a side-effect, the fitness values for

the best chromosomes become monotonically increasing.

In the next step, the selection operator is responsible for randomly choosing

individuals from the population as parents. Individuals with better fitness values

will be selected with a greater probability than others (chromosomes involved in

elitism are still able to be selected as parents). Our implementation uses fitness

proportionate selection (also known as the roulette wheel selection), where the

fitness level of chromosomes is used to associate a probability of selection (Eq. 2).

P

j

bestj

besti

i

ff

ff
p

1

 (2)

Where

 pi = probability to select the i-th chromosome for crossover;

 fi = fitness value for the i-th chromosome;

 fbest = the best fitness value of the population;

 │P│= number of chromosomes.

When preparing the chromosomes to the next generation, it is necessary to select

two different ones based on the given probabilities and to use the crossover

operation on these to create one offspring for the next generation. The uniform

crossover operation [14] is used on the selected parents, which means that each

gene (in this particular case, a float value) of the offspring is randomly picked

from either of the two parent genes from the same position (the probability of

inheriting from either of the parents is 50-50%). This means that there is no

linkage between genes, the inheritance of these is independent from the others.

S. Szénási et al. Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem

 – 138 –

We must repeat the presented selection and crossover steps until the next

generation of |P| instances has been created.

2.2.4 Mutation Operator

To ensure exploration, it is necessary to use some kinds of mutation operators.

Accordingly, every newly created (by selection and cross-over) chromosome of

the next generation goes through an additional random process which can modify

its genes. The proposed algorithm uses gene level mutations.

This means that each gene of the new chromosome can be changed with a certain

probability. It is hard to determine the appropriate probability rates and extent of

the changes. Finding these is one the primary goals of this research.

In all experiments, we use three levels of mutations:

 Large mutation:

o probability: ML (0 ≤ ML ≤ 1),

o rate of change: random value between -RL … +RL.

 Medium mutation:

o probability: MM (0 ≤ MM ≤ 1),

o rate of change: random value between -RM … +RM.

 Small mutation:

o probability: MS (0 ≤ MS ≤ 1),

o rate of change: random value between -RS … +RS.

Section 4.2.2 presents the details of the tests relating to these values.

2.2.5 Stopping Criteria

The stopping criteria give the answer to the question raised at the end of every

iteration - whether it is worth continuing the search or not. Obviously, if one of the

chromosomes reaches the theoretically best fitness value, then it contains the

desired solution, and it is necessary to stop the search. However, due to the nature

of heuristic algorithms, there is no guarantee that this is going to happen.

Therefore, this criterion is insufficient.

Another approach is to wait until the GA cannot produce any progress with

respect to the best fitness of the population. One of the characteristics of this

technology is that in most cases, the best fitness value of the population converges

to the desired fitness value more and more slowly. Because of the unique dynamic

resolution model, it also requires investigation than when it is worth to switch to

the next phase.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 139 –

Setting up these limitations is hard, so, the implementation uses two free

parameters to handle this: the search will start the next phase when the achieved

improvement of the best fitness value during the last STOPiter number of iterations

is less than STOPrate.

Section 4.2.3 presents the details of the tests relating to these values.

3 GPU-based Fitness Calculation

3.1 Fitness Definition

The result of the fitness function depends on the difference between the generated

thermal history (using the DHCP solver and the HTC value encoded into the

chromosome) and the measured temperature signals. This section presents the

details of this DHCP solver.

A two-dimensional axis-symmetrical model is considered to estimate the

temperature distribution in a cylindrical work-piece. The mathematical

formulation of the nonlinear transient heat conduction problem can be described

as follows (Eq. 3):

 t

T
Cq

z

T
k

zr

T

r

k

r

T
k

r
pv

 (3)

With the following initial and boundary conditions (Eq. 4-5):

 00,, TzrT

 (4)

 tzrTTtzHTC
z

T
k q

Rr
Lz

,,),(
0

 (5)

Where

 r, z – local coordinates;

 t – time;

 R – radius of the workpiece;

 ρ – density of the object;

 T0 – initial temperature of the workpiece;

 Tq – temperature of the cooling medium;

 T(r,z,t) – temperature of the workpiece at given location/time;

S. Szénási et al. Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem

 – 140 –

 k(T) – thermal conductivity (varying with temperature);

 Cp(T) – heat capacity (varying with temperature);

 HTC(z,t) – heat conduction (varying with local coordinate and time).

The solution of (Eq. 3) is obtained by a weighted Schmidt explicit finite difference

method.

The fitness value of the individual is determined as the deviation between the

measured and generated thermal history. Based on these values and the results of

the explicit finite difference method, the fitness value for a given HTC is (Eq. 6):

N

k

c

k

m

k TTF
1

2
min (6)

Where

 N –total number of measured temperatures (the number of points

multiplied by the number of measurements at each point);

 Tk
m – measured values;

 Tk
c – calculated values.

Our goal is to find the best HTC with minimal fitness value.

3.2 GPU-based Implementation

By using the finite difference method, it is possible to calculate the heat transfer

between two points for a given small time step. To be able to ensure accuracy, a

sufficiently small-time interval is necessary (dt ≤ 0.01 sec). According to real-

world measurements, it is usually required to continue the simulation of the

cooling process for an extended period (tend ≥ 120 sec). For this purpose, the

algorithm has to run the calculations mentioned above in a loop to specify the heat

movement between the finite items for each time steps.

As visible, one DHCP calculation needs a lot of iterations (iteration count ≥ 120 /

0.01 = 12000). Using a traditional CPU-based sequential algorithm, it takes about

0.24 sec to calculate all the necessary Tk
c values and to specify the fitness value

for a given chromosome.

According to the GA operating rules, we have to calculate the fitness value for

every chromosome in every iteration. To achieve our goals, we have to launch

hundreds of GA searches and to observe the effects of the different parameter

configurations. In hindsight, we know that in practice this needs about 3.76 * 109

fitness calculations. For a single core CPU algorithm, the estimated run-time for

the whole examination is about 28.7 years. This is obviously unacceptable.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 141 –

To speed-up this process, a graphics accelerator based implementation has been

designed. Nowadays, Graphics Processing Units (GPUs) are highly paralleled

devices containing thousands of processing elements and applicable for general

purpose numerical computing. This leads to enormous processing power, but it is

required to adapt the already existing sequential algorithms to massively parallel

ones to utilise these resources fully.

It is easy to see that the proposed method is well-parallelizable and applicable for

adaptation to a data-parallel fashion. The DHCP algorithm solves the same

differential equation for all finite elements of the grid (with different input data).

This data-parallel fashion is ideal for GPU implementation: one GPU thread is

assigned to one element of the finite grid, and it is responsible for computing the

temperature changes for this referenced location. In the case of a 10×34 sized grid

(n = 10, m = 34 because of optimisation reasons), this needs 340 threads running

the same function to calculate the heat movement for a given time interval.

3.3 Higher Level Parallelization

Running 340 threads on a modern GPU is not enough to fully utilise its processing

power. In the case of NVidia GTX Titan Black cards, the number of cores is 2880.

Thereby, executing 340 parallel threads leads only to very low (used cores / all

cores = 340 / 2880 = 11.8%) theoretical occupancy (the practical utilisation is

even worse).

It is worth noting that the proposed DHCP algorithm is a part of the fitness

calculation process. During the GA, it is necessary to calculate the fitness for all

chromosomes at the end of all iterations. In the case of 100 or more individuals,

the number of parallel threads becomes 340x1000 = 34000 or more. This is

enough parallelism to design and implement an efficient GPU-based

implementation. We used the CUDA framework [15] and NVidia graphics cards

for this purpose.

As a result of further optimisations, a novel data-parallel algorithm had been

developed [16] with multi-GPU support [17] to speed-up the fitness calculations,

and it is also possible to use all GPU devices and CPU cores together. By using

two GPUs and four CPU cores, the run-time is about 100× less than the run-time

of the original sequential method.

This implementation makes it possible to run thousands of GA searches within a

reasonable period (14.5 weeks instead of 28.7 years) to evaluate all configurations

to be examined.

S. Szénási et al. Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem

 – 142 –

4 Experimental Results

This paper follows the following terminology:

 Heat transfer simulation – using the DHCP solver to generate the 2D

temperature history (Tk
c) based on the given parameters (HTC, material,

and cooling medium attributes).

 Fitness calculation – calculating the fitness value (F) for a chromosome

encoding an HTC. This takes the following steps: 1) running a heat

transfer simulation using the given HTC values; 2) comparing the

resulting thermal history to the reference curve.

 Iteration – one iteration of the GA. This takes the following steps: 1)

selection; 2) crossover; 3) mutation; 4) fitness calculation for each

chromosome.

 Search – the execution of a full GA process using a given configuration

(population size, mutation rate, stopping condition). Main steps: 1) create

initial population; 2) execute iterations; 3) stop the execution if one of the

stopping conditions becomes true.

 Session – run several searches using the same configuration and evaluate

the results (best-achieved fitness, an average of best fitnesses of all

searches, average iteration count).

 Experiment – run several sessions using different configurations. 1st

experiment: population size test; 2nd experiment: mutation probability

test; 3rd experiment: stopping condition test.

4.1 Methodology

The estimation of the optimal population size, mutation probability and stopping

condition for the proposed GA solving the IHCP is outlined. Due to the random

behaviour of the genetic algorithms, it is difficult to define the most efficient

configuration (the consecutive searches launched with the same parameters would

give different results).

Several studies focusing on the evaluation of heuristic search algorithms suggest

empirical validation of the parameters [10], [18]–[20]. According to the random

behaviour of heuristics, it is usually not enough to run one search per

configuration. It is necessary to execute as many examinations as possible and

gather the following data:

 Best fitness value – the best-achieved fitness of the entire population;

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 143 –

 Number of iterations – as a secondary objective, we would like to find a

parameter set, which is not just accurate but also fast; therefore, the

number of iterations taken by the GA is important.

 Number of fitness function calculations – the number of iterations do not

determine the required run-time. It is mostly based on the number of

fitness function calculations (FFC), which is the multiplication of

iteration count and population size.

Unlike many papers [20], we are not dealing with direct run-time. It is an

architecture specific measure, and it is very hard to compare the results of

different systems. We prefer the analysis of the number of FFC requirements

because this is by far the most resource intensive part of the algorithm. The cost of

one fitness function evaluation (running the DHCP solver) is independent of the

actual HTC values. Therefore, the comparison of the number of these function

calls is a good substitution for a platform independent run-time analysis.

The FFC count is also important to determine the end of a session testing a given

configuration. It is necessary to run many simulations using the same

configuration, but it is essential to set a limit for the number of these. It is

common to set up a run-time limit, but as mentioned before it is unstable and

platform specific. It is also unfair to limit the number of iterations because GAs

with small population size needs fewer computations per iterations.

As a solution, the FFC count becomes the limiting factor. Every session testing a

given configuration has a limit for FFC number (actually 50,000,000 calculations

per session). The testing framework starts new GA searches one after the other

monitoring the number of FFC count. When this accumulated number exceeds the

predetermined limit, it starts the next session using the next configuration.

In the literature, there is no consensus on how to evaluate the efficiency of

heuristics. Some papers [21] deal only the best fitness values found by a given

configuration. Obviously, smaller fitness values mean better results, but according

to the random behaviour of GAs, the comparison is based only on the best results

found in all configurations is unsatisfactory. It does not give a clear estimation of

the expected future performance. We followed the methodology of several papers

[12], [22] comparing the average fitness values found by all GA searches of a

session. Where required, we performed statistical tests to analyse the raw results.

4.2 Experimental Results

4.2.1 Population Size

We ran several sessions using the following parameters:

 Population size: 100, 200, 300, …, 2000

S. Szénási et al. Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem

 – 144 –

 Mutation rate: ML=0.l; RL=0.001;MM=0.01;RM=0.01;MS=0.001;RS=0.1

 Stopping condition: STOPiter = 30; STOPrate = 0.01

Table 1 and Fig. 1 show the experimental results.

Table 1

Best and average fitness values and the average iteration count of GAs with given population size. FFC

count is equal to population × iteration.

Population Best fitness Avg fitness Avg iteration Avg FFC count

100 1936.2 4162.3 190 19000

200 699.4 5339.3 510 101959

300 480.5 4289.6 733 219982

400 259.3 3659.0 937 374824

500 307.8 3328.3 976 487932

600 239.1 520.2 1792 1075340

700 296.5 434.2 1927 1349176

800 249.8 374.3 1891 1513153

900 255.9 356.2 1798 1618403

1000 223.7 311.3 1859 1859185

1100 229.4 311.8 1846 2030116

1200 221.8 285.7 1807 2168800

1300 236.2 301.5 1745 2268795

1400 226.8 288.5 1689 2365236

1500 207.0 264.4 1708 2562000

1600 216.7 262.7 1663 2660716

1700 164.5 254.7 1655 2813122

1800 221.1 252.9 1621 2916900

1900 203.9 249.4 1680 3191169

2000 225.1 262.0 1578 3156750

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 145 –

Figure 1

The solid red line shows the average fitness values, and the dashed blue one shows the best fitness

values of GAs with the given population size. The yellow area shows the average FFC count.

In the case of small population sizes, the results are not satisfactory. There are not

enough chromosomes to ensure convergence to a valid solution. These simulations

are usually stopped in an early phase (sometimes without any progress). As can be

seen in Fig. 1, where there is a significant improvement near population size 600.

From 700 to 1500 the results become even better, but this trend slows down. Both

the best fitness and the average fitness values become similar for larger population

sizes.

The average number of necessary iterations is decreasing, but because of the

higher population size, the number of FFCs (which requires the most computation

effort) is increasing. Our first priority is accuracy, but efficiency is also important.

Therefore, we should find the point with the smallest population size (and

computation effort) after which there is no significant accuracy improvement.

Because of the spread of the results, the naïve comparison of the best fitness and

average fitness values are not sufficient. One-way ANOVA tests were run using

α=0.05 significance level on the results of all searches [22], [23]. The null

hypotheses was that the expected value of the average fitness is the same for all

population sizes between P and 2000. In the case of small P values (P ≤ 1300), it

is obviously not true. When P=1400, the result of the ANOVA is: F=2.56 while

Fcritial=2.17; therefore, we have to reject the null hypotheses (F > Fcritial) weakly.

However, in the case of P=1500: F=0.55 and Fcritial=2.30, the test shows (F <

Fcritial) that it is very likely that the expected value of the average fitness is the

S. Szénási et al. Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem

 – 146 –

same for both groups. In the case of larger P values, the results are similar. Thus,

we can state that it is not worthwhile using a larger population size than 1500

because these sessions do not give a significant increase in accuracy, but have

higher computational demand.

In the literature, it is also common to use two-tailed t-tests to compare the results

of different parameter sets [21], [24]. By using these tests, the final verdict is the

same. In comparing the results of the simulation with population size 1400 to the

simulation using 2000 chromosomes, the t-test indicated some differences

between the expected value of average fitness (tstat = 2.085 and tcritical=2.028, tstat >

tcritical - therefore, we have to reject the null hypothesis). Nonetheless, in the case

of P=1500 (tstat = 0.184 and tcritical=2.032, tstat < tcritical) and larger P values, the t-

tests show that the expected average fitness is the same as for population size

2000.

Based on these, our recommendation for population size is│P│=1500.

4.2.2 Mutation Probabilities

The purpose of the second experiment was to find the optimal mutation

probabilities. Several sessions were run using the following parameters:

 Population size: 1500 (based on the result of the 1st experiment);

 Mutation rates: ML=p/1000; RL=0.01; MM=p/2000; RM=0.05;

MS=p/10000; RS=0.25; where p = 0, 1, 2, … 9;

 Stopping condition: STOPiter = 30; STOPrate = 0.01.

In the case of GAs, it is always required to find the proper balance between

exploration and exploitation ability of the search algorithm. Mutation is mostly

responsible for the exploration part.

Table 2

Best and average fitness values and the average iteration count of GAs with given mutation

probability. FFC count is equal to population × iteration.

p value Best fitness Avg fitness Avg Iteration Avg FFC count

0 534.0 772.7 292 438491

1 134.7 171.3 1918 2877333

2 119.0 152.9 2114 3170719

3 125.6 151.6 1988 2981559

4 122.9 149.6 1991 2985882

5 124.7 152.5 1862 2792417

6 127.7 155.0 1851 2777000

7 117.5 158.3 1758 2637632

8 137.9 158.6 1710 2565225

9 129.1 155.3 1686 2528775

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 147 –

The experimental results (Table 2) show the expected behaviour based on the

literature. In the case of too small mutation rates, the exploitation failed.

Chromosomes cannot get away from a local optimum. In the opposite case, too

large mutation rates caused an “over randomised” search. These searches were

more like a random search than a well-balanced GA. Both extremes led to poor

performance.

Due to its nature, the analysis of the optimal mutation rate is simple compared to

the population size analysis: p=4 gives the best average fitness values, and both

lower and higher mutation rates give worse results.

According to this, the recommended mutation rate is ML=0.004; RL=0.01;

MM=0.002; RM=0.05; MS=0.0004; RS=0.25.

4.2.3 Stopping Criteria

The primary aim was to find the parameter set which gives the highest accuracy

(lowest fitness value). As an effect of the used elitism technique, the fitness value

is monotonically decreasing during the search. Therefore, it is evident that if only

accuracy is taken into account, it is worth running the algorithm as long as

possible.

Figure 2

Best fitness values by iterations for a given GA search. Vertical lines show the phase switching points.

It is visible that all phases have the same characteristic.

S. Szénási et al. Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem

 – 148 –

However, a novel technique dynamically changing the number of control points is

also used. Fig. 2 shows the fitness values by iteration number for a given GA

execution. The common characteristic of these phases is well visible: every phase

starts with a fast decreasing period and some iterations later this slows down. This

raises an additional question. At which point is it worth stepping over to the next

phase (and using more control points)?

If this happens too late, the full GA convergence becomes slow. Early phases use

only a few control points, which has a significant limitation in describing the HTC

function. When the GA reaches this limit, the decrease of the fitness value

becomes almost negligible. It is not worth leaving the algorithm to fine-tune these

results because it would be more efficient to change to the next phase which has

fewer limitations.

It is also worth avoiding the opposite situation and switching to the next phases

too early. First, notice that this dynamic resolution model is an essential part of the

algorithm. Without this (STOPiter=0 in Table 3) the GA cannot start to converge

(in the case of 340 starting parameters, the search space is too large). Too early

phase switching leads to similar problems: the algorithm will not be able to

converge (STOPiter=1 in Table 3), or it converges, but starts the last phase with a

relatively poor fitness value, and it takes many iterations to improve this.

Table 3

Fitness values after the given number of iterations using different STOPiter parameters. The first test

(STOPiter=0) does not use the dynamic resolution method.

STOPiter 10000 20000 30000 40000 50000 60000

0 1855.68 1619.75 1444.06 1318.32 1217.46 1122.83

1 4375.95 4002.08 3798.09 3616.72 3475.45 3276.50

10 67.25 61.74 59.76 58.66 57.71 57.09

50 64.72 59.31 57.38 56.29 55.66 55.25

100 62.10 57.30 55.44 54.39 53.76 53.38

200 108.40 53.12 51.33 50.40 49.84 49.31

300 213.28 52.95 50.95 50.00 49.18 48.65

500 213.71 86.29 51.69 49.12 48.19 47.60

600 212.72 100.53 53.37 48.38 47.28 46.61

700 222.54 122.04 63.93 48.87 47.86 47.23

900 221.47 173.51 83.78 53.30 48.61 47.40

1000 228.76 174.47 85.74 52.03 48.83 47.77

Table 3 shows the experimental results. The GA had to finish all phases (except

the last one) when the improvement of the best fitness value was less than 1%

(STOPrate=0.01) in the last STOPiter iterations. There was no similar limitation for

the final phase, and the GA was left running for 60000 iterations.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 149 –

Figure 3

Best achieved fitness values by STOPiter parameter values after given iteration numbers. Blue triangles

show the final results (after 60000 iterations), black rectangles show a middle-state after 40000

iterations, red circles show the state between them (50000 iterations).

As is visible from the table and Fig. 3, the optimal value was 600. Lower

parameters give poor final fitness. A slight weakening is also visible in the case of

higher numbers. It is not significant, but it is worthwhile seeing that without this

increment (and considering the fitness values identical for these parameters), we

should recommend the same because of the faster convergence. The secondary

objective is to find the fastest parameters, and it is visible that GA with

STOPiter=600 finds the best fitness values earlier.

Based on the results, the recommended stopping criteria is STOPiter=600.

Conclusions

Using GA to solve the IHCP is already a known procedure. Nevertheless, the best

configuration parameters were unknown to use this method efficiently, and the

high computation demand makes it impossible to determine these using

experimental test.

The determination of GA’s configuration parameters providing the highest

efficiency to solve a 2D axis-symmetrical IHCP problem is outlined. A

computational framework was developed by which thousands of GA searches

have been analysed and the performance of several configurations (population

size, mutation probability, stopping condition) has been evaluated.

As a final result, the following recommendations are made:

 Population size: │P│=1500

S. Szénási et al. Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem

 – 150 –

 Mutation rate: ML=0.004; RL=0.01; MM=0.002; RM=0.05; MS=0.0004;

RS=0.25

 Stopping condition: STOPiter=600

Using these parameters, stable and efficient GA searches can be expected without

wasting resources for unnecessary computations.

The most advanced part of the framework is the hybrid (CPU and GPU) parallel

DHCP solver module. One of the design concerns was the ability to use this

module with other search methods, like PSO, or Fireworks. As a further plan, a

request to extend the research with the investigation of these heuristics is made.

It is also possible to improve the efficiency of the already existing DHCP solver.

Using more than two graphics cards can linearly improve the computing

performance, and the new NVLINKTM technology developed by NVIDIA

provides improved GPU-to-GPU link bandwidth and tight integration with IBM

Power CPU makes it possible to decrease the memory transfer deficits

significantly.

Acknowledgements

We acknowledge the financial support of this work by the Hungarian State and the

European Union under the EFOP-3.6.1-16-2016-00010 project and Hungarian-

Japanese bilateral Scientific and Technological (TÉT_16-1-2016-0190) project.

The authors would like to thank NVIDIA Corporation for providing graphics

hardware for the GPU benchmarks through the CUDA Teaching Center program.

We also would like to thank IBM Systems for the temporary access to their IBM

NVIDIA Acceleration Lab which allows us to run some additional experiments

using their new NVLinkTM capable Power system.

Supported BY the ÚNKP-17-4/I. New National Excellence Program of the

Ministry of Human Capacities.

References

[1] P. Oksman, S. Yu, H. Kytönen, and S. Louhenkilpi, “The Effective

Thermal Conductivity Method in Continuous Casting of Steel,” Acta

Polytech. Hungarica, vol. 11, no. 9, 2014.

[2] O. M. Alifanov, Inverse Heat Transfer Problems. Springer, 1994.

[3] J. V. Beck, B. Blackwell, and C. R. J. St. Clair, Inverse Heat Conduction.

New York: Wiley, 1985.

[4] M. J. Colaço, H. R. B. Orlande, and G. S. Dulikravich, “Inverse and

optimization problems in heat transfer,” J. Brazilian Soc. Mech. Sci. Eng.,

vol. 28, no. 1, pp. 1–24, 2006.

[5] M. N. Özisik and H. R. B. Orlande, Inverse Heat Transfer: Fundamentals

and Applications. Taylor & Francis, 2000.

Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

 – 151 –

[6] I. Felde, Estimation of thermal boundary conditions by gradient based

and genetic algorythms, vol. 729. Trans Tech Publications, 2013.

[7] S. Vakili and M. S. Gadala, “Effectiveness and Efficiency of Particle

Swarm Optimization Technique in Inverse Heat Conduction Analysis,”

Numer. HEAT Transf. PART B-FUNDAMENTALS, vol. 56, no. 2, pp.

119–141, 2009.

[8] I. Felde, S. Szénási, A. Kenéz, S. Wei, and R. Colas, “Determination of

complex thermal boundary conditions using a Particle Swarm

Optimization method,” in 5th International Conference on Distortion

Engineering, 2015, pp. 227–236.

[9] I. Felde and S. Szénási, “Estimation of temporospatial boundary

conditions using a particle swarm optimisation technique,” Int. J.

Microstruct. Mater. Prop., vol. 11, no. 3/4, pp. 288–300, 2016.

[10] M. A. Panduro, C. A. Brizuela, L. I. Balderas, and D. A. Acosta, “A

comparison of genetic algorithms, particle swarm optimization and the

differential evolution method for the design of scannable circular antenna

arrays,” Prog. Electromagn. Res. B, vol. 13, pp. 171–186, 2009.

[11] D. E. Goldberg and M. Rudnick, “Genetic Algorithms and the Variance of

Fitness,” Illinois Genet. Algorithms Lab. Rep., vol. 5, no. 91001, pp. 265–

278, 1991.

[12] Y. R. Tsoy, “The influence of population size and search time limit on

genetic algorithm,” Sci. Technol. 2003. Proc. KORUS 2003. 7th Korea-

Russia Int. Symp. (Volume3), no. 1, pp. 181–187, 2003.

[13] M. Mitchell, “An introduction to genetic algorithms,” Comput. Math. with

Appl., vol. 32, no. 6, p. 133, 1996.

[14] G. Syswerda, “Uniform Crossover in Genetic Algorithms,” in

Proceedings of the 3rd International Conference on Genetic Algorithms,

1989, pp. 2–9.

[15] NVIDIA, “CUDA C Programming Guide.” 2014.

[16] S. Szénási, I. Felde, and I. Kovács, “Solving One-dimensional IHCP with

Particle Swarm Optimization using Graphics Accelerators,” in 10th

Jubilee IEEE International Symposium on Applied Computational

Intelligence and Informatics, 2015, pp. 365–369.

[17] S. Szénási and I. Felde, “Heat Transfer Simulation using GPUs,” in 20th

IEEE Jubilee International Conference on Intelligent Engineering

Systems, 2016, pp. 263–267.

[18] T. Weise, Y. Wu, R. Chiong, K. Tang, and J. Lässig, “Global versus local

search: the impact of population sizes on evolutionary algorithm

S. Szénási et al. Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem

 – 152 –

performance,” J. Glob. Optim., no. March, pp. 1–24, 2016.

[19] K. Mills, J. Filliben, and A. Haines, “Determining relative importance and

effective settings for genetic algorithm control parameters,” Evol.

Comput., no. x, 2015.

[20] R. H. Abiyev and M. Tunay, “Experimental Study of Specific

Benchmarking Functions for Modified Monkey Algorithm,” Procedia

Comput. Sci., vol. 102, no. August, pp. 595–602, 2016.

[21] D. Whitley, S. Rana, and R. B. Heckendorn, “The island model genetic

algorithm: On separability, population size and convergence,” J. Comput.

Inf. Technol., vol. 7, pp. 33–47, 1999.

[22] I. Rojas, J. González, H. Pomares, J. J. Merelo, P. a. Castillo, and G.

Romero, “Statistical Analysis of the Main Parameters Involved in the

Design of a Genetic Algorithm,” Syst. Man, Cybern. Part C Appl. Rev.

IEEE Trans., vol. 32, no. 1, pp. 31–37, 2002.

[23] P. A. Castillo-Valdivieso, J. J. Merelo, A. Prieto, I. Rojas, and G. Romero,

“Statistical analysis of the parameters of a neuro-genetic algorithm,” IEEE

Trans. Neural Networks, vol. 13, no. 6, pp. 1374–1394, 2002.

[24] A. Silva, A. Neves, and E. Costa, “An empirical comparison of particle

swarm and predator prey optimisation,” Artif. Intell. Cogn. Sci., pp. 1–45,

2002.

