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Abstract: The processing of microscopic tissue images and especially the detection of cell 

nuclei is nowadays done more and more using digital imagery and special 

immunodiagnostic software products. One of the most promising image segmentation 

methods is region growing, but this algorithm is very sensitive to the appropriate setting of 

different parameters, and the long runtime due to its high computing demand reduces its 

practical usability. As a result of our research, we managed to develop a data-parallel 

region growing algorithm that is two or three times faster than the original sequential 

version. The paper summarizes our results: the development of an evolution-based 

algorithm that was used to successfully determine a set of parameters that could be used to 

achieve significantly better accuracy than the already existing parameters. 
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1 Introduction 

Nowadays the digital microscope is becoming a more and more popular device 

among pathologists. In addition to several improvements of the up-to-date devices 

(good quality, focused photos, the possibilities for objective measurements, etc.) it 

is worth mentioning that in addition to the suitable IT background, the images 

gained this way can be subjected to numerous other processes, in addition to 

simply viewing them once, which can promote later consultation (distribution, 

categorization [1], remote access, etc.) and can provide for preliminary or post 

processing of tissue samples. 

This kind of processing offers a very promising way of using different 

segmentation processes with the images received, and in this way the different 

components of the tissues can be well separated. Appropriately precise recognition 

of the tissue components (morphologic and morphometric parameters of these 
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components) can provide a safe background for automated status analysis of the 

examined patients, or at least it can aid the work of the pathologists with this pre-

processing. By means of separating the sick and the healthy tissue parts, the 

Labeling Index of immunohistochemical reactions used for examining the 

structures and the evaluation (Scoring) parameters in figures can be given more 

accurately. 

In the course of our research we have analyzed tissue samples taken from 

haematoxylin-eosin stained colonic tissue samples (Figure 1). The most important 

structures in these cases that are worth separation are the following: cell nuclei, 

glands and epithelium [2]. Of course there are a lot of methods for their 

recognition, but most of them begin with the precise determination of the position 

of cell nuclei and, on this basis, then attempt to state the position of the other 

components. There are several alternative methods of searching for cell nuclei; we 

have improved one of the most promising solutions, namely region growing. 

1.1. GPGPU-based Region Growing Algorithm 

The process of region growing has already been well proven in practice. It is quite 

accurate: however, the long runtime due to its high computing demand reduces its 

practical usability. At the first stage, this could be improved by the development 

of a new algorithm running in a parallel environment that is implemented on data-

parallel GPGPU, resulting in a 3-to-4-fold rate increase [3], which can be 

naturally further raised by using more GPUs. 

The first step in region growing is to select a set of seed points, which requires 

some idea about the pixels of the required region (we assume that nuclei are 

usually darker than their environment). In the next step, the neighboring pixels of 

the initial seed points are examined and it is determined whether the pixel 

neighbors should be added to the region or not (by minimizing a cost function). 

This process is iterated until some exit condition is met. 

1.1.1. Searching for Seed Points 

The search for seed points is a nicely parallelizable task, since our aim is to find 

the point with the highest intensity that complies with some rules (it cannot be 

inside a previously found region, etc.). When running a sequential algorithm on 

the CPU, this means a single point, but in the case of the GPU, this can result in 

multiple points, because it is possible to execute multiple cell nucleus searches in 

multiple blocks. In the latter case, the adjacent seed points can cause problems, 

since the parallelized search of those can result in overlapping cell nuclei, which 

would require a lot of computational time to administer. 
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Figure 1 

The selected tissue samples (masked) 

Luckily enough, we know what the maximum radius of a cell nucleus can be in an 

image with a given zoom; so we can presume that the searches started from two 

seed points (that are at least four times further apart than this known distance) can 

be considered as independent searches; so they can be launched in a parallelized 

way. The iteration is continued until the thread runs out of possible seed points, or 

the required amount of points is gathered for the starting of the efficient region 

growing. 

1.1.2. Parallel Region Growing 

Region growing itself consists of the following consecutive steps [3], which 

depend on each other: first comes the search for possible new contour expanding 

points; the next step is the evaluation of the available points; then comes the 

selection of the best valued point; and the last step is the expansion of the area 

with the selected point. These steps can be very well parallelized on their own, but 

every operation needs the output of the previous step, so we definitely need the 

tissue samples a) B2007_02857_ES_01 
b) B2007_02508_PR_01c) B2007_02224_PR_01 

d) B2007_02857_ES_02e) B2007_03019_PR_01 

f) B2007_03381_PR_01g) B2007_03381_ES_01 
h) B2007_02819_ES_01i) B2007_02167_ES_01 

j) B2007_00259_PR_02 k) B2007_00259_ES_02 
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introduction of synchronization points. This significantly reduces the count of the 

possible solutions, since when using the CUDA environment, we can achieve 

synchronization methods only within one single block. Thus, it seems practical to 

assign a single block to the processing of one single cell nucleus. 

Region growing itself iterates three consecutive steps until one of the stop 

conditions is met [3]: (1) It examines the possible directions in which the contour 

can be expanded. The full four-neighborhood inspection is evidently only required 

around the last accepted contour point (when starting the kernel, this means the 

starting seed point). Since the examinations of the neighboring points do not 

depend on each other, this can be parallelized as well. (2) The various different 

contour points must be evaluated to decide in which direction the known region 

should be expanded. For this, a cost function [4] must be calculated for every 

point that uses more parameters (intensity of the neighbors, average intensity of 

the region, distance of the point from the seed, etc.). As the values change at the 

insertion of every new point, they have to be re-calculated at every iteration for 

every point. This is however a typical data parallelized calculation, so it can be 

very well parallelized on the GPU. Every thread counts the cost of a single 

contour point. (3) The contour point with the smallest cost must be selected. 

After every iteration, a fitness function is evaluated that reflects the intensity 

differences between the region’s inner and outer contour, and the region’s 

circularity. The process continues until the region reaches the maximum size (in 

pixels or in radius), and its result is the state where the maximum fitness was 

reached. 

For the case when two cell nuclei intersect each other, another stop condition is 

inserted into the algorithm. According to our experience, the overgrowing of a 

region into another nucleus can be detected from the intensity changes; the 

constantly decreasing intensity suddenly starts to increase. Due to this 

phenomenon, we calculate the time differential of the intensity-differences, and if 

the resulting function passes a given value, then we stop the region growing. 

1.2. Parameter Optimization 

However, the region growing algorithm prepared this way has several parameters 

(parameters of the different filters, parameters of intensity-contrast-dimensions, 

etc.) the fine tuning of which is as important as the previously mentioned speed 

increase. Due to the large number of parameters and their reasonably large target 

set, defining the values manually seems hopeless, so we had to develop an 

optimization algorithm. 

The basis of optimization is the comparison of test results gained with the help of 

the parameter sets and using the region growing algorithm with the reference 

results approved as good and then making conclusions from the difference in the 

two samples as to the appropriateness of the tested parameter set. We have, as a 
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reference, 41 pieces of tissue samples, processed by trained pathologists; they 

marked the precise position of the cell nuclei (later we will refer to them as “gold 

standards”). The test samples are generated on the basis of the given raw tissue 

sample with the help of the previously developed region growing algorithm. A 

detailed description of the genetic algorithm managing the populations, including 

the individual parameter sets, is included in another paper; here we only wish to 

detail how searching of the parameters could be accelerated. However, it was 

immediately revealed in practice that the parameter range to be tested is quite 

large (27 different, independent parameters), and testing of the individual 

parameter sets is rather time-consuming (because the region growing must be run 

on the tissue sample, then the gained results have to be compared to the reference 

result given by the pathologists), consequently the solution that can be run with 

the classic sequential 1 processor would not give results within a reasonable 

period of time, in practice. Due to the fact that time-consuming parts (region 

growing and comparison) are given, and the genetic operators themselves do not 

demand considerable time, so the reduction of runtime can only be achieved by 

means of making the genetic algorithm and the evaluations parallel. 

2 The Evolutionary Algorithm for Parameter 

Optimization 

2.1. Initial Generation 

The initial generation is usually built up using randomly generated instances. If we 

need to further refine some previously tested parameters, then we have the 

possibility to place them into the initial generation, but in our case we usually 

want to start a completely new search. Table 1 shows some of the parameters that 

have known bounds [5] with a standard distribution. With some technical 

parameters, it is not possible to perform such preliminary tests; in these cases, the 

initial values of the parameters are distributed using the currently known best set 

of parameters. 

2.2. Evaluation of Generations 

After we create a new generation, we have to evaluate all instances. Since in our 

case the fitness value of a given instance is determined based on how well the 

given parameter set stored in the genes performs with the region growing cell 

nuclei detector algorithm, this means that we need two steps to determine this 

fitness value: 
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Table 1 

Bounds for some initial parameter 

1. First, we must execute the region growing cell nuclei detector algorithm with 

the given set of parameters on several slides. 

2. After this, the results produced by the algorithm with the given parameter set 

(test result) must be compared with the manual annotations of the Gold 

Standard slides (the reference result). By averaging the results of the 

comparisons (for all slides) we get the fitness value for the given parameter 

set. This value can be used to evaluate the fitness of the given chromosome.  

To compare the test and reference results of cell nuclei search methods, we have 

already developed an evaluation algorithm [6]. There are several approaches of 

accuracy calculation (e.g. some fuzzy models [7]). Our method is based on the 

very often used confusion matrix [8] that can be constructed using a comparison 

of the two result sets. The matrix (assuming we have two possible outcomes) 

contains the number of true positive (TP), true negative (TN), false negative (FN) 

and false positive (FP). The accuracy of the region growing is simply the ratio of 

sum the true values and the sums of all cases. 

2.3. Accuracy of One Parameter Set 

Our measurement number does not only reflect a pixel-by-pixel comparison; 

instead it starts by matching the cell nuclei together in the reference results and in 

the test results. One cell nucleus from the reference result set can only have one 

matching cell nucleus in the test result set, and this is true the other way around 

too: one cell nucleus from the test result set can only have one matching cell 

nucleus in the reference result set. After the matching of the cell nuclei, the next 

step is the similarity comparison between the paired elements. 

The very critical point of the evaluation is how the cell nuclei are matched against 

each other in the reference and the test result sets, because obviously this greatly 

affects the final result. Since this pairing can be done in several ways (due to the 

overlapping cell nuclei), it is important that from the several possible pair 

combinations we have to use the optimal: the one that gets the highest final score. 

Name lower bound upper bound 

Cell nuclei size 34 882 

Cell nuclei radius 4 23 

Cell nuclei circularity 27.66 97.1 

Cell nuclei average intensity (RGB avg.) 36.59 205.01 

Seed point intensity (RGB avg.) 0 251 
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During the practical analysis of the results, we found that on areas where cells are 

located very densely, we have to loop through a very long chain of overlapped 

cells, which results in groups that contain very many cell nuclei from the test and 

from the reference sets as well. Since increasing the number of elements in a 

group exponentially increases the processing time of the group, it is practical to 

find some efficient algorithm for the matching; we use a modified backtracking 

[9] search algorithm, which searches and returns the optimal pairing of a group 

containing test and reference cell nuclei. 

The algorithm above should be executed for every group, and in this way the 

optimally paired elements can be located (including the elements that are alone in 

their group and the elements that cannot be paired at all). Evaluating every pair 

(and single element), and summing up the values, we can determine the weighted 

total TP, FP, FN pixel numbers that represent the whole solution. These can be 

interpreted on their own or in a simple way using the aforementioned accuracy 

equation. For the genetic algorithm, this will be the fitness value of the parameter 

set represented by the given instance. 

2.4. Apply Genetic Operators 

2.4.1. Selection of Parents and Survivors 

To select the parents and the survivors, we use the so-called roulette wheel 

selection method [10]. After the evaluation of the current generation, we know the 

fitness values for all the instances. Knowing these, and Pi: the probability to select 

the instance #i, Fi: the fitness value for the instance #i, Min(F): the smallest fitness 

value for the current generation. We have developed the following formula: 

 (1) 

Due to the large number of parameters, the search space is reasonably large, so the 

occasionally occurring instances with exceptionally high fitness value can easily 

disappear in the next generation due to the obligatory random crossovers. For this 

reason (similar to elitism [11]) the instances with the highest fitness values are 

carried along (without crossovers or mutations) into the next generation (not only 

the single best instance, but the top 30 instances, so 10% of the generation is 

selected this way). This slightly decreases the number of trial runs per generation, 

but in this way we guarantee that the best chromosomes are kept and their genes 

remain constant. A side effect of this is that we get a monotonically increasing 

series of fitness values for the best instances. 
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2.4.2. Crossover 

It is hard to determine the most effective crossover method in advance. It is 

advised to use the two-point crossover in the case of a large population, the 

uniform crossover in the case of a smaller population, less cut points in the case of 

short chromosomes, and more cut points in the case of large chromosomes. In our 

case, the size of the population can be considered as reasonably small (because the 

evaluation of the single instances can be very time consuming, and so we cannot 

use a large population), while the chromosomes are considered to be reasonably 

large (27 parameters, several hundred bits altogether). Because of these, we 

clearly need to use the uniform crossover method. 

In our case, it is not feasible to perform the uniform crossover for any bit, because 

there are some parameters that have to comply with some additional rules (e.g. 

divisibility), and the bitwise mixture of those can easily lead us to values that do 

not belong to the target set. For these reasons, during the crossover we only 

combine whole genes; for every gene of a new chromosome we use a random 

number to determine which parent’s gene is inherited. To converge faster, the 

parent’s gene that belongs to the parent with the greater fitness value has bigger 

priority. Knowing the probability (Pa) that the gene of parent A is inherited, the 

probability (Pb:) that the gene of parent B is inherited, the fitness value (Fa) for 

parent A, the fitness value (Fb) for parent B, and min(F) is the smallest fitness 

value for the current generation, for every gene. We have developed the following 

formula used to determine which parent’s gene is used: 

 (2) 

 (3) 

We have already tried another crossover method (where Pa = Pb = 0.5) but it 

caused significantly slower convergence. 

2.4.3. Mutation 

It is feasible to use the same type of mutations with genetic algorithms as are used 

in nature. This is especially important if, after many generations, the changes are 

reasonably small, and the various parameters have settled around some values. We 

have defined the mutation arbitrarily (based on the initial test runs) according to 

the following rules: 

 The probability of a mutation is separately 10% in every new generation for 

every parameter. 

 The size of the mutation is random: there is a 60% chance for a small, a 30% 

probability for a medium-sized, and a 10% probability for a large mutation. 
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2.5. Implementation 

The actual implementation was done according to the following criteria: 

 We are searching for the values of 27 parameters. 

 The initial generation has 3,000 chromosomes. 

 Every following generation has 300 chromosomes. 

 Every parameter set (every instance) is tested against 11 representative tissue 

samples (Figure 1). 

3 Distributed Genetic Algorithms 

We can find in the professional literature several methods of making genetic 

algorithms parallel. The most fundamental of them are [12] and [13]: 

A. Systems based on one population: in these cases the genetic algorithm itself is 

actually not different from the classic sequential solutions. It is only that 

implementation is attempted to be modified so that the individual genetic 

procedures can be performed with the same results, but with a shorter 

runtime. 

1. Compiler based automatic parallelism: Parallelization is implemented in 

this case at a quite low level; here we try to utilize the possibilities of the 

hardware. In view of the fact that this is mainly a technical possibility, 

here we can rely on the help of the different compilers in most of the 

cases because they automatically perform different optimizations in time 

of compiling [14]. 

2. One population - parallel evaluation/crossover/mutation: Parallelism is 

implemented at a higher level in this case. We try to parallelize not only 

the individual elementary operations themselves, but larger tasks are 

considered as atomic and they are solved independently of each other. 

This coarser granularity makes it possible to extend parallel processing to 

multi-processor or multi-node systems as well [15]. 

B. Systems based on several populations: in these cases we do not work 

necessarily with a global population, but we can manage the development of 

several, independent populations at the same time. Of course different kinds 

of relations may be constructed among them, and they can communicate and 

the results can be compared at the end of processing. Granularity in the names 

of the two methods is nothing else but the ratio of computations and 

communication. When this value is high, then we can speak about a coarse 

grain algorithm; when it is low, then the algorithm is fine-grained. 
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1. Coarse grain PGAs: The classic case of a coarse grain is when each 

executing unit is running its own genetic algorithm in the distributed 

system on an independent population with all of its operations (selection, 

crossing, mutation). This can be mutually exclusive, if the independent 

units are completely isolated from each other. Or it can be non mutually 

exclusive, when there is communication at some level among the 

populations (typically they distribute the chromosomes with best results 

among each other). Several other implementations can be imagined. The 

main point is that the principle of the genetic algorithm does not change, 

and sequential algorithms run again, but in many populations at the same 

time [16]. 

2. Fine grain PGAs: While we often imagine completely separated 

populations (islands) in the case of coarse granularity, the typical 

example of fine grain can be a large-sized global population, whose 

elements are organized in a grid and every element can communicate 

only with its neighbors (of course with parallelization at the level of the 

individual instances). Depending on the size of the executing units and of 

the population, this can be implemented technically in several ways; the 

arrangement itself and communication with the neighbors demand 

individual design in each case [17], [18]. 

3.1. Methods Working on a Global Population 

Methods A.1 and A.2 are fundamentally based on the same principles as the 

traditional sequential genetic algorithms; however they promise quicker 

implementation depending on the architecture. Due to the fact that all of the 

executing units work on the same population, this raises several problems 

(closures, communication, time loss due to waiting for each other), these losses 

must be considered by all means before making decision. Based on the 

recommendations of the professional literature [14], it is clear that they only have 

raison d’être if the operations with the individual instances are computationally 

demanding and time consuming. 

This is typically true in our case, since full region growing must be run for each 

set of parameters, and then the evaluation of the gained results must be performed 

(because we need fairly exact scoring here, it takes longer than region growing 

itself) and it should be done not only for one but for several tissue samples after 

each other. As compared to the costs of these operations, the resource demand of 

the different genetic operators (parent selection, crossing, mutation) themselves 

are negligible, so it is practically worth choosing from the A versions. 

A.2 offers more possibilities for us because local optimization provided by the 

compilers gives fairly limited possibilities, and here we would like to accelerate 
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not the genetic operators but the evaluation of the fitness function of the individual 

elements. The master-slave method offers a well-implementable solution for this; 

it can appropriately and efficiently utilize our available resources. In addition, we 

have found several where it lives up to the promises [19], [20], [21], [22]. 

3.2. Methods Working on Several Populations 

Method B.1 is very popular, too, though it has several limits [21]: 

 Perfect utilization of the processing units demand more attention when 

dimensioning the populations. 

 Certain steps of evolution can be reproduced only with difficulty due to 

asynchronous nature of population processing and migration. 

 Communication among the independent islands makes the model much more 

complicated. 

And even if the benefits are undoubted in certain cases, they are less dominant for 

us because, due to the above mentioned difficult fitness evaluation, it is clear that 

scarcity of the resources does not enable us to process a fairly large volume of 

instances. And because the size of the population will be the bottleneck for the 

genetic algorithm, maintaining further populations will not give us an advantage. 

In the same way, we cannot utilize the benefits of method B.2. It is clear that in 

our task the evaluation of the fitness function demands the most resources; the 

other operations (selection, crossing, mutation) are negligible in this respect. 

However, in this case, the fine-grained method does not show benefit as compared 

to the client-server implementation, but it involves fairly many limitations. The 

greatest problem is loss of liberty in parent selection. Since it is evident that when 

using the traditional sequential methods any two elements of the full population 

can be chosen as parents, then in the case of the coarse-grained method, we can 

choose only from the instances of the given sub-population, and in the case of 

fine-grained method even stricter limitations must be accepted, since we can 

choose only from the direct neighbors here [23]. 

Based on the above, although algorithms working with more populations are more 

popular, their use in our case does not seem to be practical. One of their great 

benefits (reduction in communication) does not mean essential development, 

because it has negligible demand of resource besides evaluation of the fitness 

function on the one hand; and due to the same difficult evaluation our target is to 

find the quickest result and this can be probably achieved if we can freely choose 

from every member of the full global population in the course of crossings. 
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3.3. Hybrid Solutions 

Based on the first experiments it is practical to develop a hybrid system [24] later 

on. Namely it became clear during the first runs that the processing time of certain 

instances can importantly differ from each other, and with given combinations of 

the parameters the runtime of region growing can be either multiple of the average 

value. Consequently, sometimes such an unfavorable condition may occur that, 

although each instance of the generation with one exception was processed, the 

parallel slaves are forced to wait for the result of the last processing. These idle 

times could be surmounted if the waiting clients would be assigned to processing 

the instances of another population. 

3.4. Master-Slave Implementation 

Even though there are numerous advantages of master-slave (simple 

implementation; the principle is practically the same as the sequential genetic 

algorithms so it can be simply adapted; it provides very good performance in 

many cases), one of the biggest problems is fairly high communication demand. 

That is why it is practical to undertake preliminary examinations whether it is a 

real alternative. 

Execution time of a master-slave GA is made up of two components: 

 Time spent on computation: in this case it includes evaluation of the fitness 

function in the first place. Based on processing of the available 1,550,318 

instances the below average value was measured: 1498 ms is the time of 

region growing run on one image; 8,249 ms is the average time of the 

following processing. The time of the different genetic operators is 

practically negligible (0.16 ms in the case of one instance). In the case of the 

population chosen by us, it is 50 ms per generation. 

 Time spent on communication: we can speak about communication in 

master-slave system, when the master distributes the tasks among the clients 

and when they return the fitness values computed by them. This value 

depends on the different hardware devices used (network, interfaces) on the 

one hand, and on the protocol used for communication on the other hand. In 

this case we can quite well reduce the time of communication with this latter, 

since only a minimum volume of data needs to be transferred between the 

master and the slave. At the time of distributing the tasks, the master 

transmits the required parameters of the region growing, which is (even in a 

not very economical plain text format) 70.67 bytes on average. Sending of 

the results means only the transmission of some numerical values; in case of 

11 images, it is 539.32 bytes on average. 
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4 Development of the Distributed System 

In addition to principle implementation we can find several other possibilities in 

professional literature in respect to the master-slave model; we developed our own 

model after having studied them. 

There are several standardized techniques available today for developing the 

distributed system, including very complex ones suitable for industrial 

applications, too [25], [26], [27] (cloud, grid, etc.). Although they could have 

provided a very fashionable and elegant solution for running of the genetic 

algorithm, their use would involve disproportionally great extra resources, which 

is unreasonable in the present experimental phase. The implementation of the 

genetic algorithm under development could be modified according to the above 

aspects, but we would have to adapt to the already existing external modules. 

These, however, would require important alterations for the purpose of 

cooperation with the above-mentioned standard systems (the region growing 

algorithm, the evaluation algorithm), and in certain cases this seems to be 

unfeasible (the GPU-based region growing algorithm). 

The emerging special problems demand specialized solutions, and therefore it is 

worth returning again to the solutions previously applied for the distributed 

systems. Although they require a bit more work (the framework is not ready, and 

it has to be established), as a result, the final achievement will meet the demands 

in every respect. 

During our search, we were able to use infrastructure of the Óbuda University and 

the resources of some remote computers; however, they raise some special 

demands, which are all supported by the newly developed system: 

 The most important aspect is the fact that how many clients can be started 

changes dynamically over time (we can use for searching only the currently 

free resources, but they should be completely used if it is possible). The 

system must support the entering of new clients at optional times, as well as 

the exiting of the available clients. The system is based on the classical 

master-worker model [28]. 

 It is essential that the system should use only the possible simplest and usual 

communication modes (protocols, ports) since it is possible that some of the 

clients will try to access the server from behind a fire wall. 

 The installation of the required programs must be as easy as possible for the 

individual clients; or ideally, no installation should be required. In addition, 

the possibility of automatic updating should be possible without separate, 

manual access to the individual work stations. 
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4.1. Communication between the Genetic Base and the 

Communication Layer 

It was an essential aspect when developing the system that it should be flexible 

thus enabling simple development of further genetic operators (for the genetic 

algorithm itself) or protocols (which ensure master-slave communication) later on. 

The genetic operations can be located practically within one component in 

optional implementation; the system only requires the realization of the bellow 

interface (where type Genom includes the data of one chromosome, mainly in the 

form of a vector including integers): 

 Genom CreateRootItem() - It creates a new instance with random 

parameters. It is called only in case of creating the instances of the initial, 

randomly created generation. 

 SelectParents(out Genom g1, out Genom g2) – It chooses two parents (g1 

and g2) randomly from the list of the stored instances. Select operator can be 

implemented by realization of this in compliance with the condition of how 

we would prefer the instances with better fitness function. 

 Genom CreateChild(Genom p1, Genom p2)- Based on two parents 

transferred as parameters it establishes a third instance and then returns it. 

Actually it corresponds to the cross operator, and we can determine here 

which genes should the new instance get from the parents. 

 Mutation(Genom gen) - Properties of the unit transferred as the parameter 

can be optionally changed. It complies with the mutation operator usual in 

genetic algorithms, and implementation is completely optional. 

 PrepareParentSelector() - It is an auxiliary technical method that runs 

exactly once before the above methods. It is practical to implement different 

initializations here (e.g. in the case of choosing the roulette wheel method, 

the wheel itself has to be created and initialized). 

 CONST_GENOM_ROOT_CNT – Size of generation #0. 

 CONST_GENOM_CNT – Size of all generations excluding generation #0. 

 CONST_ELITISM_PRCNT – Percentage value of elitism. The best instance 

from each generation that complies with this will automatically be passed to 

the next generation. 

Having implemented the above abstract methods the framework is suitable for 

development of the initial generation and application of the genetic operator 

needed later on. Thanks to the above abstraction, the technical details have been 

well separated from the genetic operations, and thus their complex development 

becomes possible, e.g. the implementation of the already mentioned distributed 

operation during evaluation of the fitness function. 
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Figure 2 

Main steps of our distributed genetic algorithm 

4.2. Implementation of the Master-Slave Protocol 

The operating framework executes the required genetic operators and also 

manages the evaluation of the fitness function. This latter is executed in 

distributed mode (Figure 2) and this provides for determination of the protocol to 

be used. This is important because the operation can be customized in this way 

depending on how the master-slave settings have been implemented: among 

processes within one computer (communication actually does not need a network, 

and it is more practical to use process-level communication supported by the 

operating system) or among several computers in a local network or among 

remote computers (it involves significant limits if these computers are behind 

different firewalls). 

Communication between the two sides is realized by an interim component which 

provides for services with the implementation of the below interface (among 

others), both towards the master and the slave sides: 

Methods to be called from the master side: 

 ProcessNextGeneration(generationID, List of genoms): master transfers 

identification of the next generation as well as the list of instances included 

with this call. The function of the communication component is to run the 
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fitness function evaluation for each of the chromosome received as 

parameters. 

 ContinueGeneration(generationID): due to technical reasons, the 

continuation of an already finished generation or one just under processing 

may become necessary; the master can initiate this by calling this method. 

Methods to be called from the slave side: 

 LoadWaitingPackets(generationID): a slave can indicate through this 

method if it would like to join the processing of the given generation. 

 Genom LockNextProcessable(): it reserves and loads the data of the instance 

to be evaluated next. Its return value is a Genom structure that includes all of 

the genes (in the present case, the parameters of region growing). 

 FinishAndSaveScore(Genom, List of score): after evaluation of the fitness 

function, the slave can reload the results by this method. Due to the fact that 

each parameter set has to be run for several tissue samples, the result will be 

a vector consisting of floating point numbers. 

Thanks to the object-oriented approach, the above interface can be implemented in 

optional form, depending on the condition of how we want to solve actual 

communication. There are several communication tools to implement parallel 

genetic algorithms [13]. First, we implemented a version based on FTP protocol 

[29]. It uses, in fact, a third level for communication, since the server uploads the 

data on the chromosomes to be processed to a FTP server, the clients download 

the elements to be processed for themselves and then they upload the results back 

to the same place. 

It has the advantage that no direct contact between the master and slave computers 

is required; the only key point is that an interim FTP server must be used that is 

visible from everywhere. Usually FTP protocol itself is allowed on firewalls, so a 

new client can fairly easily be initiated, if required. 

4.3. Ensuring Robustness 

During operation of the system robustness is of key importance. Being a 

distributed system, hundreds of clients can work at the same time, so possibly 

emerging errors cannot be monitored or repaired manually during runtime; the 

system should manage every problem. It must be done in such as way that the 

basic operation will not be affected, but running of the system with the best 

utilization enjoys priority. 

Elimination of the most fundamental problems is simply a task of programming 

technique. Problems can emerge at any time during operation, e.g. network related 

errors (network cannot be accessed, server cannot be accessed, etc.) or the outage 

of hardware devices for shorter or longer periods (e.g. the server is down, certain 
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clients shut down, power failure, etc.). These problems can be eliminated mainly 

with a well-developed application architecture; the system is prepared for faulty 

external network (sending of data from the network, receiving of data from the 

network) or errors in starting further processes (starting of region growing 

application), so (depending on the nature of the error) it restarts the operation or 

perhaps tries to repair it. 

Inappropriately selected parameters can cause trouble, too, which makes the 

region growing and the operation of the evaluation algorithm impossible, or make 

them more difficult (slowing all down). Because we do not know the relations 

between the parameters, these problematic parameter sets can emerge at any time 

and the errors caused by them must be prepared for: empty result, error in program 

run, increased runtime, etc. 

4.3.1. Empty Result 

Because we try continuously to alter a fairly large number of parameters in loose 

relation with each other, parameter sets which are inappropriate for the region 

growing algorithm frequently emerge (e.g. when the minimum region size given 

as a parameter is larger than the maximum region size as a parameter). Of course 

parameter hierarchy and their effect on each other is much more complicated in 

reality than this, so the involvement of a complex, preliminary control system that 

will filter out all of the practically meaningless parameters would demand a lot of 

time (if it could be implemented at all). 

We applied in practice the following method: we run the region growing for each 

generated parameter set; in cases when the parameters are in contradiction, then 

some kind of faulty response is expected as a final result (typically a response that 

the program did not find any cell nucleus). Although these evaluations also 

demand resources, they do not affect the path leading to the result, because the 

false results coming from the faulty parameters are given rather bad scores during 

evaluation, so these chromosomes will screen themselves out in the next 

generations. 

4.3.2. Error in Program Run 

The inappropriate selection of certain parameters will lead to even more critical 

results; it can cause a shutdown or a complete freeze of the program. Parameters 

of the different filters are typical, and they can be rather variable, e.g. they can 

determine certain ratio in case of the window sizes, or width of the window can be 

only an even number (in case of some filters), etc. In the ideal case, these are 

already revealed before the running of the algorithm during preliminary checking; 

sometimes, however, these are revealed only during running and then subsequent 

freezing of the program (because region growing uses external components such 

as  different filters, which can behave completely unpredictably in case of faulty 

data, so freezing cannot be prevented in every case.) 
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Diagram 1 

Number of invalid chromosomes by generation 

That is why a special control has been built in; should the program stop with an 

error code when evaluating any image, or should it freeze during operation of the 

region growing application, then the client automatically considers it as 0% result, 

finishes processing, does not continue with the next image belonging to this 

parameter set, and invalidates the results of the previous images. It is clear that, 

because we would not like to deal with a set of parameters later that is not capable 

of completely processing each image, irrespective of the fact what result has been 

received with the images where no errors emerged. Although a complex pre-

filtering module could be done here that would examine the correctness of the 

input parameters, we followed here the method that we let the genetic algorithm 

filter out the faulty parameters themselves. 

It works and it is well seen from the post-statistics that while a fairly large part of 

the components in some first generation stored unusable set of parameters (but do 

not forget that the initial generation has been actually created with random 

numbers in certain given intervals, so it is evident that too many contradicting 

parameters have been made), they have been rapidly cleared out in the later 

generations; after the 5
th

 generation, these kind of parameters were created only 

rarely (of course they will never disappear due to mutations and crossings without 

control, but thanks to the above treatment method they will never get into the next 

generation). This is shown well by Diagram 1. 

4.3.3. Increased Runtime 

Chromosomes that do not cause any trouble but importantly do increase the 

resource demand of processing result in a much greater problem than the above 

problems. The processing of one image took about 10 seconds in practice, and this 

value can increase many times with certain settings. This would not cause any 

problem in itself, because the clients work irrespective of each other; the problem 
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occurs because each result of the previous generation must be summarized for 

starting every generation. That is, if a client gets a relatively long-lasting 

processing, then the other clients (having finished processing each elements of the 

given generation, lacking other possibilities) are must only wait. In this period, 

naturally we can use only a fraction of the available resources, so this idle time 

must be minimized by any means possible, even if certain inaccuracy occurs. 

These kind of extremely long processes are worth stopping. In experiments, we 

limited this time to 1 minute. 

Every stoppage due to the time limit involves a negligence of the rules of genetic 

algorithms. However, it is worth considering that no accuracy is the strength of 

GA implementation anyway; the more detailed the analysis is, the more important 

it is that more generations be created and that the parameters which seem to be 

viable be combined as many ways as is possible. This is fairly resource 

demanding, so it seems to be practical to try many hundreds of new combinations 

by using all of our resources, instead of letting the complete system wait for 

minutes because of the precise evaluation of a single chromosome. 

Although the present article speaks only of searching for the ideal parameters, 

which usually means the set of parameters offering the most accurate result 

possible, it is worth of considering the fact that region growing is a rather 

computationally-demanding algorithm, so the incorrect selection of the parameters 

can either result in a practically unusable algorithm. Considering this aspect, 

stopping those evaluations that involve unacceptable processing times is even 

more justified, since they could not be used in practice, irrespective of accuracy. 

And although it is not the primary aim of this project, one favorable side effect of 

this method is that it allows for the filtering out of parameters resulting in very bad 

runtime as well as the elements supplying poor accuracy. 

4.4. Cutting in the Evaluation Algorithm 

In addition to region growing, the algorithm evaluating the results has a long 

runtime in certain cases. In the case that too many elements have to be processed 

(the number of cell nuclei in the original reference slide or found by region 

growing are too high) and they have the less than a one-to-one overlap, then more 

trials will be needed by the backtrack search of the evaluation algorithm. Taking 

into consideration the above aspects, we use an acceleration technique here, too. 

The backtrack algorithm described in our previous article [6] was combined with 

an extra cutting operation: before the search starts for the ideal pairing, it 

calculates how many combinations exist (although it will not know how many of 

them will be actually examined by backtrack) and if the number is more than 

1,000,000 then it searches the points where evaluation can be simplified without 

significantly affecting the final result. 
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1. In practice this means that it investigates the partial tasks of backtrack 

individually and finds the solution that brings the greatest fitness value in the 

case of the individual tasks. 

2. Based on these local maximum values, it selects the global maximum of 

reference and the test cell nucleus pairings that show the greatest overlap 

irrespective of the other pairing possibilities. 

3. This paring will be recorded (just as will be done by the backtrack algorithm 

at the end of the searching). 

4. Because the backtrack algorithm does not have anything to do in this partial 

task, it clears the full partial task. In the case that the partial task would have 

required examination of K pieces of paring possibilities, then the full size of 

the problem space to be overlapped by the backtrack algorithm would reduce 

to the K-th part. 

5. Should the number of the possible combinations still be too high, it restarts 

this operation, beginning from Step 1. 

This method significantly reduced waiting time (since searching time 

exponentially increases with the number of the possible pairings, and therefore 

some unfortunately selected pairings would result in drastic waiting time for the 

whole system). Of course the disadvantage is that the accuracy of evaluation 

reduces, but thanks to the above method, there is no random element in 

simplification, so the evaluation process can be repeated at any time and it will 

give the same result. 

5 Assessment of Our Results 

5.1. Examination of the Best Results for Every Generation 

Due to the used elitism technique, the instances with the best fitness values are 

automatically carried along into the following generation as well. For this reason, 

the best fitness values give us a monotonically increasing series of numbers. By 

examining these values, we can make assumptions about the speed of our 

optimization. 

As a comparison, we can use the parameter set used in [4]. After executing the 

analysis of the representative 11 tissue samples, the usual evaluation gave us the 

average accuracy of 78.1%. Currently this can be considered as the basis result 

and this is compared later with our result. Surpassing this value by any extent can 

clearly be considered as an improvement. 
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Diagram 2 

Distribution of accuracy by generations 

Diagram 2 shows the distribution of the different instances within the various 

generations. For every generation (horizontal axis) we display the accuracy levels 

(vertical axis) for every instance, using grey dots. Obviously the dark areas 

represent many chromosomes with similar results. 

It is visible that in the first few generations the instances are usually well below 

the aforementioned 78.1% value, but after some generations the majority of the 

population had chromosomes that yielded a better result than this value. By 

generation #273, the best accuracy was reached at 83.6%; this means an 

improvement of 5.5% compared to the previous best result. We kept the algorithm 

running for even more time, but until we stopped it (at generation #440) it 

produced no generation that had better accuracy than this. 

5.2. The Convergence of the Generations 

The first few populations (until generation #4 - #5) mostly contained 

chromosomes with weaker results, which did not even reach the previously known 

best value (though there were always a few that surpassed this level). This number 

then quickly increased during consecutive generations. For the first few 

generations there is a darker grey “patch” around the 70% level; this is because 

there were chromosomes that were technically viable, but the region growing 

found no cell nuclei (these are the instances that yielded empty results); and those 

chromosomes got an average accuracy value of 70% (maybe it is strange, but it is 
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not a mistake; most pixels of the tissue images are not parts of any cell nuclei, and 

therefore a blank result is decidedly better than a result with a lot of false positive 

hits). The first few generations contained a lot of chromosomes like this, and this 

is why the darker grey patch appears. 

The weak results of first few populations were followed by a dynamic growth 

phase (until generation #100) where the genes that belonged to the instances with 

good fitness values start to spread, and so the results improve greatly. It is visible 

that it took a reasonably small amount of time until almost all instances surpassed 

the critical 78.1% level. This part shows a process that is expected from a genetic 

algorithm: the chromosomes that started from a broad spectrum gradually 

converge towards each other, and since they converge mostly to the chromosomes 

that yield the best results, this means that their average result is increased as well. 

This was followed by the last stage, where this dynamic improvement 

significantly slows down. For a while the program still found better results, partly 

because of the crossovers, but later most probably it was only because of the 

mutations. No improvement was made after generation #273, although it can be 

noted that even after this point there are many different chromosomes present, and 

they cover a wide range of the search space; but after this point the search process 

can be more considered as a simple random search rather than a genetic algorithm. 

An interesting pattern appeared in the distribution of the results, which can be 

described as the following: 

 The algorithm uses the elitism method, so the top 30 instances of every 

generation are automatically carried into the next generation. As is visible, 

after generation #200 the instances are so close to each other that on the 

figure they are displayed as a dark horizontal line (where there are a lot of 

very similar instances in one place). This does not mean that the top 30 

elements are totally identical (there are smaller differences in the various 

genes), but the evaluation yields the same result for all of them. 

 Below this line there is a wide light gray strip that contains the newly created 

instances that (after the crossovers and mutations) yield variously different 

results. This wide strip is virtually the same during the consecutive 

generations, and this is true despite the fact that we would expect the 

crossovers to converge towards some kind of optimum; on the other hand, 

the mutations are totally random and are more dominant than the crossovers. 

 It is worth mentioning the light pale strip below the gray strip, which is the 

result of a single parameter having a special value that degrades the accuracy 

of the given chromosome by about 2%. The light strip contains only the 

instances with this special value (this is clearly shown because if we do not 

display elements with that value, then this light strip disappears). 
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Diagram 3 

Distribution of accuracy by generations 

We also need to examine our results considering the aspect of how long the 

algorithm should run. As we stated above, we do not have any expected final 

results at which point the processing should stop; but there could still be some 

conditions where the search should be terminated. One such condition could be if 

the consecutive generations contain instances that have genes that are so close to 

each other that the crossovers make no substantial changes. 

For a better view, it is practical to examine the variance of the accuracy values for 

the various instances (Diagram 3). As is expected, the variance is pretty high in 

the beginning for the randomly generated instances and in the first few 

generations, but as the more viable instances spread, this is quickly decreased. 

Then, after a while, this drop of variance stops and the variance remains stable. 

Although we would expect that with a genetic algorithm the variance would keep 

dropping (because the elements get more and more closer to an optimal result and 

to each other), this did not happen in our case. The reason behind this is that we 

set the size and the probability of the mutations to a pretty high value, because we 

have a reasonably large search space, and we tried to make the search process 

faster using a quite high ratio of mutations. But the many mutations prevent the 

genes from settling at an ideal value, so the variance cannot decrease any more. 

And even though the variance is high, our results show that the search gradually 

continued in a good direction, and the elitism method made sure that it did not 

change course. 

It is however clearly visible that we cannot set a stopping condition based on the 

distances of the chromosome from each other, because due to the mutations we 

cannot set such a limit. For this reason, we stopped the search when no 
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improvement was shown for 200 generations. Of course, because of the mutations 

we cannot say that there will be no improvement from the achieved maximum 

accuracy, but it is probably more practical to use our resources for a new search 

that is based on our final results used as an initial population. 

Diagram 3 shows a curiosity: the variation increases only once, when stepping 

from the first to the second generation. After examination of every instance it 

became clear that this happens because of the many non-viable instances in the 

first generation; and because of the chromosomes that give empty results after the 

region growing algorithm. The many similar instances (even though their results 

cannot be considered as usable results) gave us the lower variance value. 

5.3. Examination of the Processing Speed 

Examination of processing speed is not one of the primary goals of our research 

(and we could access the required resources for a limited amount of time only, so 

our aim was to get the best possible performance and not to measure the different 

performance levels). We performed no separate speed tests, but by subsequently 

analyzing the log files of the clients we were able to draw some conclusions on 

this topic as well. During the regular operation of the system, various clients 

dynamically connected and disconnected, so in this way we could obtain data 

about how the number of clients affects the processing time required for one 

generation. 

This is shown in Diagram 4, where the horizontal axis represents the generations, 

the blue area in the background represents the total processing time required for a 

generation, and the red dots represent the number of clients that took part in the 

processing of that generation. 

 

Diagram 4 

Execution time and number of clients by generations 
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It is clearly visible that by increasing the number of clients the required processing 

time immediately decreased, while during the last generations (as some clients 

were disconnected) the required time started to increase again. As the individual 

task units are almost totally independent from each other, and as the processing 

units are totally independent from each other, we would expect that by increasing 

the number of clients, the execution time required for a generation would linearly 

decrease. 

This did not happen because we could technically use only 27 workstations, so the 

only way that we could use more than 100 clients was that the client program was 

executed in multiple instances; in this way we tried to utilize the full potential of 

those computers (the computers had quad-core CPUs, an thus according to this, 

we used 4 instances per workstation). 

This slightly increased the processing performance, because the evaluation 

algorithm only utilizes a single CPU core, so by executing four instances, we did 

manage to better utilize the available resources during the evaluation phase. As for 

the cell nuclei detection algorithm this made no changes, because the region 

growing algorithm was already optimized for a multi-core environment (especially 

through the intensively used OpenCV function calls), so using multiple instances 

meant absolutely no benefits in this case. 

The linear growth as such cannot be reached in itself for the single reason that the 

processing time required for the different task units can vary a lot, so there is 

always a few-minute-long hiatus when one of the clients is still working on the 

last task unit while all the others are already finished and thus are waiting for the 

start of the next generation (to execute the genetic operators, the complete results 

of every task units are required). For this reason, a further improvement could be 

to estimate the processing time required for the task units (based on the 

parameters), and in this way it could be possible to implement a more 

sophisticated scheduler. 

Conclusions 

As a result of our research, we managed to develop a data-parallel region growing 

algorithm that is equally as accurate as the sequential version, but its speed is two 

or three times faster than the original one. The algorithm was implemented on 

Nvidia Fermi GPU. 

The next step was to set the values of the considerably high number of parameters 

that are required for both the old sequential and the new parallelized versions of 

the region growing algorithm. We have developed a genetic algorithm for this 

purpose and implement the framework being in compliance with the above. In 

addition to the basic classes, a component implementing a communication 

protocol (applying the already mentioned FTP transmission) has been developed. 

As mentioned above, we ran the evaluation for 11 only tissue samples, instead of 

the available 41 samples, and therefore we could use the remaining samples as a 
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control group. According to this, we executed the evaluation for all of these 

images: the average accuracy was 76.83% (using the old parameters) and now was 

81.15% (using the parameters found by the genetic algorithm). 

The genetic algorithm successfully determines a set of parameters that can be used 

to achieve 81.15% accuracy on the pre-existing reference slides. This, compared 

to the results with the previously known best set of parameters, means an 

improvement of 4.32%. 

We have already developed a distributed framework for the execution of the 

genetic algorithm. The framework has lived up to our expectations, and the 

execution time of 440 generations was fully acceptable. 

At present the server gives the tasks for the clients in batches; one batch actually 

means the complete examination of one chromosome (the running of region 

growing and the evaluation for the selected images and summary of the results). 

However, it became clear in practice that further distribution of the batches would 

be practical (that is, in the case that the evaluation has to be done for several 

images, then it could be done by different clients); namely it is fairly frequent that 

several hundred clients are waiting for the next generation while one client is still 

working with the large-volume job assigned to it. 

Due to technical reasons the clients and the server communicate through a FTP 

server in compliance with the rules of the FTP protocol. This solution was 

selected because we worked with rather limited instruments and this protocol 

allowed us simple and problem-free coordination of the remote devices behind 

different firewalls. However, it became evident in practice that in the case of 

larger loading (hundreds of clients at a time, concurrent access to the same files) 

the examined FTP server implementations proved to be bottlenecks, and therefore 

communication should be practically re-planned with a protocol especially 

developed for this purpose. 
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