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Abstract: The mathematical description of gas-pressure oscillations excited by a piston at 

the end of a straight duct has been investigated in an analytical way and it has been 

compared to numerical solutions and measured results. Two different analytical solutions 

have been found in the literature in series form which have been transformed into closed 

form solutions showing their identity. This evaluation can significantly be simplified and 

the comparison of the results of the analytical and the numerical solutions are presented in 

this study accordingly. In the results are presented the frequency of piston is close to the 

resonant frequency. 
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1 Introduction 

The studied geometrical model with piston movement of constant frequency at 

one end of a pipe and with a free stream outflow to the atmosphere at the other 

end is shown in Figure 1. Such unsteady oscillations inside the pipe are calculated 

with different mathematical approaches. E.g. if amplitude of the oscillation is 

considered to be sufficiently small; the mathematical model of the current physical 

problem is the one-dimensional wave equation with the appropriate boundary 

conditions. In case of large amplitudes, a substantially different mathematical 

model must be used because the propagation of pressure waves cannot be 

described correctly with the solution of the linear wave equation. In the following 

discussion different wave equation solutions will be shown. 

Jimenez [2] investigated the numerical solution of a similar gas pressure 

oscillation problem. An analytical investigation for the same problem is presented 

by Hoffmann and Fényes [1], where the problem is solved using the same 

mathematical model of a partial differential equation system as well as initial and 

boundary conditions. 
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Figure 1 

Schematic diagram of the gas-pressure oscillation problem 

Different analytical methods are used by Hoffmann and Fényes [1] to solve the 

mathematical model of the pressure wave propagation. The developed analytical 

solutions give the same result although they are in very different forms. The aim 

of this study is to present a solution of simplified form for the mathematical model 

of the pressure wave propagation. A closed form formula is developed from the 

different infinite series solutions worked out by Hoffmann and Fényes [1]. If both 

solutions are brought into a closed form, they can be formed also formally 

perfectly immediately. (That out of the momentum and mass transport equations 

corresponding to the physical process and continuity equation diverted 

mathematical model that on the velocity c(x,t) and the pressure is p(x,t) related 

partial differential equation system ). Some parts of the solutions was published by 

Szlivka [4] but in German language and only in Hungary, nevertheless it was not 

complete. It is shown some calculated  results and  comparison with other theories 

and measured results. 

The mathematical model of the pressure wave oscillation stems from the 

momentum and mass transport equations of the continuous fluid. It is called in the 

literature as acoustic model see [5], [6]. 
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With the appropriate initial and boundary 
conditions
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where the meaning of the symbols are: "ρ" the density of the medium; "a=347,8 

m/s" the speed of sound (constant); "p" the pressure; "R " the radius of the 

crankshaft; "ω " drive its circle frequency; "L" the pipe length. In the first case “l”, 

the rod length is infinite. In chapter 6 there will be used finite rod lengths [1] 

following solution is based on the Bernoulli-Fourier-method: 
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With the Laplace-transformation, the 
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Where  0)-(t sin  if t , as well as 0t    , 0 . 

We can see two different solutions above. One with Fourier method (3), (4), the 

other with Laplace-transformation (5), (6). Both can be brought into closed form 

in order to reach the result, which will be presented in Chapter 3 and 4. 

It is to be recognized that the only difference between formula (3) and (4) is 

constant ‘p0’, multiplicator ‘ρa’ and sign of the second term. Therefore 

simplification is shown only for formula (3), which can be used for formula (4) 

analogically. 
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3 Developing the Closed Form of the Infinite Series 

form Derived from the Bernoulli-Fourier-Method 

Formula (3) contains two separate infinite series of cosine functions which can be 

reformulated into closed form what can be seen in expression (15) and (16). For 

simpler handling, the following symbols are introduced: 
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and these symbols  applied in expression (3) 
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The infinite series expression in equation (8) can be divided into the sum of two 

other infinite cosine series, which comes from Ryzhik, I. M.-Gradstein, I. S.: 

Tafeln [3]. 
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where y can be both T+X or T-X, and nandi;j;kand
2

π
kΩ   are integer 

numbers. Multiplicator (2n+1) on the left side is an odd number. The right side 

consists of infinite series in eq. (9)  

The following notations are introduced: 
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2

y
intNwhere;zN

2

y
1111 








  (10) 

  1z0andyintNwhere;zNy 3333              (11) 

where int() function is the largest integer part of real value. 

31 NN2    if  N3 an even number and (12) 

1NN2 31   if N3  is an odd number. 
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Second term at the right side of the equation (9) is substituted with expression (11) 

and the following formula has been received 
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Let us use the following equations from Tafeln [3]: 
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supposing that “k” is an integer number, “  “ is not an integer number, (13) and  

(14) can be written in a simpler form. If 1N  and 3N  are even numbers, we get 

expression (15) and if 1N  and 3N  are odd numbers we get expression (16), if 

“z” value fulfils the above indicated conditions. If 1N  is an even number 

inequality (17) must be valid by expression (10). 

                                                
  1z0  (17) 
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This condition is almost equivalent to expression (10). It is easy to realize that 

after the definition by 
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z  and 
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z
 
conditions of the equivalences (15) and (16) are 

always fulfilled. 
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case if N1 and N3 are even numbers. Expression (9) can be formulated in a 

substantially simplified form with the application of expression (15) and (16) with 

the corresponding conditions for 
1

N  and 
3

N
. 

 

 

   

     


























 



































































2sin

cos1Nycos21N2ycos2

sin

2zcos

2sin

2z2cos

j

znjcos2

2
i

znicos4
2

2
1n2

y
2

1n2cos

2

31

31

1j
2

2

1

2
1i

2
2

1

2
0n

2
2

 

This modification was carried out if 
1

N  and 
3

N  are even numbers, but rather also 

can be solved in all other cases, as well. After application of the relations (12), one 

receives the expressions: 
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Introduced the expression 
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   and use in the last two expressions we get 

the same result for all cases of odd and even 1N  and 3N  numbers. 
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This formula can be used in the equation (8) if y eider T + X or T -X 
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Using the expression in the equation (18) we can get the final form of the velocity 

in equation (20). 
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






































      (20) 

und the pressure in equation (21). 
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 

 

















cos

2
Nsin

2
N1NXTcos

D

cos

2
N)1N(cos

2
NNXTsin

D1)T,X(P

444

1111




















































          (21) 

0cos  . 

It is important to review whether the result fulfils the initial and boundary 

conditions or not (2). Next investigation is to substitute these conditions to 

expressions (20) and (21). We circumscribe the conditions (2) with the labels (7) 

into non-dimensional form to this, therefore: 

  lP(X,0)       0,  V(X,0)       0T   

  TsinB T)V(0,       0X   

  1 T)P(1,       1X   

At T=0 is out of (19) it is to recognize that 1-  N
1
  and 0  N

4
 . In this case value 

of the factors  l)sin(N1  and 4N sin  in (18) and (19) is zero, and so directly 

that 0  V(X,0) and 1  P(X,0) . 

In 0  X   arises out of (19) that 
41

N  N   used; this in (18) and with trigonometric 

identities transformed receives one the prescribed boundary condition: 

      

   
TsinB

cos

cosTsin
B

cos

sinTsin
B

cos2

TcosTcos
B

cos

Nsin1NTsin)1N(sinNTsin
B)T,0(V 1111













































 


In 1  X   is out of (19) to see, that 1N  N
41
 ; this in (21) set and moved 

together, receives one (using  ): 

     




cos

Nsin1NTsin1NTsin
D1)T,1(P

444




If the identity is used regarding the sum of the sinus both angle, one receives the 

expression: 

   






 cosNTsin

cos

Nsin
D1)T,1(P

4

4  



Acta Polytechnica Hungarica Vol. 11, No. 2, 2014 

 – 109 – 

Out of (19) 
2


  , therefore the cosine of this expression is also zero. 

  1T,1P 
 
constant, that with the desired boundary condition agrees. Expressions 

(20) and (21) satisfy the non-dimensional forms of the equation system (1) with 

which exception of the points are not where  T,XP  and  T,XV  derivable. At 

these places, also the original expressions (3) and (4) kink points have however. 

Latter is maintained only based on the record of the functions. 

4 Developing the Closed Form Calculated by the 

Laplace-Transformation Method 

Only the expression (5) of the speed is reduced - like under A - because the 

expression of the pressure in more by more analogy manner can be transformed. 

With the labels (7), becomes (5) written: 

   

   

   

   























1

1

1

1

N

0n

n

N

0n

n

N

0n

n

N

0n

n

n2sin12XTcosB

n2cos12XTsinB

n2sin1XTcosB

n2cos1XTsinB)T,X(V









 (22) 

where under application of the next to conditions   0Tsin   if T and 

0T  ; 0 the equations (5) and (6), and the labels 
















 


2

XT
int;0MaxN1 ; 



















 1

2

XT
int;0MaxN2

 (23) 

The meaning of that is, if  0X-T  ;     0X-T cosX-T sin   and if 

02-XT  ;     02-XT cos2-XT sin    must be. 

The expressions with summation in (22) can be written in same manner in a 

simpler form. One from that, for example 

 



N

0n

n
n2sin1   (24) 
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The label introduced 
2


   and used into the context (22), receives one after 

the same conversions 

     

  

  





N

0n

n

N

0n

n
N

0n

n

n2cosncos1

n2cosnsin1n2nsin1





 (25) 

The first term on the right side is always same zero, that factor  n cos  1)- ( n   in 

the second term yields for all “n” one, therefore Eq. (24) can write further similar: 

 






N

0n sin

Nsin1Ncos
n2sin




  

The equivalence was taken from Tafeln [3].  If the expression 

  


N

0n

n
n2cos1 

 
in the same manner is simplified, one receives the simplified form: 

 




cos

Ncos1Nsin 
 

The results on the expression (22) for V(X, T) used, receives one the simplified 

context 

 

 

 

 




















sin

Ncos)1Nsin(
2XTcosB

sin

Ncos)1Nsin(
2XTsinB

sin

Ncos)1Nsin(
XTcosB

sin

Ncos)1Nsin(
XTsinB)T,X(V

22

22

11

11



















 (26)

 

Let's introduce the label 1NN
24
  and simplify like (26) under application of 

the well known trigonometric equivalences and 
2


  , therefore: 
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 

 

















cos

2
Nsin

2
N1NXTcos

B

cos

2
N)1N(cos

2
NNXTsin

B)T,X(V

444

1111




















































(27) 

After similar simplifications, the pressure arises to 

 

 

















cos

2
Nsin

2
N1NXTcos

D

cos

2
N)1N(cos

2
NNXTsin

D1)T,X(P

444

1111




















































(28) 

0cos  and 0T  where  






 








 


2

XT
intN

2

XT
intN

41
. 

In (23) a condition was made for 1N  and 2N  ( 1NN 24  ) that they cannot be 

negative. Condition that T<0 must not be made because it is out of the initial 

conditions. The values   k  do not belong to the domain of the velocity 

formulas (27) and pressure formulas and (28), while in the formulas (5) and (6) it 

belong to the definition area, however the corresponding expressions have the 

same limit. (When   k it is the own resonance frequency of the pipe.) 

It is to be recognized that velocity relation and pressure relation (20) and (21) 

simplified with the Fourier method will match relations (27) and (28) simplified 

with Laplace-transformation. 

The boundary conditions of the physical process were indicated through the 

equations (2). A fully sinusoidal excite expression was supposed on the closed end 

of the pipe. As equations (1) and the boundary conditions are homogeneous linear, 

the resulting solution can be produced as a sum of divided solutions of several 

sinusoidal expressions with different amplitudes and frequencies. The simplified 

forms have especially large advantages in these cases as in [1] indicated end 

formulas. The advantages arise in the simpler calculation and in the less required 

time duration. The next chapter is presenting a practical calculation of these 

results. 
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5 Results of Analytical and Numerical Solutions 

Let us look through the gas dynamic solution of this mathematical problem. The 

gas dynamic model was solved with the help of method of characteristics. The 

differential equation system has a different form from the equation (1). 

0
x

c

t
c

t
;0

x

p1

t

c
c

t

c



































 (29) 

The main difference between the two models is that the "a" value, the speed of 

sound is not constant in the gas dynamic model. The wave equation of gas 

dynamics uses the basic relations without neglect, although it is more expedient to 

modify the equation system in such a manner that the dependent variables in it 

should be the velocity c = c (x,t) and the speed of sound a = a ( x, t ). Hence 

0
x

a
a

1

2

t

c
c

t

c
;0

t

a

1

2

x

a
c

1

2

x

c
a 









































 (30) 

The quasi-linear partial differential equation system is hyperbolic. The applied 

numerical solution is called the method of characteristics. The details are in the 

[2]. And there is no analytical solution for this differential equation system. At the 

physical plane [x, t,] along the projection of the characteristic curve with a given 

tangent, the correlations of the independent variables can be written in the non-

dimensional form, in the well-known manner, as 

;AV
2

1
;AV

2

1













0
a

c
V   

Where  and  are the Riemann-variables and 
0

a/cV  : the non-dimensional 

velocity and 
0

a/aA  : the non-dimensional speed of sound. The isentropic 

change of state has been used in each case to determine pressure. The boundary 

condition is a little bit different, the pressure on the open end of the pipe is not 

constant. The details can be seen in the [5]. In Figure 2 you can see different 

model solutions and measured results from [7]. The calculated gas oscillation 

frequency s/129,317  is very close to the resonant frequency 

s/119,327
r
 . 

According to Figure 2 the solution of the wave equation of acoustics has shown a 

difference of about l0 % less in the amplitude, related to that one of gas dynamics. 

On the basis of the examinations it can be stated that the pressure patterns forming 

in the system are equal regarding the frequency, depending on the calculation 

method, but from the point of view of the pressure values, considerable 

differences appear, according to the preceding valuations. The analytical solution 

can be used to predict the gas velocity and pressure fluctuation inside a straight 

pipe. It is simpler to use than the gas dynamic model. 

a

v
X 
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Figure 2 

Comparison of the different solutions 

We have some measurement results, too. The measurement data are between the 

acoustic and the gas dynamic model results. In the real case the friction force 

decreases the velocity and the pressure amplitude. For example, in the [8] J. J. 

Patel and U. V. JoshI show CFD calculation results of a gas oscillation where 

there is friction in the pipe. 

6 Some Calculated Results 

The gas oscillation problem can be solved analytically not only in a clear 

sinusoidal excitation. It is an opportunity for the analytical solution if the piston 

velocity is more complicated function of time, for example when the piston rod is 

not infinite. The differential equation system is the same (1) 

t

p

2a

1

x

c
;

x

p1

t

c























  (31) 

The appropriate initial and boundary conditions are the next: 

0p)0,x(p0)0,x(c   

   







 tω2sin

2

λ
tωsinRωt)c(0, 0p)t,L(p   (32) 

where the meaning of the symbols are: "  " the density of the medium; "a0=347,8 

m/s" the speed of sound (constant is); "p" the pressure; " m011,0R  " the radius of 

the crankshaft; “ m044,0 “ the piston rod length; “ 25,0
R
 “ the piston rod 

ratio; " " drive its circle frequency; " m5L  " the pipe length. The velocity 

)t,0(c function is an approximation: the first two terms of a Taylor’s series for a 

finite rod length. The first term is at infinite piston rod length in the previous 

section. 
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The (31) equation system is homogenious linear so the solution of a sum of two 

functions is the sum of the two solutions. In this case pressure and velocity 

oscillation were calculated. Figures 3 and 4 show the results. Non-dimensional 

velocity,
0a

c
V  and non-dimensional pressure, 

0p

p
P  )are used in the diagrams. 

Figure 3 shows the pressure functions at infinite and finite piston rod while Figure 

4 shows the velocity functions. Pressure and velocity functions were calculated at 

2,0X  and 8,0X  . The function is zero until the wave from the piston reaches 

the observation point at 2,0X  or 8,0X  . The difference between the finite and 

infinite functions is bigger until two or three oscillations. After some periods the 

difference can be neglected. You can see that the functions of pressure and 

velocity have some broken points where the functions are not derivable. It is an 

interesting property of the solution. 

 

Figure 3 

Comparison the pressure functions of the “infinite” and “finite” piston rod solutions 

(The vertical scale is shifted) 

 

Figure 4 

Comparison the velocity functions of the “infinite” and “finite” piston rod solutions (The vertical scale 

is shifted) 
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Conclusion 

Two different mathematical infinite series solutions exist in the literature. In this 

article they were transformed out of an endless row into closed form. Both 

simplifying methods reached the same result as a closed form. It is simpler to use 

these solutions than the gas dynamic numerical simulation. The comparison with 

other numerical solutions and measured results shows a good agreement. 
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