
Acta Polytechnica Hungarica Vol. 5, No. 1, 2008

 – 59 –

Priority, Weight and Threshold in Fuzzy SQL
Systems

Aleksandar Takači
Faculty of Technology, University of Novi Sad
Bulevar Cara Lazara 1
Serbia
stakaci@tehnol.ns.ac.yu

Srdjan Skrbic
Faculty of Sciences, University of Novi Sad
Trg Dositeja Obradovića 3
Serbia
shkrba@uns.ns.ac.yu

Abstract: PFSQL is the query language used for querying fuzzy relational databases. One
of the most distinguished features of PFSQL is the possibility to prioritize conditions.
Priorities are most often confused with weights. In this paper we compare queries with
prioritized conditions with queries with weighed conditions. Since PFCSP systems are the
theoretical background for PFSQL and similarly WFCSP are the theoretical background
for weighted queries we elaborate these two systems. Queries with thresholds are another
feature of PFSQL. When a threshold is attached to a condition only the tuples that satisfy
the condition with a higher value then the threshold are displayed in the result. Through
examples we compare these features of PFSQL.

Keywords: PFSQL, PFCSP, priority, threshold, weight

1 Introduction

The representation of imprecise, uncertain or inconsistent information is not
possible in relational databases, thus they require add-onns to handle these types
of information. One possible add-on is to allow the attributes to have values that
are fuzzy sets on the attribute domain, which results in fuzzy relational databases
(FRDB) [2].

A. Takači et al. Priority, Weight and Threshold in Fuzzy SQL Systems

 – 60 –

SQL (Structured Query Language) is the most influential commercially marketed
database query language. It uses a combination of relational algebra and relational
calculus constructs to retrieve desired data from a database. FSQL (Fuzzy
Structured Query Language) is SQL that can handle fuzzy attribute values [1]. The
main difference between SQL and FSQL is that SQL returns a subset of the
database that matches search criteria as the query result. On the other hand, FSQL
returns a subset of the database together with value in the unit interval for each
data row that marks how much does that particular data row matches search
criteria.

When attributes with fuzzy values appear in the query it is transformed into a
query that can be handled by SQL. Finally, results obtained from the SQL query
are post processed in order to obtain the desired information as explained above.

Priority is implemented within Prioritized fuzzy constraint satisfaction problem
(PFCSP). PFCSP is actually a fuzzy constraint satisfaction problem (FCSP) in
which the notion of priority is introduced [4]. Perhaps, the key factors in that
implementation are priority t-norms. They are introduced in such a way that the
smallest value, usually the value with the biggest priority, has the largest impact
on the result given by a priority t-norm. It is introduced by an axiomatic
framework. More details about PFCSP are given later in the paper. PFCSP is the
theoretical background for incorporating priority into FSQL.

PFSQL allows conditions in the WHERE clause of the FSQL query to have a
certain priority i.e. importance degree [5]. Priorities are most often confused with
weights. We compare weighed FSQL queries with PFSQL queries. Also each
condition in the WHERE clause can have a threshold. If the threshold is not
satisfied the data row is dropped from query result.

2 FCSP, PFCSP and Threshold

I will first define FCSP as the background of PFCSP and WFCSP.

Definition 1 A fuzzy constraint satisfaction problem (FCSP) is defined as a 3-
tuple ()fX D C, , where:

1 { 1 2 }iX x i n= | = , , ,L is a set of variables.

2 { 1 2 }iD d i n= | = , , ,L is a finite set of domains. Each domain id is a finite

set containing the possible values for the corresponding variable ix in X .

3 fC is a set of fuzzy constraints. That is,

Acta Polytechnica Hungarica Vol. 5, No. 1, 2008

 – 61 –

()

{ () [0 1]f
i f

j

f f
jR

x var R

C R dμ
∈

= | : → ,∏ (1)

where {1 2 }i n= , ,L .

PFCSP systems are an extension of FCSP and they are introduced axiomatically.
Instead of giving the formal definition of axioms we will briefly explain each of
them.

The first axiom states that a zero value of the local satisfaction degree of the
constraint with the maximum priority implies a zero value of the local satisfaction
degree. The second axiom states that, in the case of equal priorities, the PFCSP
becomes a FCSP. The third axiom captures the notion of the priority. If one
constraint has a larger priority then, the increase of the value on that constraint
should result in a bigger increase of the global satisfaction degree than when the
value with the smaller priority has the same increase. It captures the concept of
priority in a linear sense. For example take two investments where one of them
results in a bigger profit (larger priority) then it is expected that it is better to
invest in a more profitable investment then in a less profitable one, if the profit
increase is linear to the investment sum.

The fourth axiom is the monotonicity property, and finally the fifth is the upper
boundary condition.

When the t-norm LT is used together with the s-norm PS we obtain the system
that satisfies the given axiomatic framework. The global satisfaction degree in this
system is calculated using the following formula:

()

()
() { () }f f

i

f
f f

X R var R
max

R
v v R Cρ

ρ
α μ

ρ
= ◊ | ∈ ,⊕ (2)

where () ()Lx y T x y, = ,⊕ , and () (1)Px y S x y◊ , = − , . We will call this

system L PT S− .

Similarly, we obtain the min max− system if we take () ()Mx y T x y, = ,⊕ ,

and () (1)Mx y S x y◊ , = − , .

Now, describe how a PFCSP works. Priority of every constraint fR is evaluated

by function [0)fRρ : → ,∞ . The larger the value of ρ is the larger the priority.

After the normalization of the priority values which is done by dividing each
priority by max max{ () }f f fR R Cρ ρ= , ∈ every priority obtains a value in the

unit interval. Standard implication aggregates priority of each constraint with its

A. Takači et al. Priority, Weight and Threshold in Fuzzy SQL Systems

 – 62 –

value. This is done in a way that the larger the priority, the more chance it has for
the resulting value to stay the same as it was before aggregation. If the priority of
constraint is small, then the aggregated value is closer to 1. This leads to greater
values for constraints with the smaller priority. It makes sense, since when these
aggregated values are again aggregated with a Scour-concave t-norm T , the
smaller values have more impact on the result due to properties of Scour-concave
t-norms [3, 6]. We have given two concrete PFCSP systems, min-max and

L PT S− that satisfy the previously given axioms. Now, we will describe how the
global satisfaction degree of this system is calculated.

The function ρ represents the priority of each constraint. Operator ◊ aggregates
priority of each constraint with the value of that constraint. These are then
aggregated by the operator ⊕ , which results in the satisfaction degree of an
evaluation.

Priorities in PFCSP are most confused with the concept of weights. We can define
a WFCSP – weighted fuzzy constraint satisfaction problem, where for each
constraint iC we have an assigned weight iw . The global satisfaction degree for a

valuation Xv , ()W Xvα in WFCSP is calculated by a known formula:

1 1 2 2() ()W X n nv T c w c w … c wα = ∗ , ∗ , , ∗ , (3)

where ()
ii C Xc vμ= is the local satisfaction degree of a constraint iC and T is a

t-norm. In order to have an adequate comparison between WFCSP and PFCSP we
take MT T= and LT T= . When MT is used we get the global satisfaction degree

()MT
W Xvα , and analogously when LT is used we get ()LT

W Xvα .

In FSQL we can assign a threshold (THOLD) to each constraint. We will now
point out the difference between threshold and priority in order to avoid any
confusion. If there is a THOLD quantifier attached to a condition, FSQL
automatically discards the data row which does not satisfy the condition with a
given threshold. On the other hand, if the value of the PRIORITY exists, PFSQL
calculates the satisfaction degree for each data row regardless of its satisfaction
degree as it will be shown in an example in the following section.

Acta Polytechnica Hungarica Vol. 5, No. 1, 2008

 – 63 –

3 FRDB and PFSQL

If we allow the attributes in classical RDB to have values that are fuzzy subsets of
the attribute domain, the result will be fuzzy relational databases (FRDB).

Our idea is to have the most common fuzzy set types implemented and that the
attribute values in FRDB are most often standard fuzzy sets, and only a small
percentage of attribute values are generalized fuzzy sets specified by the user,
though our model works with general fuzzy sets in every aspect of FRDB -
storing, querying, etc [8]. We introduce one more extension of the attribute value,
the linguistic label. Linguistic labels are used to represent most common and
widely used expressions of a natural language (such as ‘tall people’, ‘small salary’
or ‘mediocre result’). Linguistic labels are in fact named fuzzy values from the
domain. In order to use a linguistic label on some domain, first we must define
this label. For instance, we can define the linguistic label ‘tall man’ as a fuzzy
quantity that has an increasing linear membership function from the point (185,0)
to the point (200,1). Considering these extensions, we can define a domain of a
fuzzy attribute as:

C D LD D F L= ∪ ∪ , (4)

where CD is a classical attribute domain, DF is a set of all fuzzy subsets of the

domain, and LL is the set of linguistic labels. In our model we allow triangular

fuzzy numbers and fuzzy quantities for DF .

The basic difference between SQL and PFSQL is in the way the database
processes records. In a classical relational database, queries are executed so that a
tuple is either accepted in the result set, if it fulfills conditions given in a query, or
removed from the result set if it does not fulfill the conditions. In other words,
every tuple is given a value true (1) or false (0). On the other hand, as the result
set PFSQL returns a fuzzy relation on the database. Every tuple considered in the
query is given a value from the unit interval. This value is calculated using
operators of fuzzy logic. The question is what elements of the classical SQL
should be extended. Because variables can have both crisp and fuzzy values, it is
necessary to allow comparison between different types of fuzzy values as well as
between fuzzy and crisp values. In other words, PFSQL has to be able to calculate
expressions like (180 11 8)height triangle lin= , , , , regardless of what value of
height is in the database – fuzzy or crisp.

In classical SQL it is clear how to assign truth value to every elementary
condition. With fuzzy attributes, situation is more complex. At first, we assign
truth value from the unit interval to every elementary condition. Only way to do
this is to give algorithm that calculates truth value for every possible combination
of values in query and values in the database. For instance, if a query contains

A. Takači et al. Priority, Weight and Threshold in Fuzzy SQL Systems

 – 64 –

condition that compares a fuzzy quantity value with a triangular fuzzy number in
the database, we must have algorithm to calculate compatibility of the two fuzzy
sets using a similarity relation. After the truth values from unit interval are
assigned, they are aggregated using fuzzy logic. We use t-norm in case of operator
AND, and its dual t-conorm in case of operator OR. For negation we use strict
negation: () 1N x x= − .

In case of priority statements, mechanisms deduced from PFCSP systems are used
to calculate the result [7]. With normalization of the priority values, every priority
obtains a value in the unit interval and also one of the priorities has the value .1
Moreover, with standard implication (S(1-p, v), S is a s-norm) we aggregate
priority of each constraint with its value. This is done in a way that the larger the
priority, the more chance it has for the resulting value to stay the same as it was
before aggregation. If the priority of constraint is small, then the aggregated value
is closer to 1. This leads to greater values for constraints with the smaller priority.
It makes sense, since when these aggregated values are again aggregated with
either MT or PT the smaller values have more impact on the global satisfaction
degree.

We now describe processes that allow PFSQL queries to be executed. The basic
idea is to first transform PFSQL query in something that classical SQL interpreter
understands. Namely, conditions with fuzzy attributes are removed from WHERE
clause and those fuzzy attributes are moved up in the SELECT clause. In this way,
conditions containing fuzzy constructs are eliminated, so that the database will
return all the tuples – ones that fulfill fuzzy conditions as well as the ones that do
not. As a result of this transformation, we get a classical SQL query. Then, when
this query is executed against the database, results are interpreted using fuzzy
mechanisms. These mechanisms assign a value from unit interval to every tuple in
the result set.

More precisely, processing the PFSQL query comprises of four phases: query
syntax checking, loading the query into memory structure, transformation of the
query, and fuzzy interpretation of the results returned by the database. First, the
given query is checked for correct syntax using scanner and parser constructed for
this task. If the query is correct, the result of syntax analysis done by the parser is
a memory structure that represents this query. Next step is the transformation of
this structure in already described fashion. We need to check whether an attribute
is fuzzy or not. When the fuzzy attributes are identified, conditions in the WHERE
clause that they appear in are removed, and the attributes are added to the
SELECT clause. Removed conditions are put in another memory structure,
because they will be used to interpret the result set. Result is a classical SQL
query which can be directly executed against the database. After the query is
executed, returned results are further processed. A measure of condition
fulfillment is assigned to every tuple in the result set. This measure is a value from
the unit interval which is defined by a similarity relation described in the

Acta Polytechnica Hungarica Vol. 5, No. 1, 2008

 – 65 –

following section. In this phase we use a memory structure with fuzzy conditions
removed from WHERE clause to calculate measures using priority fuzzy logic.

4 Example

Now we will describe the scenario. Suppose we have to pick a soccer player and a
basketball player. We evaluate candidates based on their Height, Speed and
Stamina. Depending on the sort, each attribute will have a certain priority. We will
suppose that for the soccer player Speed is the most important, Stamina is mildly
important and Height is the least important. For the basketball player Height is the
most important, Stamina is mildly important and Speed is the least important. The
min-max and LT - PS systems will be used for evaluation.

The results for five athletes are given in the following tables. Table 1 represents
evaluations for the soccer player. We assume that the priority of Speed constraint
is 1, Stamina has priority 0.7 and finally Height has priority 0.2. Similarly, Table 2
represents evaluations for the basketball player where priority Speed constraint is
0.4, Stamina has priority 0.6 and finally Height has priority 1.

The example for the soccer player can be interpreted as the following PFSQL
query.

SELECT *
FROM Athletes
WHERE (Height=’tall’) PR 0.2
AND (Stamina=’Excellent’) PR 0.6
AND (Speed=’fast’) PR 1

The satisfaction degrees for the query are given in Table 1.

no. Spd Sta Hei MT LT

1 1 0.6 0.2 0.6 0.53
2 0.55 0.65 0.7 0.55 0.31
3 0.1 0.6 1 0.1 0
4 0.8 0.7 0.7 0.7 0.59
5 0.9 0.6 0.3 0.6 0.59

Table 1
Satisfaction degree for the Soccer player

Similarly, the example for the basketball player can be interpreted as the following
PFSQL query.

A. Takači et al. Priority, Weight and Threshold in Fuzzy SQL Systems

 – 66 –

SELECT *
FROM Athletes
WHERE (Height=’tall’) PR 1
AND (Stamina=’Excellent’) PR 0.6
AND (Speed=’fast’) PR 0.4
The satisfaction degrees for the query are given in Table 2.

no. Spd Sta Hei
MT LT

1 1 0.6 0.2 0.7 0.575
2 0.55 0.65 0.7 0.25 0.145
3 0.1 0.6 1 0.1 0.07
4 0.8 0.7 0.7 0.7 0.5
5 0.9 0.6 0.3 0.6 0.51

Table 2
Satisfaction degree for the Basketball player

If we want to use a WFCSP - MT query for choosing the athletes, the query for
the soccer player would be the following.

SELECT (MIN(Height*0.2,Stamina*0.6,Speed*1))
FROM Athletes
WHERE (Height=’tall’)
AND (Stamina=’Excellent’)
AND (Speed=’fast’)

Similarly, for WPFCSP - LT the query should have the following form:

SELECT (MAX(Height*0.2+Stamina*0.6+Speed*1,0))
FROM Athletes
WHERE (Height=’tall’)
AND (Stamina=’Excellent’)
AND (Speed=’fast’)

The satisfaction degrees for the queries are given in Table 3.

no. Spd Sta Hei MT LT

1 1 0.6 0.2 0.2 0
2 0.55 0.65 0.7 0.11 0
3 0.1 0.6 1 0.002 0
4 0.8 0.7 0.7 0.16 0
5 0.9 0.6 0.3 0.18 0

Table 3
Weighted satisfaction degrees for the Soccer player

Acta Polytechnica Hungarica Vol. 5, No. 1, 2008

 – 67 –

We see that the results in Table 3 differ completely from Table 1. Moreover, if we
would run the weighed query for the basketball player we would obtain similar
results. This leads to a conclusion that weighted queries are completely different
from priority queries.

Finally we can add a threshold to each of the constraints. Assume that we insist
that a basketball player must be tall, has good stamina with the degree of 0.6 and
fast with the degree of 0.4. This would translate into the following query.

SELECT *
FROM Athletes
WHERE (Height=’tall’) THRESHOLD 1
AND (Stamina=’Excellent’) THRESHOLD 0.6
AND (Speed=’fast’) THRESHOLD 0.4

It is obvious that none of the athletes would fulfill these requirements. This
situation is completely different than when we used priority or weighted queries.

Conclusions

In this paper we have presented the PFSQL language and PFCSP systems as the
theoretical background for PFSQL, as well as some directions about PFSQL
implementation. Similarly we have given a brief description of WFCSP as the
theoretical background for weighted queries. In addition, a description of queries
with thresholds is also given as another feature of PFSQL.

We have discussed differences and given a comparison of priority, weighted and
threshold queries using an example of choosing athletes. We have shown that
these three types of queries make different evaluations for the same data i.e. they
are essentially different. The threshold is the most strict decision mechanism.
Weighted and priority queries are based on different assumptions and must not be
confused.

Acknowledgment

The authors would like to acknowledge the support of the Serbian Ministry of
Science and Environmental Protection, project ‘Mathematical models of non-
linearity, uncertainty and decision making’, No. 144012 and project ‘Abstract
Methods and Applications in Computer Science’ No. 144017A, also the support of
the Ministry of Science, Technology and Environmental Protection of Vojvodina.

References

[1] Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling Design
and Implementation. Hershey, USA: IDEA Group, 2006

[2] Kerre, E. E., Chen, G. Q.: Fuzzy Data Modeling at a Conceptual Level:
Extending ER/EER Concepts, In Knowledge Management in Fuzzy
Databases, 2000, pp. 3-11

A. Takači et al. Priority, Weight and Threshold in Fuzzy SQL Systems

 – 68 –

[3] Klement, E., Mesiar, R., Pap, E.: Triangular Norms, Series: Trends in
Logic (8), Dordrecht: Kluwer Academic Publishers, 2000

[4] Leung, H., Jennings, N. R.: Prioritized Fuzzy Constraint Satisfaction
Problems: Axioms, Instantiation and Validation, Fuzzy Sets and Systems
136(10), 2003, pp. 151-188

[5] Takači, A., Škrbić, S.: How to Implement FSQL and Priority Queries.
Proceedings of 3rd Serbian-Hungarian Joint Symposium on Intelligent
Systems, Subotica, Serbia: Budapest Tech Polytechnical Institution, 2005,
pp. 98-104

[6] Takači, A.: Schur-Concave Triangular Norms: Characterization and
Application in PFCSP, Fuzzy Sets and Systems, 155(1), 2005, pp. 50-64

[7] Takači, A., Škrbić, S.: Data Model of FRDB with Different Data Types and
PFSQL, Handbook of Research on Fuzzy Information Processing in
Databases, Hershey, PA, USA: Information Science Reference, in print,
2008

[8] Zvieli, A., Chen, P.: ER Modeling and Fuzzy Databases, Proceedings of
the Second International Conference on Data Engineering, Los Angeles:
IEEE Computer Society, 1986, pp. 320-327

