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Abstract: The aim of this paper is to demonstrate the applicability of the Choquet integral, 

a well-known fuzzy integral, in the Maximal Covering Location Problem (MCLP). Possible 

benefits of the used integral, which is based on monotone set functions, include the 

flexibility of а monotone set function, which is in the core of the Choquet integral, for 

modeling the Decision Maker's behavior. Various mathematical models of the Maximal 

Covering Location Problem are given. The approach, based on the Choquet integral versus 

the standard approach, is thoroughly discussed and illustrated by several examples. 
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1 Introduction 

Many problems from the real world contain different uncertainties, ambiguities, 

and vagueness, so their mathematical models obtained with the classical 

mathematical techniques are not fully accurate. Fuzzy sets and different 

probabilistic methods are the most frequently used techniques for modeling 

problems from the real world. This study introduces a new method for modeling 

the Maximal Covering Location Problem (MCLP) by using a well-known fuzzy 

integral, the Choquet integral. 

The Maximum Covering Location Problem (MCLP) was defined by Church and 

ReVelle in [5] and it represents a very important class of problems in operations 

research. They defined MCLP as follows: "Maximize the coverage within a 
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desired service distance S by locating a fixed number of facilities". In other words, 

the aim of MCLP is locating facilities on a given network in such a manner that 

they cover as many locations as possible. This class has a decisive role in many 

real world problems, such as locating shops, gas stations, bus stations, hospitals 

and other emergency services. Similar classes of problems include the Location 

Set Covering Problem (LSCP) and Minimal Covering Location Problem 

(MinCLP). The aim of LSCP is to cover all locations with as few facilities as 

possible, and the aim of MCLP is to cover as many locations as possible with a 

fixed number of facilities. In all models, the networks are represented by distances 

between locations (or travel times between them). Location coverage depends on 

the distance (or travel time) to the nearest facility and it depends on the given 

value called the coverage radius. In the classical case, those values are represented 

by real numbers, but in the "real-world" problems, those values are not fully 

determined, and they can contain different levels of vagueness, e.g., "the coverage 

radius is between 10 and 20 kilometers", "the travel time is around 20 minutes" or 

"it is pretty close". These linguistic ambiguities can be modeled by using different 

types of fuzzy numbers. Many authors developed different fuzzy MCLP models 

(FMCLP) and the most common approach is using fuzzy numbers for the radius of 

coverage. In the classical model of MCLP, each location is either covered or 

uncovered, while in FMCLP models, the locations could also be partially covered. 

The main question of FMCLP is how to treat partially covered locations. 

Depending on the nature of the problems, the degree of location coverage could be 

calculated using t-norms and t-conorms ([16]). This study takes into consideration 

another issue, namely the interaction between facilities which need to be optimally 

arranged. Now, the Choquet integral is being used in order to take into the account 

the different interactions between facilities which should yield a better quality 

solution. 

This paper is organized as follows: in Section 2, a brief literature overview related 

to MCLP, FMCLP and the usage of fuzzy sets in location problems is presented. 

Section 3 includes certain basic mathematical notions, such as fuzzy sets, fuzzy 

numbers and the Choquet integral are given. Section 4 contains a new model of 

FMCLP based on the Choquet integral, while the last section offers some 

concluding remarks. 

2 Literature Overview 

As mentioned above, MCLP was developed by Church and ReVelle (1974) [5]. 

Different MCLP models were presented in the following years, like MCLP on the 

plane (Church, 1984 [6]), capacitated MCLP (Current and Storbeck, 1988 [7]), 

probabilistic MCLP (ReVelle and Hogan, 1989 [20]) and implicit MCLP (Murray 

et al. 2010 [17]). An exhaustive review of the covering problems and MCLP can 

be found in [12]. 
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In recent years, several fuzzy models for the covering location problem have been 

presented. Darzentas in [8] presented a discrete location problem with fuzzy 

accessibility criteria and formulated it with an application of the set partitioning 

type of integer programming. Perez et al. in [19] presented that position of the 

facility in real applications can be full of linguistic vagueness, and they modeled 

them by using networks with fuzzy values. These fuzzy values appropriately 

describe the network nodes, lengths of paths, weight of nodes, etc. Batanovic et al. 

in [1] described the application of fuzzy sets in modeling the maximum covering 

location problems for networks in uncertain environments. They modeled distance 

(traveling times) from a facility site to demand nodes by fuzzy sets. Davari et al. 

in [9] presented a MCLP model with fuzzy variables for travel times for any pairs 

of nodes. 

3 Definitions and Preliminaries 

3.1 Discrete Choquet Integral 

Since this discreteness is highly tangible in applications, the short overview of the 

discrete case, i.e., basic information on the discrete Choquet integral is given in 

this section. 

It has to be emphasized that this type of integral is a highly applicable aggregation 

operator (see [11,14]). The Choquet integral generalizes the so-called additive 

operators, e.g., the OWA (the ordered weighted averaging operators, see [23]) and 

the weighted mean. 

The first necessary notion is the one of a fuzzy measure. Firstly, let X be a set of 

criteria, that is, let it be a set of all input values. 

Definition 3.1 A set function  𝜇: 𝑃(𝑋) ⟶ [0,∞) is a fuzzy measure, if the 

following it satisfied 

 𝜇(∅) = 0, 

 for arbitrary 𝐴, 𝐵 ∈ 𝑃(𝑋), if 𝐴 ⊂ 𝐵 then 𝜇(𝐴) ≤ 𝜇(𝐵) (monotonicity). 

Now, the triplet (𝑋, 𝑃(𝑋), 𝜇) is a fuzzy measure space ([2, 3, 13, 22]). In general, 

instead of 𝑃(𝑋) some 𝜎-algebra of subsets of 𝑋 can be used. 

As already mentioned, for the purpose of this research the focus is on a discrete 

case, i.e., on simple functions - functions that can assume only a finite number of 

values. Therefore, the following form of functions will be observed 

𝑓: 𝑋 ⟶ {𝜔1, 𝜔2, …𝜔𝑛}, 

where 𝜔𝑖 ∈ [0,∞) and the working assumption, with no influence on generality, 

is 0 ≤ 𝜔1 < 𝜔2 < ⋯ < 𝜔𝑛 ≤ 1. 
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Moreover, based on the type of problems that will be investigated in the future, it 

is sufficient to observe simple functions with values in [0,1] and normalized 

fuzzy-measures, i.e., further it will be assumed that {𝜔1, 𝜔2, …𝜔𝑛} ⊆ [0,1] and 

𝜇: 𝑃(𝑋) ⟶ [0,∞) is a fuzzy measure. 

The definition of the Choquet integral for the discrete case follows ([4]). 

Definition 3.2 The Choquet integral of an arbitrary simple function 𝑓: 𝑋 ⟶
{𝜔1, 𝜔2, …𝜔𝑛}, based on a fuzzy measure has the following form 

(𝐶)∫ 𝑓d𝜇
𝑋

=∑(𝜔𝑖

𝑛

𝑖=1

− 𝜔𝑖−1) ∙ 𝜇(𝛺𝑖), 

where 𝛺𝑖 = {𝑥|𝑓(𝑥) ≥ ω𝑖} and ω0 = 0 and 𝜇 is a fuzzy measure. 

More on the Choquet integral can be found in [2, 3, 4, 10, 15, 18], to just name a 

few sources. 

In general, the universality of fuzzy integrals as aggregation operators is deducted 

from the minimal restrictions imposed on set function that is in its core. The fact 

that the Choquet integral, discussed in this paper, covers many well-known 

classical aggregation operators can be illustrated by the following example (see 

[11]). 

Example 3.1 

 For the fuzzy measure 𝜇: 𝑃(𝑋) ⟶ [0,1], given by 

𝜇(𝑋) = 1  and  𝜇(𝐴) = 0  for 𝐴 ≠ 𝑋, 

the corresponding Choquet integral coincides with the classical 

minimum. 

 For the fuzzy measure 𝜇: 𝑃(𝑋) ⟶ [0,1], given by 

𝜇(∅) = 0 and  𝜇(𝐴) = 1  for 𝐴 ≠ ∅, 

the corresponding Choquet integral coincides with the classical 

maximum. 

 For the fuzzy measure 𝜇: 𝑃(𝑋) ⟶ [0,1], given by 

𝜇(𝐴) = 0  for card(𝐴) ≤ 𝑛 − 𝑘  and  𝜇(𝐴) = 1 otherwise, 

the corresponding Choquet integral coincides with the classical 𝑘-order 

statistic. 

 For the fuzzy measure 𝜇: 𝑃(𝑋) ⟶ [0,1], given by 

𝜇(𝐴) =
card(𝐴)

card(𝑋)
, 

the corresponding Choquet integral coincides with the classical 

arithmetic mean. 

 For the fuzzy measure 𝜇: 𝑃(𝑋) ⟶ [0,1], given by 

𝜇(𝐴) = ∑ 𝑤𝑛−𝑗
card(𝐴)−1
𝑗=0 , 

where 𝑤𝑖  are pre-given weights, the corresponding Choquet integral 

coincides with the OWA operator. 
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The main drawback for the practical use of the Choquet integral is the number of 

sets that need a predefined value of the fuzzy measure. If the observed function 

has a range of cardinality n, a Decision Maker needs to predefine 2𝑛 values. One 

of the possible ways for simplifying a Decision Maker's task is to define values 

only for singletons and to aggregate the remaining values by some aggregating 

operator. Since monotonicity of measure is essential for this integral, this can be 

done by a t-conorm, i.e., if the fuzzy measure 𝜇 is the so-called S-decomposable 

measure. 

Definition 3.3 [18] A set function 𝜇: 𝑃(𝑋) ⟶ [0,1]that satisfies the following 

 𝜇(∅) = 0, 

 𝜇(𝐴 ∪ 𝐵) = 𝑆(𝜇(𝐴), 𝜇(𝐵))  for 𝐴 ∩ 𝐵 = ∅, 

where 𝑆 is a t-conorm, is called the S-decomposable measure.  

A t-conorm is a binary operation 𝑆: [0,1]2 ⟶ [0,1], that is commutative, 

nondecreasing, associative and has zero as the neutral element. Elementary 

examples of continuous t-conorms are: 

 𝑆M(𝑥, 𝑦)  =  max(𝑥, 𝑦) − maximal, 

 𝑆P(𝑥, 𝑦)  =  𝑥 + 𝑦 − 𝑥𝑦 − probabilistic,  

 𝑆L(𝑥, 𝑦)  =  min(𝑥 + 𝑦, 1) – Lukasiewicz. 

where 𝑥, 𝑦 ∈ [0,1]. More on t-conorms and t-norms (dual operations) can be found 

in [16,18], among others. Also, the sources [11,14] offer more general background 

on aggregation operators. 

Since t-conorms are associative operations, they can easily be extended to n-ary 

operators and used for calculating measures of non-singleton sets. Forms of n-ary 

operators for three previously mentioned basic t-conorms are given by the 

following example. 

Example 3.2 Let {𝑥1, 𝑥2, … , 𝑥𝑘} be an arbitrary subset of X. If µ is a S-

decomposable measure, and values 𝜇({𝑥𝑖}) are predefined, then the value 

𝜇({𝑥1, 𝑥2, … , 𝑥𝑘}) can be calculated as follows (see [16]) 

 if 𝑆 = 𝑆M 

𝜇({𝑥1, 𝑥2, … , 𝑥𝑘}) = max (𝜇({𝑥1}), … , 𝜇({𝑥𝑘})), 
 if 𝑆 = 𝑆P 

𝜇({𝑥1, 𝑥2, … , 𝑥𝑘}) = 1 − ∏ (1 − 𝜇({𝑥𝑖}))
𝑘
𝑖=1 , 

 if 𝑆 = 𝑆L 

𝜇({𝑥1, 𝑥2, … , 𝑥𝑘}) = min (∑ 𝜇({𝑥𝑖}), 1)
𝑘
𝑖=1 . 

 

Due to the nature of the problem that will be investigated further on, the focus of 

this paper is on the discrete case, i.e., when the observed set of input values is 

finite 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑛}. 
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3.2 MCLP – Classical Case 

As mentioned in Section 1, MCLP was introduced by Church and ReVelle in 1974 

[5], with the following mathematical model: 

maximize 𝑔 =∑𝑎𝑖𝑦𝑖
𝑖∈𝐼

 

subject to ∑ 𝑥𝑗 ≥ 𝑦𝑖
𝑗∈𝑁𝑖

, ∀𝑖 ∈ 𝐼 

 ∑𝑥𝑗 = 𝑃

𝑗∈𝐽

 

 𝑥𝑗 ∈ {0,1}, ∀𝑗 ∈ 𝐽 

 𝑦𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐼 

where 

 I – set of locations (indexed by i) 

 J – set of eligible facility sites (indexed by j) 

 S – radius of coverage 

 𝑑𝑖𝑗  – travel time from location i to location j 

 𝑥𝑗 = {
1, if facility is located at location 𝑗
0, otherwise                                         

 

 𝑎𝑖 – population in node i 

 P – number of facilities 

 𝑁𝑖 = {𝑗|𝑑𝑖𝑗 ≤ 𝑆} – set of all facilities j which cover location i 

In this paper, population in a node 𝑎𝑖 is not considered, but it does not reduce the 

generality of the problem. 

𝑁𝑖 is the set of facility sites and it provides location coverage, i.e., location is 

covered if the distance between it and some facility is less than the predefined 

radius S, and location is not covered otherwise. A demand node is "covered" when 

the closest facility to that node is at a distance less than or equal to S. A demand 

node is "uncovered" when the closest facility to that node is at a distance greater 

than S. The objective is to maximize the number of people served or "covered" 

within the desired service distance. Constraints of the type (1) allow 𝑦𝑖to equal 1 

only when one or more facilities are established at sites in the set 𝑁𝑖(that is, one or 

more facilities are located within the S distance units of the demand point i). The 

number of facilities allocated is restricted to equal P in constraint (2). The solution 

to this problem specifies not only the largest amount of population that can be 

covered, but the P facilities that achieve this maximal coverage. 

This condition is modeled by classical logic and each location could be fully 

covered or uncovered, and that fact gives motivation for the introduction of fuzzy 

numbers in modeling MCLP. 
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3.3 MCLP via Fuzzy Numbers (FMCLP) 

The main idea of using fuzzy numbers in modeling MCLP is the introduction of 

vagueness in location covering. FMCLP is the extension of MCLP, where some 

conditions are represented with fuzzy numbers and in FMCLP, the location can be 

covered, uncovered or partially covered ([21]). Depending on the nature of the 

problem, different aggregation operators (max, arithmetic average, median, min...) 

can be used to calculate the degree of partial coverage of a location. In the 

following model of FMCLP, max operator is used, but other operators can be used 

in a similar way. 

Maximize 𝑔 =∑𝑦𝑖
𝑖∈𝐼

 

subject to max 𝑥𝑗 ∙ 𝑐𝑖𝑗 ≥ 𝑦𝑖 , ∀𝑖 ∈ 𝐼 

 ∑𝑥𝑗 = 𝑃

𝑗∈𝐽

 

 𝑥𝑗 ∈ {0,1}, ∀𝑗 ∈ 𝐽 

 𝑦𝑖 ∈ [0,1], ∀𝑖 ∈ 𝐼 

where 

 I – set of locations (indexed by i) 

 J – set of eligible facility sites (indexed by j) 

 S – radius of complete coverage 

s – fuzzy radius of partial coverage  

 𝑑𝑖𝑗  – travel time from location i to location j 

 𝑥𝑗 = {
1, if facility is located at location 𝑗
0, otherwise                                         

 

 P – number of facilities 

 𝑐𝑖𝑗 = {

1, 𝑑𝑖𝑗 ≤ 𝑆           

0,  𝑑𝑖𝑗 ≤ 𝑆 + 𝑠   

     𝑒 ∈ (0,1), otherwise

- matrix of coverage 

The main difference between MCLP and FMCLP lies in the coverage radius. In 

the presented FMCLP model, the coverage radius is a fuzzy number (right-

shoulder fuzzy number) which allows partial coverage. Now, the coverage degree 

𝑦𝑖  is a number in the unit interval and the coverage matrix determines its value. 

The exact value of 𝑦𝑖  is defined by a membership function and depends on the 

nature of the problem. 

Travel time could also be a fuzzy number (these are usually triangular fuzzy 

numbers) and that modification results in another FMCLP model. In that model, 

partial coverage is defined by the intersection of the fuzzy radius (represented by a 



A. Talači et al. An Extension of Maximal Covering LocationProblem based on the Choquet Integral 

 – 212 – 

right-shoulder fuzzy number) and fuzzy travel time (represented by a triangular 

fuzzy number). More on this approach and its applications in other location 

problems can be found in [21]. 

4 Fuzzy Integral-based Models of Fuzzy Maximal 

Covering Location Problem 

The main motivation for proposing new models is taking into consideration the 

interaction measure between facilities. In all the existing models, the facilities 

could not interact with each other and each facility has the same importance. Thus, 

the level of interaction, or the level of joint importance, is given by a monotone 

set-function. Together with the usage of the Choquet integral, it forms a new, 

promising powerful extended model of FMCLP. 

The basics of the proposed model are 

 P – number of facilities [integer], 

 𝑋 = {𝐿1, 𝐿2, … , 𝐿𝑅} – set of all locations, 

 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑃} – set of all facilities, 

 𝜇: P(𝑋) ⟶ [0,1] – measure of interaction for different facilities 

modeled by a monotone set function, 

 𝜔𝑖,𝑗 ∈ [0,1] – degree of coverage for location 𝐿𝑖 by the j-th facility, 

 𝐴 is the intended layout of facilities from 𝑌 over the location set 𝑋. 

The following constitute the proposed model: 

MODEL Ch - the Choquet based model 

𝑓𝐿𝑖: 𝑌 → {𝜔𝑖,1, 𝜔𝑖,2, … , 𝜔𝑖,𝑚},     𝑖 = {1, … , 𝑅}, (1) 

𝑔(𝐴) =∑(𝐶)

𝑖

∫𝑓𝐿𝑖 d𝜇. (2) 

Namely, the functions (1) give the degree of coverage of each node by the 

facilities from Y, while formula (2) is the function whose maxima, for different 

positions of the facilities from Y, is needed. Given this, the layout of the facilities 

from Y for which (2) is maximal is the optimal layout. The monotone set function 

𝜇 is predefined by a Decision Maker and can be interpreted as a quality measure 

of facilities and their interaction. The optimal case is obtained when the Decision 

Maker is able to provide the values of 𝜇 for all subsets of Y. By doing that, the 

Decision Maker expresses their own opinion on how the facilities in question 

interact, i.e., how "strong" they are together. However, this means that the 

Decision Maker should single-handedly provide 2𝑃 values, which would be an 

unreasonable request. An acceptable solution is to ask for values only for 
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singletons, and to use an aggregation operator, e.g., a t-conorm, acceptable for the 

Decision Maker’s behavior. The following algorithm is proposed 

 STEP I: Acquiring values for 𝜇({𝑌1}), 𝜇({𝑌2}), … , 𝜇({𝑌𝑃}), 
 STEP II: Selection of the appropriate t-conorm: 

- 𝑆M – if the strongest facility dominates all others, 

- 𝑆P – if facilities complement each other, with overlaps, 

- 𝑆𝐿 – if facilities complement each other, with negligible 

overlaps, 

 STEP III: Calculation of values for 

𝜇({𝑌𝑗1 , 𝑌𝑗2 , … , 𝑌𝑗𝑘}),   {𝑗1, 𝑗2, … , 𝑗𝑘} ⊆ {1,2, … , 𝑃}, 

by formulas from Example 3.2. 

Remark 4.1 Step II offers only three options because they can easily be 

interpreted by real life concepts such as domination (one facility is much more 

important to the Decision Maker and its influence is strong enough to overcome 

influences of other facilities) and negligible overlaps (influences of different 

facilities can be directed to the same area, however they do not compete with each 

other). Of course, the set of t-conorms is much wider (see [16]) and some other t-

conorms can be chosen depending on the decision maker’s preferences. 

The behavior of the proposed model depending on the Decision Maker’s personal 

perceptions of quality and interaction of facilities is illustrated by the following 

propositions. 

Proposition 4.1 Let  𝑋 = {𝐿1, 𝐿2, … , 𝐿𝑅} be the set of all locations, 𝑌 =
{𝑌1, 𝑌2, … , 𝑌𝑃} the set of all facilities,  𝜔𝑖,𝑗 ∈ [0,1]   degree of coverage for location 

𝐿𝑖 by the j-th facility and let 𝐴 be the intended layout of facilities from 𝑌 over the 

location set 𝑋. 

 If qualities of facilities 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑃} are estimated by two different decision 

makers, i.e., if two S- decomposable measures 𝜇1: P(𝑌) ⟶ [0,1]  and 𝜇2: P(𝑌) ⟶
[0,1] based on the same t-conorm S are assigned, such that 

𝜇1({𝑌𝑗}) ≤  𝜇2({𝑌𝑗}), 

for all  𝑗 ∈ {1,2, … , 𝑃}, then the following holds 

𝑔𝜇1(𝐴) ≤  𝑔𝜇2(𝐴). 

Proof. Since 𝜇1: P(𝑌) ⟶ [0,1] and 𝜇2: P(𝑌) ⟶ [0,1] are 𝑆-decomposable 

measures and since for all singletons {𝑌𝑗}, 𝑗 ∈ {1,2, … , 𝑃},  holds  𝜇1({𝑌𝑗}) ≤

 𝜇2({𝑌𝑗}), based on monotonicity of t-conorms (see [16]), it follows that  𝜇1(𝐸) ≤

 𝜇2(𝐸) for all 𝐸 ∈ P(𝑌). Now, based on properties of the Choquet integral (see 

[2,3]), it holds 

(𝐶) ∫ 𝑓𝐿𝑖 d𝜇1  ≤  (𝐶) ∫ 𝑓𝐿𝑖 d𝜇2, 

for all corresponding functions  𝑓𝐿𝑖: 𝑌 → {𝜔𝑖,1, 𝜔𝑖,2, … , 𝜔𝑖,𝑚},  𝑖 ∈ {1,2, … , 𝑅}.  

Therefore, the claim holds. 
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Proposition 4.2 Let  𝑋 = {𝐿1, 𝐿2, … , 𝐿𝑅} be the set of all locations, 𝑌 =
{𝑌1, 𝑌2, … , 𝑌𝑃} the set of all facilities,  𝜔𝑖,𝑗 ∈ [0,1]  degree of coverage for location 

𝐿𝑖 by the j-th facility and let 𝐴 be the intended layout of facilities from 𝑌 over the 

location set 𝑋. 

If interactions of facilities 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑃} are estimated by two different 

decision makers such that two different 𝑆-decomposable measures, 𝑆1-

decomposable measure 𝜇1: P(𝑌) ⟶ [0,1] and 𝑆2-decomposable measure 

𝜇2: P(𝑌) ⟶ [0,1], are assigned in the following manner 

𝜇1({𝑌𝑗}) =  𝜇2({𝑌𝑗}), 

for all  𝑗 ∈ {1,2, … , 𝑃},  and  𝑆1 ≤ 𝑆2, then the following holds 

𝑔𝜇1(𝐴) ≤  𝑔𝜇2(𝐴). 

Proof. Measures 𝜇1: P(𝑌) ⟶ [0,1] and 𝜇2: P(𝑌) ⟶ [0,1] are S-decomposable 

measures, therefore, based on the starting assumption 𝑆1 ≤ 𝑆2 (𝑆1(𝑥, 𝑦) ≤
 𝑆2(𝑥, 𝑦)  for all 𝑥, 𝑦 ∈ [0,1], see [16]), it holds  𝜇1(𝐸) ≤  𝜇2(𝐸) for all 𝐸 ∈ P(𝑌). 
Now, due to properties of the Choquet integral (see [2,3]), analogous to the proof 

of the previous proposition, the claim holds.  

Remark 4.2   Since for three proposed t-conorms holds  𝑆𝑀  ≤  𝑆𝑃 ≤ 𝑆𝐿, it is 

obvious that for the resulting mark for a certain layout A holds 𝑔𝜇𝑆𝑀
(𝐴) ≤

 𝑔𝜇𝑆𝑃
(𝐴)  ≤  𝑔𝜇𝑆𝐿

(𝐴). That is, if facilities complement each other, instead having 

one that is dominant, the resulting mark is higher. 

Additionally, although at first glance the introduction of 𝜇 seems to increase the 

computational complexity, this can be avoided, because in the implementations 

only few subsets are connected to a single node. 

Proposition 4.3 The algorithm for calculation of the  function 𝑔(𝐴) =
∑ (𝐶)𝑖 ∫ 𝑓𝐿𝑖 𝑑𝜇  has the maximal complexity of  𝑂(𝑅𝑃 log 𝑃), where 𝑃 is the 

number of the given facilities and 𝑅 is the number of the observed locations. 

Proof. The worst case, i.e., the maximal complexity, is reached when each 

location has a different deegree of coverage for all available facilities, that is when 

the range of function 𝑓𝐿𝑖 has exactly 𝑃 different elements, for all 𝑖 = {1, … , 𝑅}. In 

that case, ∫ 𝑓𝐿𝑖d𝜇 = ∑ (𝜔𝑖,𝑘
𝑃
𝑘=1 − 𝜔𝑖,𝑘−1) ∙ 𝜇(𝛺𝑖,𝑘) has 𝑃 summands. Before 

calculation of this sum, it is necessary to sort elements from {𝜔𝑖,1, 𝜔𝑖,2, … , 𝜔𝑖,𝑃}, 

i.e., to sort the set of all deegrees of coverage. This can be done in 𝑂(𝑃 log 𝑃) 
steps (by using, for example, Merge Sort). With sorted elements, computational 

complexity of this sum depends on the complexity of computing measures 

𝜇(𝛺𝑖,1), 𝜇(𝛺𝑖,2), … , 𝜇(𝛺𝑖,𝑃). From the definition of the 𝑆-measure 𝜇 and properties 

of t-conorms in general, follows that 
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𝜇(𝛺𝑖,𝑗) = 𝜇({𝑌𝑗 , 𝑌𝑗+1, … , 𝑌𝑃}) = 𝑆 (𝜇({𝑌𝑗}), 𝜇({𝑌𝑗+1, … , 𝑌𝑃}))

=  𝑆 (𝜇({𝑌𝑗}), 𝜇(𝛺𝑖,𝑗+1)), 

which insures that integral (𝐶) ∫ 𝑓𝐿𝑖d𝜇  (with sorted elements of 

{𝜔𝑖,1, 𝜔𝑖,2, … , 𝜔𝑖,𝑃}) can be computed with coplexity 𝑂(𝑃). Since there are 𝑅 

summands in the function 𝑔(𝐴), the total complexity is  𝑂(𝑅𝑃 log 𝑃).  

Remark 4.3 In order to simplify the computational complexity and bring this 

concept closer to the Decision Maker, functions (1) can have linguistic values, i.e., 

𝑓𝐿𝑖: 𝑌 → {none, poor, fair, good, full}. (3) 

If 𝑓𝐿𝑖(𝑌𝑗)=none, then node (location) 𝐿𝑖 is not in range of the facility 𝑌𝑗 for the 

observed layout, etc. Of course, later on, linguistic values can be appropriately 

coded. In this case, the exact values of elements in sets {𝜔𝑖,1, 𝜔𝑖,2, … , 𝜔𝑖,𝑃} are 

known in advance and sorting can be done in 𝑂(𝑃) steps (by using, for example, 

Counting sort). Therefore, the total complexity is 𝑂(𝑃𝑅). 

4.1 Examples 

The proposed model can be illustrated by the following simple setting. Let the 

assumption be that there are 6 locations with distances as in Figure 1 and two 

facilities to be located. Now, the set of locations is 𝑋 = {𝐿1, … , 𝐿6} and set of 

facilities is 𝑌 = {𝑌𝑎, 𝑌𝑏}.  However, since facilities will be positioned on certain 

locations, the notation will be 𝑌 = {𝑌𝑎𝑗 , 𝑌𝑏𝑘} where {𝑗, 𝑘} ⊂ {1,2, . . . ,6} depends 

on the intended position of a facility. 

Let the assumption be that two layouts are under the consideration: 

A: 𝑌 = {𝑌𝑎1 , 𝑌𝑏6}, 
B: 𝑌 = {𝑌𝑎2, 𝑌𝑏5}, 

i.e., facilities 𝑌𝑎and 𝑌𝑏  are located on locations 𝐿1 and 𝐿6, and 𝐿2 and 𝐿5, 

respectively. The first calculation is the implementation of the classical case, the 

second one is done via fuzzy numbers, while the third one is based on the model 

proposed in this paper. Since the quality (or influence) of facilities in question is 

the same for the first two approaches (given by examples 4.1 and 4.2), for the sake 

of simplicity, the following notations will be used: 

A: 𝑌 = {𝑌1, 𝑌6}, 
B: 𝑌 = {𝑌2, 𝑌5}, 

which is the standard in MCLP problems. However, for the third approach, the 

quality of facility is relevant and this more complex notation will be used. 
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Example 4.1 First, a classical MCLP problem without any fuzzy coverage will be 

used. Let it be supposed that the coverage radius is 5 km, i.e., the function is 

defined in the following way 

𝑓𝐿𝑖(𝐿𝑗) = {
1, 𝑖𝑓 d(𝐿𝑖 , 𝐿𝑗) ≤ 5 𝑘𝑚,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.          
 

If the facilities are located in 𝐿1 and 𝐿6 then all six locations are covered. On the 

other hand, if the facilities are located in 𝐿2 and 𝐿5, only four locations are 

covered, the locations 𝐿3 and 𝐿6 are not covered by this solution. Therefore, the 

optimal solution is option A. 

 

Figure 1 

Location setting 

Example 4.2 It will now be supposed that the location can be partially covered, 

i.e., FMCLP will be considered. The coverage radius for this approach is defined 

by the following function (see [21]) 

𝑓𝐿𝑖(𝐿𝑗) =

{
 

 
1,                      𝑖𝑓 d(𝐿𝑖 , 𝐿𝑗) ≤ 3𝑘𝑚,

−
1

4
d(𝐿𝑖 , 𝐿𝑗) +

7

4
,     3 𝑘𝑚 < d(𝐿𝑖 , 𝐿𝑗) ≤ 7𝑘𝑚,           

0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.          

 

For option A, the facilities are located in 𝐿1 and 𝐿6 and they are marked as 𝑌1 and 

𝑌6 and 

 𝑓𝐿1: {𝑌1, 𝑌6} → {𝜔1,1, 𝜔1,2}, 𝑓𝐿1(𝑌1) = 1, 𝑓𝐿1(𝑌6) = 0; 

 𝑓𝐿2: {𝑌1, 𝑌6} → {𝜔2,1, 𝜔2,2}, 𝑓𝐿2(𝑌1) = 0.75,  𝑓𝐿2(𝑌6) = 0.075; 

 𝑓𝐿3: {𝑌1, 𝑌6} → {𝜔3,1, 𝜔3,2}, 𝑓𝐿3(𝑌1) = 0,  𝑓𝐿3(𝑌6) = 1; 

 𝑓𝐿4: {𝑌1, 𝑌6} → {𝜔4,1, 𝜔4,2}, 𝑓𝐿4(𝑌1) = 1,  𝑓𝐿4(𝑌6) = 0; 

 𝑓𝐿5: {𝑌1, 𝑌6} → {𝜔5,1, 𝜔5,2}, 𝑓𝐿5(𝑌1) = 0.5,  𝑓𝐿5(𝑌6) = 0.25; 

 𝑓𝐿6: {𝑌1, 𝑌6} → {𝜔6,1, 𝜔6,2}, 𝑓𝐿6(𝑌1) = 0,  𝑓𝐿6(𝑌6) = 1. 

Therefore, the coverage of location 𝐿1 is max(1,0)  =  1, for 𝐿2  is 

max(0.75,0.075)  =  0.75, 𝐿3 is 1, 𝐿4 is 1, 𝐿5 is 0.5 and 𝐿6 is 1. Now, the 

coverage degree of the option A is 

𝑔(𝐴)  = 1 + 0.75 + 1 + 1 + 0.5 + 1 = 5.25. 
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For layout B the following holds 

 𝑓𝐿1: {𝑌2, 𝑌5} → {𝜔1,1, 𝜔1,2}, 𝑓𝐿1(𝑌2) = 0.75, 𝑓𝐿1(𝑌5) = 0.5; 

 𝑓𝐿2: {𝑌2, 𝑌5} → {𝜔2,1, 𝜔2,2}, 𝑓𝐿2(𝑌2) = 1,  𝑓𝐿2(𝑌5) = 1; 

 𝑓𝐿3: {𝑌2, 𝑌5} → {𝜔3,1, 𝜔3,2}, 𝑓𝐿3(𝑌2) = 0.25,  𝑓𝐿3(𝑌5) = 0.075; 

 𝑓𝐿4: {𝑌2, 𝑌5} → {𝜔4,1, 𝜔4,2}, 𝑓𝐿4(𝑌2) = 0.5,  𝑓𝐿4(𝑌5) = 0.75; 

 𝑓𝐿5: {𝑌2, 𝑌5} → {𝜔5,1, 𝜔5,2}, 𝑓𝐿5(𝑌2) = 1,  𝑓𝐿5(𝑌5) = 1; 

 𝑓𝐿6: {𝑌2, 𝑌5} → {𝜔6,1, 𝜔6,2}, 𝑓𝐿6(𝑌2) = 0.075, 𝑓𝐿6(𝑌5) = 0.25. 

and 

𝑔(𝐵)  = 0.75 + 1 + 0.25 + 0.75 + 1 + 0.25 =  4. 

Again, layout A is optimal. 

The following example illustrates the proposed model based on the Choquet 

integral. In this case, the quality of facilities, at least the Decision Maker’s 

perception of that quality, influences the result. 

Example 4.3 Let one consider option A. The values that describe the quality of 

each facility are 𝜇({𝑌𝑎1}) 𝑎𝑛𝑑 𝜇({𝑌𝑏6}), and they are provided by a Decision 

Maker. Their joint quality, i.e., the measure of how much they complement each 

other is 𝜇({𝑌𝑎1, 𝑌𝑏6}), can be obtained, as presented in Example 3.1. It is assumed 

that the measure of an empty set is zero.  

The next step is the calculation of the Choquet integral for each function 

according to the measure µ. That is ”coverage of the location 𝐿𝑖”: 

 (𝐶) ∫ 𝑓𝐿1d𝜇 = (1 − 0) ∙ 𝜇({𝑦|𝑓𝐿1 ≥ 1}) = 𝜇({𝑌𝑎1}), 

 (𝐶) ∫ 𝑓𝐿2d𝜇 = (0.075 − 0) ∙ 𝜇({𝑦|𝑓𝐿2 ≥ 0.075}) + (0.75 − 0.075) ∙

𝜇({𝑦|𝑓𝐿2 ≥ 0.08}) = 0.075𝜇({𝑌𝑎1, 𝑌𝑏6}) + 0.675𝜇({𝑌𝑎1}), 

 (𝐶) ∫ 𝑓𝐿3d𝜇 = (1 − 0) ∙ 𝜇({𝑦|𝑓𝐿3 ≥ 1}) = 𝜇({𝑌𝑏6}), 

 (𝐶) ∫ 𝑓𝐿4d𝜇 = (1 − 0) ∙ 𝜇({𝑦|𝑓𝐿4 ≥ 1}) = 𝜇({𝑌𝑎1}), 

 (𝐶) ∫ 𝑓𝐿5d𝜇 = (0.25 − 0) ∙ 𝜇({𝑦|𝑓𝐿5 ≥ 0.25}) + (0.5 − 0.25) ∙

𝜇({𝑦|𝑓𝐿5 ≥ 0.5}) = 0.25𝜇({𝑌𝑎1, 𝑌𝑏6}) + 0.25𝜇({𝑌𝑎1}), 

 (𝐶) ∫ 𝑓𝐿6d𝜇 = (1 − 0) ∙ 𝜇({𝑦|𝑓𝐿6 ≥ 1}) = 𝜇({𝑌𝑏6}). 

The coverage degree of the 𝐿1 − 𝐿6 layout is given by 

𝑔(𝐴) = ∑ (𝐶) ∫𝑓𝐿𝑖d𝜇𝑖 =

2.925𝜇({𝑌𝑎1}) + 2𝜇({𝑌𝑏6}) + 0.325𝜇({𝑌𝑎1, 𝑌𝑏6}). 
(4) 

Similarly, for layout 𝐿2 − 𝐿5, i.e., for option B, the coverage degree is 

𝑔(𝐵) =∑(𝐶)∫𝑓𝐿𝑖d𝜇

𝑖

= 0.425(𝜇({𝑌𝑎2}) + 𝜇({𝑌𝑏5})) + 3.15𝜇({𝑌𝑎2, 𝑌𝑏5}). 
(5) 
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Let it be assumed that the qualities of two facilities in question are graded with, 

e.g., 0.6 and 0.8 and if overlaps are negligible, the 𝑆𝐿 can be used as the 

aggregation operator. For option A, if the facility of quality 0.6 is placed on 

location 𝐿1, the following holds 

𝜇({𝑌𝑎1}) = 0.6,  𝜇({𝑌𝑏6}) = 0.8,  𝜇({𝑌𝑎1, 𝑌𝑏6}) = 1  and  g(A)=3.68.  

On the other hand, for option B, if the facility of quality 0.6 is placed on location 

𝐿2, the following holds 

𝜇({𝑌𝑎2}) = 0.6,  𝜇({𝑌𝑏5}) = 0.8,  𝜇({𝑌𝑎2, 𝑌𝑏5}) = 1   and  g(B)=3.745. 

Now, since the quality of facilities is taken into account, the result is different and 

the optimal solution is layout B. 

While in MCLP and FMCLP the quality of facilities is not taken in to 

consideration, it has a high influence on the result in the proposed model. The 

flexibility of the proposed model can be additionally illustrated by the following 

example, that is the continuation of the previous one. 

Example 4.4 If the positions of facilities in option A are inverted, i.e., if the layout 

is A: 𝑌 = {𝑌𝑏1, 𝑌𝑎6}, the following holds 

𝜇({𝑌𝑏1}) = 0.8,  𝜇({𝑌𝑎6}) = 0.6,  𝜇({𝑌𝑏1, 𝑌𝑎6}) = 1  and  g(A)=3.865. 

That is, now this layout is better than layout B. 

Remark 4.4 If the assumption is that all facilities are of the same quality, e.g., 

quality 1, the proposed model coincides with FMCLP. 

As seen from the previous examples, the new model allows the quality of 

facilities, given by the measure µ, to influence the final decision. All four 

examples are summarized in Table 1. The optimal option is marked with *. 

Table 1 

Comparison of coverage degrees 

 MCLP FMCLP MODEL Ch, I MODEL Ch, II 

option A 6* 5.24* 3.68 3.865* 

option B 4 4 3.745* 3.745 

 

Remark 4.5 If there is no other facility (e.g. hospital) near 𝑌1 (𝐿1 − 𝐿6 layout), as 

illustrated in the previous example, the coverage degree of the location 𝐿1 where 

is located  𝑌1 corresponds to 𝜇({𝑌1}), more precisely, it corresponds to the quality 

of 𝑌1. On the other hand, if the layout 𝐿2 − 𝐿5 is observed, hospitals are close, 

thus the coverage of the location 𝐿2 corresponds to 𝜇({𝑌2, 𝑌5}), i.e., to the joint 

measure of facilities 𝑌2 and 𝑌5. 
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Conclusion 

This paper presents a generalization of the MCLP obtained by the incorporation of 

the Choquet integral into FMCLP. The nature of the observed integral takes into 

consideration the joint influence of each facility combination, which has not been 

done in any type of location problem before. The introduction of fuzzy integrals 

into the FMLCP makes the model more flexible and adaptable to real life 

problems. As it can be seen from (4), expert opinion of a Decision Maker given 

through set-function µ has a direct influence on the result. Thus a practical need 

for a new type of location problem is justified, and will further be called Extended 

FMCLP. 
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