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Abstract: The first dynamic stability of a thin rectangular plate made from linear elastic 

material and subjected to a bi-axial time dependent load is discussed in this study. The 

plate carries a combination of loads that are changing linearly with respect to the length of 

its edges. It is also supposed that its boundary conditions on the edges are simply 

supported. Relevant inertia, elastic stiffness, and stability matrices are derived by applying 

Finite Difference Method from a differential motion equation of the plate. Subsequently, 

Mathieu-Hill equation form is obtained for the plate and the first dynamic stability 

boundaries of the plate are elaborated for using specified load parameters. 
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1 Introduction 

Thin plates are used in several structures as elements for different applications 

such as aerospace, civil structures, containers, ships, and machinery parts. These 

elements are subjected to various loading types, e.g. statics, dynamic and thermal 

as well. Sometimes these loads are reactions from other elements. The present 

study models a situation when a rectangular plate as a structure’s element is 

subjected to loads acting on its edges. Loads are in-plane and vary along the 

length of the edge as a general condition. Loads' effect on an element behaviour is 

crucial, especially when these parts are subjected to time-dependent loading. In 

the designing procedure of a machine's elements, determining buckling load (static 

stability) and doing dynamic stability analysis can give a better overview of either 

a structure or its elements while it is loaded with different force types. Up to now, 

numerous literature has been discussed concerning these fields of study. 

A rectangular plate with localised zones of damage and loaded by either uni- or bi-

axial compressive uniform edge load(s) was considered by Prabhakara and Datta 

for studying the free vibration and static stability analysis by application of finite 
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element analysis. The plate was discussed while parameters such as damage size, 

its position, boundary condition and aspect ratio were changing [1]. They worked 

on the tension and compression buckling of a square plate with localised zones of 

damage and loaded partially on its edge by using finite element method. A plate 

stability was discussed with respect to damage location and its size as well as the 

position of load [2]. Their study was extended for a plate with internal opening 

while in-plane compressive or periodic tensile loading acted on the plate's edge. 

The study was done for different shapes and cut-out sizes [3]. 

Deolasi and Datta studied a plate subjected to localised in-plane either 

compressive or tensile periodic edge loads for finding buckling loads and 

parametric instability analysis. The transverse shear deformation and rotary inertia 

were considered as well. The load type, its band and location effect on vibration 

and parametric instability were elaborated [4]. They also applied finite element 

method to obtain the equilibrium equation of a simply supported rectangular plate 

subjected to partially in-plane periodic loading for investigating the damping 

effect on the behaviour of simple and combination resonances. The method of 

multiple scales was applied for obtaining boundaries of parametric instability 

region’s relations [5]. 

A research was done on a rectangular plate with completely elastically restrained 

boundaries by application of the variational method for governing equations. The 

plate rested on the non-homogeneous foundation as well and was subjected to a 

uniform compressive in-plane bi-axial time-dependent load. The foundation has 

two regions with different stiffness, but symmetric about the centre lines of the 

plate. The method of multiple scales was applied for analysing Mathieu-Hill 

equations and elaborating stability boundaries [6]. Sahu and Datta used the first 

order shear deformation theory for modelling the doubly curved panels to consider 

the effects of transverse shear deformation and rotary inertia. They used finite 

element analysis application for obtaining parametric instability characteristics of 

the panels. It was supposed loads on edges are various in-plane static and periodic 

compressive, including partial and concentrated type [7]. The study was continued 

for studying parametric instability behaviour of curved panels with cut-outs with 

in-plane static and periodic compressive edge loadings [8]. Kumar et al. 

investigated vibration and dynamic instability behaviour of laminated composite 

plates subjected to partially distributed non-conservative follower forces and 

uniaxial in-plane point and patch tensile edge loadings by consideration of finite 

element method and first order shear deformation theory for modelling laminated 

composite plates and doubly curved panels [9, 10]. Dynamic instability analysis 

was done for stiffened plates carried in-plane partial and concentrated edge 

loadings by Srivastava et al. The plate and the stiffeners were modelled as separate 

elements and the compatibility between these two types of elements is maintained 

[11]. Tensile buckling, vibration, and parametric instability behaviour of doubly 

curved panels with central circular cut-out regarding uniaxial in-plane partially 

distributed tensile edge loadings were studied by Ravi Kumar et al. [12]. They 
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also expanded their research to laminated composite doubly curved panels, 

subjected to non-uniform follower load. Their formulation was based on the 

extension of dynamic, shear deformable theory according to Sanders’ first 

approximation for doubly curved laminated shells [13]. Static and dynamic 

instability analysis were done for stiffened shell panels with a uniform in-plane 

harmonic edge by Patel et al. [14]. They used eight-node isoparametric 

degenerated shell element for shell panels and three-node curved beam element 

for stiffeners. 

Whenever the loading types are not constant or a structure is complex, solving the 

partial differential equation of motion will be impossible from analytical methods 

point of view and a numerical solution technique such as finite element method 

has to be applied to estimate a solution and studying free vibration and static 

stability analysis of thin isotropic plates [15, 16]. 

There are also some suggestions on the basis of either exact or numerical method 

for seeking a solution for deriving the partial differential equation of motion. The 

majority of these studies focused on either uniaxial constant in-plane loads or 

pressure acts perpendicular to the plate face leading to a constant coefficient 

differential motion equation (i.e. some of the most recent studies are [17-21]). The 

buckling load was derived by the help of Differential Quadrature Method (DQM) 

for a thin rectangular plate while it was loaded by either uni- or bi-axial 

concentrated loads meanwhile different combination of simply supports and 

clamped boundary conditions were involved [22]. 

Another possible numerical method for estimating solutions is the Finite 

Difference Method (FDM), which is based on replacing differential equations with 

corresponding difference equations (see [23, 24]). Using FDM makes solving the 

differential form of motion equation straightforward. Werfalli and Karoud studied 

free vibration of thin isotropic rectangular plates having various boundary 

conditions [25]. They used a Galerkin-based finite element method for deriving a 

mathematical model represents the vibration behaviour of the plate. Cubic 

quadrilateral serendipity elements with twelve degrees of freedom were 

considered in their analysis. An available Modified Discrete Kirchhoff 

Quadrilateral (MDKQ) element that is developed based on Classical Plate Theory 

(CPT) by using discrete Kirchhoff technique is applied by Patil in free vibration 

response analysis of a thin isotropic rectangular plate [26]. This method had just 

considered only for static analysis of plate formerly. It was also tried to assess the 

accuracy of the developed finite element formulation in analysing the vibration 

response of a thin isotropic rectangular plate that has different boundary 

conditions and geometrical dimensions ratios. An Ordinary Finite Difference 

Method (OFDM), was applied in pure bending and free vibration analysis of a thin 

flat rectangular plate by Ezeh, et al. [27, 28]. 

To our best knowledge, there has been no study for considering the influence of 

linear bi-axial loading effect on the dynamic stability of a thin plate.  



A. Talimian et al. Dynamic Stability of a Thin Plate Subjected to Bi-Axial Edged Loads 

 – 128 – 

A Ph.D. dissertation was written on the investigation of parametric instability of 

thin plates [29]. The motion equation of the plate was derived on basis of the first 

order shear theory by using the FEM. However, the author just discussed the axial 

loading effect on the dynamic stability regions. Here, we have a thin plate as a 

simplification model. It is supposed the displacement field is continuous and its 

derivatives exist for sufficient times, hence applying FDM helps to derive inertia, 

elastic stiffness and stability matrices for the plate from a differential motion 

equation easily. As a consequence, the dynamic stability analysis is done for linear 

bi-axial loading. 

2 Problem Formulation 

Here a thin rectangular plate that is made from a linear elastic material is 

considered. a and b are plate's width and height along the x1- and x2- axes 

respectively, Figure 1. h is the thickness of the plate along the x3- axis. While a 

thin plate is selected for the study, it is supposed the ratio of thickness to the 

smallest dimension is lower than five percent ( 0.05h
b
 ). The plate is subjected 

to different linearly in-plane bi-axial loads on its edges as shown in Figure 2. The 

following assumptions, which are fundamental points in the small-deflection plate 

theory, are valid here as well [24]. 

  

Figure 1 

Plate Dimensions 

It is supposed that: (1) There is no deflection in the plate's mid-surface in 

comparison with its thickness and, consequently, the square of the slope can be 

omitted compared to unity. (2) Plane sections normal to mid-surface initially 

remain plane and normal to the surface after bending. (3) The translation's 

component along to the normal axis to the mid-surface is independent of x3-. 

The differential motion equation of a thin plate subjected to bi-axial in-plane load 

is given by [24, 30], 
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where ρ represents density per unit volume and time is given by t. Normally 

distributed load per unit area on the plate surface, in-plane forces per unit length 

acting on plate's edges in the direction of x1- and x2- axes are 

1 2
, ,x xq N N respectively. The shearing force per unit length in the x1 x2- the plane is 

1 2x xN . The Flexural rigidity of a plate is E and ν are Young's modulus and 

Poisson's ratio respectively. w  , is the time-dependent displacement, with angular 

speed of ω, along the axis perpendicular to the plate's plane, 

 1 2, , .w w x x t                                                                                              (2)                  

Assume that there is no shear load (
1 2

0x xN   ) and normally distributed load 

( 0q  ) acting on the plate. In-plane forces (
1x

N and 
2xN  ) acting on the plate's 

edges that varying along a length, are: 
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2 1
0 01 , 1 .x x

x x
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b a

    
        

   
                                                   (3)  

In-plane load intensity is 0N . α and β are selected numbers (α, β={1,2}) and are 

called load parameters. The possible bi-axial loading is given in Figure 2. 

Substituting (2) and (3) to the differential motion equation of plate (1) gives the 

following equation 

2 2 2
4 2 1

0 02 2 2
1 2

1 1 0,
w x w x w

D w h N N
b at x x

 


     
         

     
                                  (4) 

It is supposed here the plate has simply supported boundary conditions on its 

edges which prevent transverse deflection and allows rotations. These boundary 

conditions equations are given as, 
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                                                    (5) 

The non-dimensional parameters for the horizontal, ξ and vertical axes, η (see 

Figure 1) are introduced as, 

1 2

1 2

1 2

  0,   0.   0,   0.
,             ,     

  ,   1.   ,   1.

for x for x
x a and x b

for x a for x b

 
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 
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                  (6) 
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Hence the equation of motion of the plate (4) is written in non-dimensional form, 

   
2 4 4 4 2 2
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Figure 2 

Loading types 

r, is a geometrical aspect that represents the ratio of plate’s length over its height. 

Buckling load and frequency factors are 
2
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N

D
  and 

4
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D
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respectively. Boundary conditions (5) are also given as non-dimension equations, 
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3 Discretization of the Problem: Finite Difference 

Method 

Finite difference method as a numerical method is used in solving a differential 

equation. Here the motion equation of the plate (7) is given by a fourth order 

differential equation. For approximating each term of it with difference equation 

on solution’s domain the plate’s surface is uniformly discretized to N×N equal 

sub-domain rectangular meshes. The length and width of each mesh's grid equal 

to 1
N

, Consequently, each node's abscissa and ordinate are, 

,      1 .

,      1 .

i

j

i i N
N

j
j N

N





  


  


                                                                                           (9) 

 

Figure 3 

Internal, boundary and imaginary points of a plate 

The second and fourth derivatives of displacement field respect to the selected 

non-dimensional parameters for the horizontal and vertical axes are defined 

subsequently on the basis of central difference formulas for node  , ,i jw    (i.e. 

[24, 27, 28]), 
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   (11) 

The plate’s differential equation of motion (7) terms is replaced with relevant 

difference equations (10) and (11). Boundary conditions have to be also modified 

with consideration of (10) and are written as, 
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                                              (12) 

A set of algebraic equations is derived for every internal point of a plate, Figure 3. 

These equations are collected in a matrix equation, 

  0.M w K NS w                                                                                            (13) 

M , is a diagonal matrix and called either mass or inertia matrix as its elements 

are mass properties. Elastic stiffness and stability matrices are given 

by K and S respectively. They are band matrices and their elements are computed 

from second and third group equations in (7). Elastic behaviour of the plate is 

affected by K  ‘s elements while loading terms are collected in S . w  is a nodal 

displacement vector contains internal points’ displacements of the plate, Figure 3, 

along with normal axis x3- perpendicular to the mid-surface plane of the plate. 

4 Dynamic Stabiliy Analysis, the Basic Solution 

The plate is subjected to in-plane time-dependent loads on its edges. External 

loads (3) on the plate’s edges are, 

   0  ,s dN t N N cos t                                                                                       (14) 

as a function of time. sN and dN  are the static and dynamic amplitude of time-

dependent load respectively. 
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Ω represents an excitation frequency, (14) is simplified in the form of, 

    0 0

1
 .

2
crN t N cos t                                                                                (15) 

0crN , represents the critical buckling load and can be calculated by solving the 

eigenvalue problem (13) for N if stability analysis at static loads is considered. 

Static load factor, λ, and dynamic load factor, μ, are defined by comparing (14) 

and (15). 

0 0

2 2
,        .s d

cr cr

N N

N N
                                                                                           (16) 

Substituting in-plane time-dependent load (15) in plate’s motion equation(13), one 

has, 
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 
     
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                                                          (17) 

The latter equation is Mathieu-Hill [31]. Some methods have been advised for 

solving these type of equations, as the experimental solutions, i.e. Bolotin 

monograph, Galerkin, Lyapunov’s second method, asymptotic techniques, 

perturbation and iteration [32-36]. There exists no analytic solution for (17), 

second order differential equations with a periodic coefficient in general. Hence, 

an approximated time-dependent periodic function is used as a trial solution based 

on a method advised and applied in [31] with a 2T period ( a first approximation 

of the first region of stability) for (17). 
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Introducing (18) into (17) returns the motion equation of the plate as 

 
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
                     (19) 

From the mathematics point of view of trigonometric relations in sine and cosine 

multiplication (19) can be simplified. (19) is easily separated by sine and cosine 

terms as far as they are linearly independent mathematical functions. The final 

form of motion equation of the plate is, 
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                               (20) 

Selecting just first two counters in (20) (k=1, 3) to obtain the first dynamic 

stability regions leads (21). It has to be solved for having a non-trivial solution, 

hence each matrix’s determinant has to be zero. These equations are separated into 

two independent eigenvalue problems regarding the linear independence of the 

unknown constant in (18), ka and kb . 
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          (21) 

The first elements of the eigenvalue problem (22) are just selected for analysing 

the dynamic stability of the plate and returns the first dynamic stability 

boundaries. Dynamic stability analysis of a structure, here a thin plate, is closely 

related to changing in parameters such as Ω, Ncr0, λ and μ. The excitation 

frequency is supposed to be a ratio of the natural frequency of the plate (Ω = ϕ ω). 

Here, ϕ is Excited Frequency Ratio. While no load acts on the plate ( 0N  ) the 

natural frequency of the plate, ω, can be calculated from (13). 
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                                                         (22) 
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5 Results and Calculations 

The first dynamic stability boundaries, show domains where the plate goes to be 

either stable or lose its stability respect to time-dependent excitation load, are 

plotted from (22) and illustrated in Figure 4. Plots are drawn here for three 

different static load factors (λ={0.3,0.6,0.9}). If effective parameters, ϕ, and μ, are 

selected from inside boundaries’ region, the plate loses its stability. On the other 

hand, whenever latter parameters are chosen from these boundaries’ outside, the 

plate's motion regarding assumed load (15) remains stable. 
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Figure 4 

Dynamic Stability Diagrams 

Conclusions 

In this study, a thin rectangular plate is made from linear elastic material subjected 

to bi-axial time dependent loads was supposed. A combination of two in-plane 

load act on edges, changing linearly respect to the length, was considered. The 

plate has simply supported boundary conditions on its edges. The plate’s 

displacement field is continuous and can be differentiated sufficient time hence 

the Finite Difference Method is applied for solving the fourth order differential 

equation of the motion. The first dynamic stability boundaries of the plate respect 

to load parameters and static load factor are illustrated in Figure 4. According to 

these results, following points can be obtained. 

Increasing the share of the static load factor λ causes the first stability range of the 

plate regardless any combination of load types being decreased (borders' gap are 

going to be wider). 

Generally, the plate loses its stability around lower excited frequency ratios 

whenever greater numbers are selected for the static load factor. 

Whenever in-plane loads acting on the plate's edges have same shapes, enlarging 

the geometrical aspect ratio leads the plate loses its stability in wider ranges. 
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