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Abstract: A further step towards a novel approach to adaptive nonlinear control developed 
at Budapest Tech in the past few years is reported. This approach obviates the use of the 
complicated Lyapunov function technique that normally provides global stability of 
convergence at the costs of both formal and essential restrictions, by applying Cauchy 
sequences of local, bounded basin of attraction in an iterative control that is free of such 
restrictions. Its main point is the creation of a robust iterative sequence that only slightly 
depends on the features of the controlled system and mainly is determined be the control 
parameters applied. It is shown that as far as its operation is considered the proposed 
method can be located between the robust Variable Structure / Sliding Mode and the 
adaptive Slotine-Li control in the case of robots or other Classical Mechanical Systems. 
The operation of these method is comparatively analyzed for a wheel + connected mass 
system in which this latter component is “stabilized” along one of the spokes of the wheel 
in the radial direction by an elastic spring. The robustness of these methods is also 
investigated againts unknown external disturbances of quite significant amplitudes. The 
numerical simulations substantiate the superiority of the robust fixed point transformations 
in the terms of accuracy, simplicity, and smoothness of the control signals applied. 

Keywords: Adaptive Slotine-Li Robot Control, Variable Structure / Sliding Mode 
Controller, Fixed Point Transformations, Cauchy Sequences, Banach Spaces 
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1 Introduction: The Common Features of the Robust 
Variable Structure / Sliding Mode and the 
Slotine-Li Adaptive Robot Controllers 

In the analitical modeling based “classical” control approaches two typical “limit 
cases” can be distinguished: the simple robust Variable Structure / Sliding Mode 
(VS/SM) controllers and the sophisticated adaptive approaches as e.g. Slotine’s 
and Li’s adaptive robot control. 

The VS/SM controllers originate from the past Soviet Union of the sixties and 
obtained wide-spread applications even in these days (e.g. [1, 2, 3]). Their main 
idea is the application of a rough bang-bang type control in which the controlled 
system receives drastic flaps from the controller whenever its state crosses a 
switching surface that finely slides in the phase space according to some 
kinematical prescriptions. The really important factor is the proper timing of the 
“flaps”, while their absolute value or extent is of minor significance. 
Mathematically speaking these controllers define some “Error Metrics” of the 
trajectory tracking error of the systam as ( ) eΛS 1: −+= mdtd , e:=q-qN, in which q 
and qN denote the actual and the nominal coordinates in the given time instant, 
respectively, Λ is a positive definite matrix or a positive scalar, while m denotes 
the order of the system, that is the order of the time-derivative of the generalized 
coordinates that can directly be manipulated by some physical agents as e.g. 
torques or forces in the case of Classical Mechanical sytems. On the basis of the 
available rough model normally strong torque/force overestimation is applied to 
drive S to the vicinity of 0 during finite time by approximating some simple 
differential equation prescribed for dS/dt necessarily containing dmq/dtm that 
normally can physically be manipulated in the case of an mth order system. The 
precise realization of this differential equation has no practical significance: as 
soon as S approximates 0, due to its definition various, decreasing order 
derivatives of the form ( ) eΛ kdtd +  have to converge to zero, too, so finally the 
tracking error e itself must converge to 0 with characteristic exponents determined 
by Λ. The torque/force overestimations normally cause some chattering that can 
be reduced or obviated at the price of deteriorated tracking accuracy by smoothing 
the control signal. This controller does not invest any energy into observing the 
behavior and learning the fine structure of the controlled system. It is content with 
the available rough system model that usually works well on various reasons. For 
instance, in Classical Mechanics the Euler - Lagrange equations of motion take the 
following form 

( ) ( ) ( ) QqgqqqCqqH =++ ���� ,   (1) 

In which H is a positive definite symmetric matrix that codes the inertia properties 
of the controlled system, the term containing the matrix C describes the Coriolis 
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forces, while g stands for the gravitational effects and any other effects that can be 
deduced from some potential energy. Since for the modification of q and dq/dt 
considerable time is nedeed due to the inertia of the system, by instantaneously 
modifying the generalized force Q by ΔQ, the 2nd time - derivatives d2q/dt2 can 
instantaneously be modified by Δd2q/dt2. Since H is positive definite, the angle 
included by the vectors ΔQ and Δd2q/dt2 is acute, i.e. these vectors approximately 
have the same direction, therefore without precisely knowing the system’s 
dynamic model the desired Δd2q/dt2 modifications can be approximated if the 
appropriate ΔQ forces are calculated from the available rough model. Normally, 
the desired relaxation of S can be prescribed as 

( ) ⎟
⎠

⎞
⎜
⎝

⎛−≈
w
S

SK
dt

dS i
i

i tanhsgn   (2) 

in which the parameter K>0 determines the speed of relaxation, and w is the 
smoothing parameter. 

Essentially the same properties of (1) are utilized by the very sophisticated 
adaptive control developed by Slotine and Li [4]. By the use of a similar positive 
definite Λ matrix to the time-derivative of the nominal trajectory a linear feedback 
correction is kinematically given as Λeqv −= N�: , and the available model of the 
inertia matrix, marked be the “hat symbol” (^) is used for computing the 
appropriate contribution to the driving forces from its time derivative according to 
the equation 

( ) ( ) ( ) [ ] ( ) [ ]ΛeeKpvvqqYΛeeKqgvqqCvqHQ +−≡+−++= ������ DD ˆ,,,ˆ,ˆˆ .  (3) 

Furthermore, a kind of attempt for linearization can be observed in the 2nd term of 
the right hand side of (3): the available model for Ĉ  contains the measurable 
component of the physical state q� , and it yields a correction that is “proportional” 
to v, too. The gravitational term is estimated according to the available model. 
Since the estimation of the model inertia may be very inaccurate, with a positive 
definite KD matrix further additive derivative and proportional error feedback is 
applied for keeping the errors at bay when the model is very imprecise. It can be 
observed that this term exactly corresponds to the error metrics of the robust 
controller [case m=2 in the definition of S], and it plays similar role in the control 
though its contribution is not maximized as in the case of the robust controller. As 
well as the Adapative Inverse Dynamics Control, this approach also utilizes the 
fact that at least the analytical form of the dynamic model is exactly known, only 
the available inertia and other dynamical data are imprecise, so in the possession 
of the precise kinematic model the Y array can exactly be calculated, while the 
array p̂  contains the estimation for the relevant dynamical data. Since it is 
assumed that the so calculated Q is the only contribution to the generalized forces 
and no additional external perturbations are present, (1) and (3) are also related to 
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the actual state propagation of the system, from which the parameter estimation 
errors can be expressed as 

( )pvvqqYgvCvHSKCSSH ~,,,~~~ ���� =++=++ D ,  (4) 

in which the “tilde” symbol (~) denotes the estimation error of the appropriate 
quantities. An excellent “trick” applied in the Slotine-Li approach is that instead 
of introducing a more or less “arbitrary” positive definite matrix for constructing 
the Lyapunov function, the exact symmetric positive definite matrix H is used for 
this purpose. It is very important to realize that the unknown H itself is not used in 
the calculation the control signal. Only the fact of its existence and known 
properties are used in the Lyapunov function [5, 6]: 

pΓpHSS ~~
2
1

2
1: TTU += ,  (5) 

with some symmetric positive definite matrix Γ. This immediately yields the 
derivative 

pΓpSHSHS ���� ~~
2
1: TTU +⎥⎦

⎤
⎢⎣
⎡ += ,  (6) 

into which from (4) SH �  can be substituted, that leads to 

pΓppYSSKSSCHS ��� ~~~
2
1 TT

D
TTU ++−⎥⎦

⎤
⎢⎣
⎡ −= .  (7) 

The next great idea is the realization of the fact that the matrix ⎟
⎠
⎞

⎜
⎝
⎛ −CH�

2
1  is skew 

symmetric therefore yields zero contribution in (7). Since the next term is negative 
definite, the parameter tuning rule is obtained by making the sum of the third and 
fourth terms equal to zero: 

( ) 0~~ =+ pΓSYp �TT ⇒ SYΓp T1ˆ −−=� .  (8) 

To sum up, this method makes it possible that following a relatively long tuning 
phase the role of the correcting feedback terms becomes more and more 
insignificant as the estimation errors converge to zero. In comparison with the 
robust SM/VS controllers this approach seems to be very ambitious: it intends to 
learn the exact analytical model, furthermore it utilizes its subtle details that are 
not really taken into account in the case of the robust controller. However, this 
approach can work in the learning pase because H is symmetric positive definite 
matrix. 

The above “limit cases” inspired the idea of finding a stage of medium complexity 
for control purposes: by utilizing the fact that H is symmetric positive definite, a 
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simple controller can be developed that does not guarantee global asymptotic 
stability, does not want to learn the exact dynamic model of the system, but in the 
same time applies less drastic feedback than the robust controller, and works with 
local and bounded basins of attraction for a convergent sequence of control 
actions. In the sequel this idea is detailed. 

2 The Excitation - Response Scheme and Fixed Point 
Transformations 

Mathematical 
realization
fixed point 

transformation and
iteration

A possible variant for Single Input  -- Single Output 
(SISO) Systems and its Application in the Coordinate 

Projections for Multiple Input – Multiple Output (MIMO)
Systems

Drive a ball on an 
elastic surface by 
creating a local 

basin of attraction
that slowly moves 
along the surface!

( ) ( ) ( )
∗

∗∗∗+

→

===

xx
xxGxxfxxxGx

n

ddd
nn ; then  if ;;1

 
Figure 1 

The idea of local deformations resulting in local basins of attraction: pressing the valance with one’s 
finger local deformation can be brought about; by varying the location of the deformation the small 

ball can be kept moving along a desired trajectory on the valance 

Each control task can be formulated by using the concepts of the appropriate 
”excitation” Q of the controlled system to which it is expected to respond by some 
prescribed or “desired response” rd. The appropriate excitation can be computed 
by the use of some dynamic model ( )drQ ϕ= . Since normally this model is 
neither complete nor exact, the actual response determined by the system's exact 
dynamics, ψ, results in a realized response rr that differs from the desired one: 

( )( ) ( )ddr rfrψr == :ϕ . It is worth noting that these functions may contain various 
hidden parameters that partly correspond to the dynamic model of the system, and 
partly pertain to unknown external dynamic forces acting on it. Due to 
phenomenological reasons the controller can manipulate or “deform” the input 
value from rd so that ( )dd

∗= rfr . Other possibility is the manipulation of the 

output of the rough model as ( )( )dd rψr ∗= ϕ . For Single Input – Single Output 
(SISO) systems in [7] particular local deformations were proposed for bringing 
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about local basins of attraction for iterative series the main idea of which is 
sketched in Fig. 1: driving a small ball on an elastic surface by local basin of 
attraction created by local deformation that slowly is meandering along some 
trajectory. The local basins of attrcation in [7] were created by the mathematical 
transformations 

( ) ( ) ( )

( ) ( ) ( ) −−
±

±
±+

−−
±

±
±+

+−
Δ−

Δ−
==

+−
Δ−

Δ−
==

DDx
x
xf

xxgx

DDx
xf

xxxhx

nd
nd

nn

n
n

d
d

nn

:;

  ,:;

1

1

.  (9) 

of which the solution of the equation ( ) dxxf =∗  evidently is a fixed point. For 
achieving convergent sequences in the vicinity of x* the contractivity of these 
transformations is required in a local region around x*. If ( ) 1; <≤′ KxxG d , then 

( ) ( ) ( ) ( ) abKdGdGaGbG
b

a

b

a

−≤′≤′=− ∫∫ ττττ  (10) 

and we obtain a self-convergent (Cauchy) sequence that in a complete linear 
metric space (Banach space) converges to one of the fixed points u ( uxn → ) 
since 

( ) ( ) ( )
( ) ( ) uxuxxuKuxxGuG

uxxuGuxxuGuuG

nnnnn

nnnn

→→−+−≤−+−≤

≤−+−≤−+−=−

−−  as 011
. (11) 

For guaranteeing such a convergence the derivatives of (9) have to be considered 
around x* in (12). It is evident that if ( )xf ′  is small enough around x* (that can be 
guaranteed by properly choosing the parameters of the model ϕ), and its sign is 
known, too, the control parameters Δ± and D- can be chosen accordingly. Certain 
successful applications of these transformations were repeorted e.g. in [8, 9]. It the 
function f(x) has “nice behavior”, it is not difficult to find proper control 
paramteters by numerical simulations starting with big |Δ±| and small |D-| values. 

( ) ( )
( ) ( )

( )[ ]
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )−∗
±

∗
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−
±±

±
±

±
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−
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d
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As it can well be seen, this approach is akin to the VS/SM controller in the sense 
that none of these controllers wish to identify or learn the parameters of the 
analytical model of the controlled system. However, there is a considerable 
difference between them: this novel one does not wish to apply drastic bang-bang 
type control signals for precise trajectory tracking: it finely adjusts the control 
signal by observing the controlled system’s behavior only in the given, temporal 
situation. In its philosophy this approach is similar to the idea of “Madarász’s 
situational control” (e.g. [10]) that is applicable in various fields, with the 
difference that in our case the “control situation” can continuously vary and there 
is no need for the elaboration of some hierarchical rules for “typical situations”. 

In spite of these initial successes, it can be stated that the transformations defined 
in (9) have some deficiencies. As it can well be seen from (12) the derivatives h’± 
and g’± in the vicinity of x* behave mainly according to the properties of the not 
very well known function f(x). If the control leaves the local basin of attraction it 
becomes divergent, but it is very difficult to recognize the details of this 
divergence. With other words, the solution proposed in (9) are not very robust 
against the properties of f(x), therefore it would be expedient to apply more drastic 
fixed point transformations with more robust behavior. For this purpose the 
replacement of the simple affine or fractional functions of (9) with more saturated 
ones, possibly obtained from the exponential function were considered. 

The first idea in this direction was rougly sketched in [11] in the form of 

( ) ( ) ( )( )
( ) ( )

( ) ( )( ) ( )( ) ( ) ( ){ }
( ) ( ) ( ) ( )xfKxAxxGxxG

xfKxAxxfxxfAxxG

KxKGxxxG

KxxfAKxxxG

dd

ddd

dd

dd

′+≈±′=′

′+−−−−=′

−=−=

−−−+=

∗∗∗

∗∗

∓1;,1;

sgn1exp;

;,;

exp;

ε

. (13) 

With an affine approximation of f(x) in the vicinity of x* it was shown that this 
transformation normally can have a “proper” (x*) and an “false” fixed point (-K); 
the false fixed point has some global basin of attraction that is the whole real axis 
with the exception of the basin of attraction of x* that is a small, bounded region 
only. This structure promised identifiable loss of proper convergence (in this case 
convergence approaches the false fixed point –K) instead of an indefinite 
divergence. However, it also had the disadvantage that the proper fixed point (x*) 
is just located at the boundary of its basin of attracttion, and since G’ in x* is 1, the 
speed of convergence of the iteration slows down as x* is approached. To obviate 
such disadvantages better transformations were proposed in [12] in the form 
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( ) ( ) ( )[ ]( )[ ]
( ) ( )

( ) ( )
( )[ ]( ) ( )[ ]( )[ ]

( ) ( ) ( ) 1;'

tanh1
cosh

'

;,;

tanh1;

2

+′+=

−++
−

′
+=

−=−=

−−++=

∗∗∗

∗∗

xfABKxxxG

xxfAB
xxfA

xfABKxG

KxKGxxxG

KxxfABKxxxG

d

d
d

dd

dd

. (14) 

It is evident that the transformation defined in (14) also has a proper and a false 
fixed point, but by properly manipulating the A, B and K control parameters the 
good fixed point can be located within its basin of attraction, and the requirement 
of |G’(x*)|<1 can be guaranteed, too. This means that the iteration can have 
considerable speed of convergence even nearby x*, and the strongly saturated tanh 
function can make it more robust in its vicinity, that is the properties of f(x) have 
less influence on the behavior of G. 

In [12] the transformation (14) first was tested by simulations for the control of the 
Φ6-Type Van der Pol oscillator that is a nonlinear electric circuit the simplest 
version of which first was modeled by Van der Pol in 1927 [13]. This equipment 
is a popular paradigm in nonlinear control since it is able to generate chaiotic 
oscillations for pure sinusoidal excitation (e.g. [14]). The equations of motion of 
this system to some extent is similar to that of the Classical Mechanical systems. 
For instance, it is possible to develop the Adaptive Inverse Dynamic Controller for 
it, but is not similar enough to Classical Mechanics for developing a more 
sophisticated Slotine - Li controller for its study. On this reason, for the sake of 
more definite comparisons in the present paper we apply our method for a wheel 
plus a point-like mass affixed to one of its rays by some stiff spring. In the next 
section the model of this sytem is described. 

3 The Wheel – Mass – Spring System’s Model 
The Euler – Lagrange equations of motion of the system prepared for the 
application of the Slotine – Li controller with Θ=50 [kg×m2] momentum of the 
wheel while rotating around axis q1 [rad], mass m=5 [kg] kept at zero spring force 
at one of the spokes at r0=1 [m] by a spring of stiffness k=50 [N/m] and 
gravitational acceleration g=9.81 [m/s2] with radial displacement along the ray q2 
[m] are as follows: 
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�� 	�
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 (15) 

in which the generalized forces are Q1 torque [N×m] and Q2 force [N]. The 
approximate model parameters were 5ˆ =Θ  [kg×m2], 5.0ˆ =m  [kg], 8.00̂ =r  [m], 
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5ˆ =k  [N/m], 1ˆ =g  [m/s2], i.e. they very roughly differred to the “exact ones.” 
The operation of the various control approaches will be comparatively analyzed 
according to this setting in the sequel. 

4 Computational Results 
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Figure 2 

The operation of the simple PD – type controller without disturbance forces 

Since the three various methods to be compared have different control parameters, 
no exact comparisons can be done. However we tried to experimentally find some 
settings that provided the best results for each mothod considered. For the non-
adaptive, non-robust control the desired trajectory tracking property was 
prescribed in purely kinematic terms according to a simple PD – type controller as 

( ) ( )qqqqqq −Λ+−Λ+= NNNd 22 ������  with Λ=30 [s -1]. The first set of 
investigations happened without any disturbance forces. As it can be seen in Fig. 2 
the very inaccurate estimation of the model values yielded great error in tracking 
the trajectories, the phase trajectories. Improvement with respect to the data of 
Fig. 2 can characterize the operation of the other methods considered. In the 
simulatons simple Euler integration was aplied with the discrete time resolution of 
1 ms. 
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4.1 The VS/SM Controller’s Operation 
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Figure 3 

The operation of the robust VS/SM – type controller without external disturbance forces 

In the case of the VS/SM controller the following control parameters were used: 
Λ=30 [s -1], w=0.1, K=800 according to the notation used in (2). The results are 
given in Fig. 3 that is the counterpart of Fig. 2 with the exception that it also 
displays the phase spaces of the two components of the error metrics. It is evident 
that though these quantities are very far from the prescription expressed by (2), 
they are kept at bay near zero and the curves are “concentrated” along a curve 
with some negative slope. Figure 3 well testifies that the simple smoothed VS/SM 
controller works well and considerably increases the tracking accuracy without 
causing drastic chattering. 
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Figure 4 

The operation of the robust VS/SM – type controller with external disturbance forces 

The results displayed in Fig. 4 belong to consideable disturbance forces that are 
well compensated by this simple controller, too. The “negative” distortion of the 
disturbance forces can well be recognized in the exerted control forces, too. 

4.2 The Adaptive Slotine - Li Controller’s Operation 

This very sophisticated controller has a plenty of control parameters as far as the 
tuning of the estimation of the dynamic data is concerned. Their number strictly 
depends on the analytical model of the system. In our case a matrix Y of size 2×5 
and five directly tuned parameters were used as given in (16). For the sake of 
simplicity ve used the following settings: Λ=30 [s -1], KD=200 as denoted in (3). 
For the parameter tuning the positive definite Γ matrix has the following number 
of independent parameters if the possible diagonalization with orthogonal matrices 
is considered ( TODOΓ = ): 5+(52-5)/2=15. For the simplicity we used only a 
Γ=Γ I structure with Γ=0.05 that allows relatively fast learning/tuning. 
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Figure 5 

The operation of the adaptive Slotine – Li controller without external disturbance forces 

The operation of the Slotine – Li controller without disturbance forces is depicted 
in Fig. 5. It can well be seen that it slowly “learns” the dynamics of the controlled 
system and following a transient phase it yields precise trajectory and phase 
trajectory tracking with proper generalized forces. However, due to the suppositon 
that the generalized forces are exactly known and are equal with that exerted by 
the controller the external disturbances can fob this sophisticated controller. This 
can well be seen in Fig. 6 that describes the time-dependence of the Lyapunov 
function that otherwise is not used in the calculation of the control signal. The 
disturbance – free case corresponds to decreasing Lyaunov function in accordance 
with the theoretical expectations. In the case of external disturbances some 
fluctuations appear in it. Figure 7 is the counterpart of Fig. 5 when the same 
external disturbance forces were applied to the system as that in Fig. 4. Both the 
accuracies of trajectory and phase trajectory tracking became degraded, 
furthermore, the parameter tuning mechanuism tried to compensate the effects of 
the external disturbances in quite improper manner. 
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Figure 6 
The operation of the adaptive Slotine – Li controller without (left hand side) and with (right hand side) 

external disturbance forces: the variation of the Lyapunov function versus time 
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Figure 7 

The operation of the adaptive Slotine – Li controller with external disturbance forces 

4.3 The Operation of the Fixed Point Transformation based 
Controller Applied in Coordinate Projections 

In this case the same trajectory tracking was prescribed as in the non-adaptive case 
depicted in connection with Fig. 2. For both projections of the coordinate space 
(i.e. for q1 and q2) the same control parameters were prescribed in harmony with 
the notation applied in (14): A=10 -3, B=0.8, K= -2000. 
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Figure 8 

The operation of the fixed point transformation based adaptive controller with simple PD – type 
prescribed trajectory tracking without external disturbance forces 

As it is revealed by Fig. 8 this controller guarantees very precise trajectory and 
even phase trajectory tracking with nice generalized forces by accurately realizing 
the kinematically prescribed trajectory error relaxation in the lack of external 
disturbances. 

Figure 9 is the counterpart of Fig. 8 when the same external disturbance forces 
were applied to the system as that in Fig. 4. It an well be seen that in the kinematic 
properties of the controlled trajectories only nuances vary, while there is a 
significant modification in the exerted driving forces that quite accurately 
compensate the effects of the disturbances. 

To demonstrate the robustness of the fixed point transformations based method the 
counterpart of Fig. 9 is given in Fig. 10 with the considerably modified control 
parameters as A=2×10 -3, B=0.4, K= -1000. The results of these new settings are 
almost the same as that of the original ones. 
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Figure 9 

The operation of the fixed point transformation based adaptive controller with simple PD – type 
prescribed trajectory tracking with external disturbance forces 
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Figure 10 

The operation of the fixed point transformation based adaptive controller with simple PD – type 
prescribed trajectory tracking with external disturbance forces and modified control parameters 
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Conclusions 

In this paper the similarities and the differences between three different control 
methods, namely the robust VS/SM Controller, the Adaptive Slotine – Li 
Controller and a novel adaptive controller based on the use of simple, 
geometrically interpreted fixed point transformations were studied by using a 
simple paradigm, the wheel plus mass at the ray fixed by an elastic spring. The 
effects of external disturbances were also studied. 

It was found that as far as its ambitions are concerned, though the present 
approach is a kind of transition between the robust and adaptive controllers, it 
seems to be superior in terms of simplicity, lucidity, accuracy, and robustness till 
it remains within its local basin of attraction of convergence. Its main deficiency is 
that its basin of attraction is bounded so the method cannot guarantee global 
asymptotic stability as other approaches normally based on the Lyapunow 
function technique. 

Our future aim is to consider the applicability of this novel method for the control 
of “fractional order systems” the equations of motion of which can be described 
by fractional order differential equations. It is expected that even in this more 
complicated case simple convergent Cauchy sequences can be created as in the 
case of the “integer order systems”. 
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