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Abstract: In the practice, precise and efficient control is needed for certain state variables of
multiple variable physical systems in which the number of the independent control variables
is less than that of the independent state variables. In such cases, either the propagation
of certain state variables is completely abandoned or the concept of the Model Predictive
Control (MPC) is applied in which the model of the controlled system is embedded into the
mathematical framework of the Optimal Controllers. This approach uses a cost function that
summarizes the contributions of the frequently contradictory requirements. By minimizing
this cost a kind of “compromise” is achieved. Whenever approximate and/or incomplete
system models are available, the use of this controller is justified only for short time-intervals.
The only way to reduce the accumulation of the effects of the modeling errors is the frequent
re-design of the time horizon from the actual state as initial state that is done by the Receding
Horizon Controllers. The more sophisticated Adaptive Controllers are designed by the use
of Lyapunov’s “Direct Method” that has a complicated mathematical framework that cannot
easily be combined with that of the optimal controllers. As a potential competitor of the
Lyapunov function-based adaptive controllers a Fixed Point Transformation-based approach
was invented that in the first step transforms the the problem of computing the control signal
into the task of finding an appropriate fixed point of a contractive map. The fixed point can
be found by iteration in which the iterative sequence is generated by this contracting map.
This method can be used for contradiction resolution without the minimization of any cost
function by tracking the observable state components with time-sharing on a rotary basis.

In the present paper a novel fixed point transformation is introduced. It is shown that this
construction for monotonic response function of bounded derivative can guarantee global
stability. Furthermore, the time-sharing-based method is demonstrated by the control of an
underactuated 3 DoF Classical Mechanical system via numerical simulations.

Keywords: adaptive control; underactuated mechanical systems; fixed point transformations;
optimal control; contradiction resolution; time-sharing;
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1 Introduction

In practice, precise and efficient control is needed for certain state variables of mul-
tiple variable physical systems in which the number of the independent control vari-
ables is less than that of the independent state variables.

Typical examples are the underactuated Classical Mechanical systems, such as
the Translational Oscillations with an Eccentric Rotational Proof Mass Actuator
(TORA) that is a simplified model of a dual-spin spacecraft with mass imbalance. It
serves as a “benchmark paradigm” for controller designers (e.g. [1]) for the control
of which various controllers can be developed as a cascade and a passivity based
controller in [2], a model-based controller using the Tensor Product Form (TP) in
[3]. In [4] nine papers were published on the control of the TORA system in a
special issue.

From the subject area of physiology, the illness called Type 1 Diabetes Mellitus
(T1DM), has various, more or less complex models. Bergman’s Minimal Model as
presented by Chee et Fernando in [5] has only three state variables. More complex
models of the same phenomenon take into consideration more variables (e.g. [6])
that can be combined with digestion models as e.g. that in [7] work with 10 state
variables. However, the only measurable variable is the blood glucose concentration
while we have only one control signal, namely, the insulin ingress rate.

Another interesting area from the realm of nonlinear phenomena is the operation
of the neurons. From the beginning of the 20th century various efforts were made
to expound the spiking property of the neurons. From Lapicque’s “Integrate and
Fire Neuron Model” in 1907 to the quite sophisticated Hodgkin-Huxley model in
1952 [8] distinguishing between sodium, potassium and leakage channels. Various
simplifications were also used. As examples the Chua-Matsumoto Circuit in 1984
[9] or the FitzHugh-Nagumo model in 1961 [10] can be mentioned. Each of these
models is a multivariable system having nonlinear dynamic coupling between its
variables to which only one control signal is available.

In a wider sense the above examples well represent the “underactuated systems”.
These systems have the important feature that makes it physically impossible to
drive them through an arbitrary “trajectory” along which each state variable’s pre-
cise position is prescribed in time. Controlling only one state variable and letting
the other ones propagate as they want generally cannot be an acceptable option. It
is more expedient to somehow “distribute” the tracking error over the various state
variables that evidently may be a contradictory task. A plausible solution for con-
tradiction resolution is the minimization of a cost functional that is constructed as
a sum of the errors to be kept at bay as well as some other terms that express some
limitations of the controllers or other extra requirements. In general this problem ap-
pears as the Hamilton-Jacobi-Bellman equation that can be solved by Dynamic Pro-
gramming that consumes up a lot of computational power [11]. It uses the principle
of optimality of subproblems and applies tabulation in the state space to compute
recursively a feedback control. The Indirect Methods are related to the variational
principles of Classical Mechanics with the introduction of the Lagrange Multipliers
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as “co-state” variables. The direct methods transform the infinite optimal control
problem into a finite dimensional Nonlinear Programming Problem (NLP). Simply
treatable problem is obtained only if the goal functional has very special form as
e.g. in the case of the Linear Quadratic Regulator [12, 13] in which, the controlled
system is Linear Time Invariant (LTI) and the cost function has quadratic structure.
This makes the problem tractable by using Riccati differential or algebraic equa-
tions, depending on the role of the terminal conditions. The simplicity means that a
separate solution becomes available for the co-state and the state variables. In more
general cases the possibility for this separation ceases and state-dependent Riccati
equations appear (e.g. [14]). These approaches normally are based on the globally
linearizable form and apply state-dependent weighting matrices in the LQR form.

Whenever the available models are not precise enough, the time-horizon for the
controller design cannot be too long. To evade the accumulation of the effects of
the modeling errors the so calculated control signal can be applied only for a short
time-horizon, the new initial conditions have to be measured and a redesign has to
be initiated for the next short period (the Receding Horizon Control that appeared
in the late seventies of the past century in relation with industrial applications [15]).

An alternative error-compensation possibility is the creation of an Adaptive Con-
troller. The adaptive controllers traditionally are designed by the use of Lyapunov’s
“Direct Method” that he elaborated in his PhD dissertation in 1892 [16, 17] when
he investigated the stability of motion. The main idea was that in spite of the fact
that normally, the solution of coupled nonlinear differential equations cannot be ex-
pressed in closed analytical form, without knowing the details of the motion it be-
came possible to determine its stability. The Adaptive Inverse Dynamics Controller
(AIDC) and the Adaptive Slotine-Li Controller (ASLC) for robots in the nineties
were developed by the use of this technique [18]. The method seems to be prevail-
ing nowadays, in the design of the Model Reference Adaptive Controllers (MRAC),
too (e.g. [19, 20, 21]). Normally, this method can guarantee global stability with-
out revealing any details of the controlled motion. In general whole set of adaptive
control parameters can result in global stability with different “transients” of the
controlled motion. Whenever these details are important the adaptive control pa-
rameters can be tuned to improve the transient behavior e.g. by evolutionary meth-
ods (e.g. [22, 23]). The application of Lyapunov function in adaptive controllers
need very skilled control designers since for each particular control task one has
to construct an individual Lyapunov function and has to prove the non-positivity
of its time-derivative. One source of the mathematical difficulties may be that this
method is based on satisfactory conditions and it may prescribe much more restric-
tions, than necessary. Another problem is that this approach does not seem to be
easily integrable with the mathematical framework of the optimal controllers.

Another practical approach that can evade the complexity of the Lyapunov func-
tion based design is the use of Robust Variable Structure/Sliding Mode Controllers
(VS/SM). The very simple idea originates from the Soviet Union in the 1960s and
became known to the western world later (e.g. [24, 25, 26]). Its main point was
that in the possession of an approximate model only, and under the influence of un-
known external disturbances, for a kinematically prescribed trajectory tracking, it is
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impossible to calculate the appropriate control signals. Instead of that the concept
of the error metrics was so introduced that driving it to and keeping it in the vicinity
of zero make the trajectory tracking error converge to zero. The great advantage of
this solution is its simplicity and is easily realizable. Its drawback is that the control
signal can sharply vary, when the components of the error metrics cross the value
zero. The so generated chattering can excite “not modeled” subsystems unexpect-
edly. Normally this effect can be eliminated by “softening” the switching rule that
may reduce the precision of the trajectory tracking.

With the aim of evading the difficulties of the Lyapunov function-based techniques
and maintaining the simplicity of the VS/SM controllers without their aptitude for
chattering, a novel adaptive controller-design methodology was suggested in 2009
[27, 28], that directly tries to realize a purely kinematically prescribed trajectory
tracking property of the controlled motion by studying the response of the con-
trolled system in the given control situation. This approach, at first, converts the
control task into a fixed point problem that iteratively can be solved afterwards. The
use of this idea goes back to the 17th century (the “Newton-Raphson Algorithm”
[29]) and obtains great attention even in our days (e.g. [30, 31]). In 1922 Banach
generalized this fixed point method to quite abstract linear, normed, complete metric
spaces [32]. This iteration-based approach is essentially different to the method of
Iterative Learning Control (ILC) that was elaborated for robots repetitively execut-
ing the same task (e.g. [33, 34, 35, 36, 37]). The original transformation introduced
in [27] was called Robust Fixed Point Transformation (RFPT) that contained only
three adaptive control parameters. While in several control applications, fix set-
tings of these parameters was found to be satisfactory, for other cases, complemen-
tary tuning strategies were elaborated, for tuning only, its one adaptive parameters
[38, 39, 40]. Attempts were also made to modify the fixed point transformation used
for transforming the control task into a fixed point problem [41, 42, 43].

The method was found to be appropriate for various control tasks, via simulations,
as e.g. chemical reactions [44, 45], the FitzHugh-Nagumo neuron model [46], the
Hodgkin Huxley neuron [47], Chua-Matsumoto circuit [48], and various diabetes
models [49, 50].

In [46] and [48] the idea of replacing the cost-functional-based optimal control ap-
proach for the resolution of the contradictions regarding the prescriptions for the
tracking precision of the various state-variables of underactuated systems by time-
sharing on a rotary basis already arose. The aim of the present paper is to show
that this idea can work in the case of an underactuated Classical Mechanical sys-
tem, the TORA model. In the simulations an improved version of the fixed point
transformation suggested in [43] was used.

2 The Fixed Point Transformation-based Approach

This approach assumes that we have the approximate model of the dynamic sys-
tem to be controlled. The control actions are calculated with its help based on
some kinematically expressed trajectory error reduction by comparing the desired
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response rDes and the actually observed response rAct of the controlled system. Due
to modeling imprecisions and unknown external disturbances normally rAct 6= rDes.
For the given control situation a “response function” can be observed that sets a
relationship between the desired and the observed responses as rAct = f

(
rDes

)
. The

core of the fixed point transformation-based technique is the deformation of the in-
put of the response function from rDes to r? using Banach’s Fixed Point Theorem
[32] in order to achieve the situation rAct ≡ f (r?) = rDes.

2.1 Antecedents

For the purpose of obtaining the appropriate deformation in [27] for SISO systems
the transformation function was introduced as

rn+1 = (rn +Kc)
[
1+Bc tanh

(
Ac
{

f (rn)− rDes})]−Kc (1)

with Kc, Bc, Ac ∈ IR parameters. This construction had two fixed points for a mono-
tonic response function f (r): a trivial one at r =−Kc, and the solution of the control
task r = r?. In [40] it was shown that for monotonic f (r) and fixed Kc and Bc as |Ac|
was increased from zero the fixed point at r =−Kc always behaved as a monotonic
repulsive one, while the other one r = r? at first was monotonic attractive, then it
turned into oscillatory attractive before turning to an oscillatory repulsive. The ses-
sion of the monotonic attractive behavior did not risk the stability of the controller,
it was observed by model-independent observers and was used for tuning Ac in or-
der to avoid the occurrence of the regime of bounded chaotic oscillations. On this
reason these oscillations were called Precursor Oscillations in [40, 51]. The chaotic
behavior was studied in [52, 53, 51] and it was shown that it was generated by the
co-operation of two repulsive fixed points. It was found that in general it does not
risk the precision of the trajectory tracking, and its great chattering can be reduced.

In [43] the Sigmoid Generated Fixed Point Transformation was suggested that was
constructed of a monotonic increasing, bounded and smooth g(x) : IR 7→ IR sig-
moid function. For some K > 0 and D > 0 positive parameters the iterative se-
quence {x0, . . . ,g(xn)−K = g(xn+1−D), . . .}was generated that lead to the function

F(x)
de f
= g−1 (g(x)−K)+D where the inverse function of g() is denoted by g−1().

The fixed point of F(x) is the solution of the equation F(x∗) = x∗. This function was
used in [43] for the generation of the sequence of the deformed inputs as

rn+1 = G(rn)
de f
= F

(
Ac
[

f (rn)− rDes]+ x∗
)
+ rn− x∗ (2)

where Ac ∈ IR stands for a parameter, and normally, in the control applications

r0
de f
= rDes

0 , that is the desired response in the initial control cycle. Obviously, if
r? is the solution of the control task, i.e. f (r?)− rDes = 0 then G(r?) = r?. Since
F(x∗) = x∗, this solution is a fixed point of the function G. In order to guarantee
the convergence of the series {rn} function G must be contractive, i.e. the relation
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Tar, Bitó, Rudas Contradiction Resolution in the Adaptive Control of Underactuated Mechanical Systems . . .

∣∣ dG
dr

∣∣< 1 must be valid. It was shown that this construction can have two fixed points
as the originally suggested RFPT has, can produce the precursor oscillations, and
can be used for adaptive control purposes.

However, this construction may have difficulties. Both constructions worked only
with bounded region of attraction around r? that formally cannot guarantee global
stability. It is clear that the graph of the original bounded function g(x) was shifted
down in g(x)−K, and it was shifted to the right by g(x−D). It was assumed that for
the first element of the iteration x0 there exists x1 for which g(x0)−K = g(x1−D).
This may be possible for several x0 values but not necessarily for each x0 ∈ IR. For

instance, if g(x)
de f
= tanh(x), g(x)−K ∈ (−1−K,1−K) and g(x−D) ∈ (−1,1),

therefore there exist x0 to which no x1 belongs. In the present paper this defi-
ciency, is eliminated, by the introduction of a transformation generation technique,
using “Stretched Sigmoid Functions”. It also will be shown that for SISO systems,
of monotonic response functions, with bounded derivatives, this construction, can
guarantee global stability.

2.2 Stretched Sigmoids Generated Fixed Point Transformation
(SSGFPT)

This fixed point transformation is generated by sigmoid functions g(x), and h(x) as
follows:

g(x)
de f
= tanh(x)−Kc , (3a)

h(x)
de f
=

(
1+

Kc + Jc

2

)
tanh

(
x−Dc

1+ Kc+Jc
2

)
− Kc + Jc

2
, (3b)

g(x0) = h(x1), . . . ,g(xn) = h(xn+1), . . . , (3c)

xn+1 = h−1 (g(xn))≡ F(xn) , (3d)

in which Kc, Jc, and Dc > 0, and h−1(x) denotes the inverse of the monotonic func-
tion h(x). For the parameter settings Kc = 0.5, Jc = 0.2, and Dc = 0.6 this iteration
is exemplified by Figs. 1, 2.
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Figure 1
Generation of the fixed point transformation by the functions g(x) and h(x) in (3)

Figure 2
Generation of the fixed point transformation by the function F(x) in (3)

Since ∀x ∈ IR g(x) ∈ (−1−Kc,1−Kc), and h(x) ∈ (−1−Kc− Jc,1), the iteration
defined in (3) always converges to x?.

The here suggested solution has considerable advantages in comparison with the
RFPT transformation published in [27] or the new variants suggested in [42, 43]:
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if the response function of the controlled system is monotonic and
∣∣∣ d f

dr

∣∣∣ is bounded
the function in (2) has only a single attractive fixed point over the whole real axis
IR. Furthermore, due to the saturation of g(x) and h(x) it produces very fast conver-
gence if the distance |x−x∗| is great, and provides acceptable convergence speed in
the vicinity of x∗. Due to the strongly saturated nature of g(x) in (2) relatively great
value for the parameter Ac can be used that also speeds up the convergence in the
“beaked” structure near x∗. In the sequel the application of this fixed point transfor-
mation is exemplified in the case of an underactuated, extended TORA model.

3 Adaptive Optimal Control based on Time Sharing
and SSGFPT

In this section the application of SSGFPT will be exemplified by the use of a TORA
variant we already considered in [40, 43, 42]. At first the dynamic model is ex-
plained.

3.1 The Dynamic Model of the TORA System

The model consists of a cart, a pendulum (practically a beam) and a dial that can be
rotated around an axle attached to the end of the beam. Its equations of motion under
full actuation are are given in (4) with the dynamic parameters defined in Table 1.
The generalized coordinates of the system are q1 [rad] that describes the rotation of
the beam with respect to the vertical direction, q2 [rad] that is the rotation angle of
the dial with respect to the beam, and q3 [m] that corresponds to the translation of
the cart in the horizontal direction. The generalized force components are Q1 [N ·m],
Q2 [N ·m], and Q3 [N]. In the underactuated mode of operation it is assumed that
Q2 ≡ 0, and Q3 ≡ 0, i.e. only a single control signal Q1 can be used for controlling
the motion of the axles q1, q2, and q3.

 (mL2 +Θ) Θ mLcos(q1)
Θ Θ 0

mLcos(q1) 0 (m+M)

 q̈1
q̈2
q̈3

+
+

 −mLgsin(q1)
0

−mLsin(q1)q̇1
2

=

 Q1
Q2
Q3

 (4)

[In the model the mass of the beam was neglected. Furthermore, it was assumed
that the dial is connected to the beam by axle q2 at its mass center point. These facts
explain certain simplifications that are present in (4).]

In the sequel the idea of the adaptive optimal control is expounded.
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Table 1
The parameters of the approximate model and that of the actually controlled system’s model

Parameter Approximate Exact
M [kg] mass of the cart 1.5×5 5
L [m] length of the beam 1.5×1 1
m [kg] mass of the dial 1.5×2 2
Θ [kg ·m2] inertia momentum of the dial 1.5×6 6
g [m · s−2] gravitational acceleration 1.5×9.81 9.81

3.2 Application of Time Sharing in Adaptive Optimal Control

In our system a single active control torque Q1 can be used for controlling the motion
of q1, q2, and q3. It is evidently impossible to track some arbitrarily prescribed
nominal trajectory [qN

1 (t),q
N
2 (t),q

N
3 (t)]

T . In the practice, the tracking imprecisions
have to be distributed over the three coordinates. In the classical solutions as in the
LQR controller (e.g. [13]) a cost function is constructed of the tracking errors and
the cost functional that is obtained as its integral is minimized. Some limitation for
the control forces can be built in the cost functional, too. The minimization can be
executed by the use of the Riccati equations in the simpler cases, or by nonlinear
programming in the more general ones.

In our approach the cost function is completely eliminated according to the idea
of time-sharing. The operation time of the controller is divided into disjoint time
intervals in which simultaneously the motion of only one coordinate is controlled
while the other ones can propagate as they “want”. In the next session the controller
tries to keep at bay one of the other coordinates, and so on.

When the motion of q1 is under control by the use of the last two equations of the
matrix form in (4) q̈2 and q̈3 can be expressed by q̈1, and these expressions can be
substituted into the first equation with the application of the available approximate
model parameters denoted by the subscript “a”:

Q1 =

(
maL2

a−
m2

aL2
a cosq2

1
ma +Ma

)
q̈1 +

(maLa)
2 cosq1 sinq1q̇2

1
ma +Ma

−maLaga sinq1 . (5)

When the coordinate q2 is under control from the third equation q̈3 can be expressed
by q̈1, and from the second equation q̈1 can be expressed by q̈2. These values can
be substituted into the first equation to obtain the appropriate control torque as

Q1 =−
(

maL2
a−

m2
aL2

a cosq2
1

ma +Ma

)
q̈2 +

(maLa)
2 cosq1 sinq1q̇2

1
ma +Ma

−maLaga sinq1 . (6)

Finally, when q3 is under control, from the third equation q̈1 can be expressed with
q̈3. With its use from the second equation q̈2 can also be expressed by q̈3. These
quantities have to be substituted into the 1st equation to obtain Q1 as:
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Q1 =

(
− (ma +Ma)La

cosq1
+maLa cosq1

)
q̈3 +

maL2
a sinq1q̇2

1
cosq1

−magaLa sinq1 . (7)

To each session some time-slot was allocated in the simulations detailed in the se-
quel.

4 Numerical Calculations

4.1 Setting the Parameters of the Numerical Simulations

The numerical simulations were made by the use of the SCILAB (ver. 5.5.2) and its
graphically programmable package XCOS. The kinematically prescribed trajectory
tracking contained a PD-type feedback defined by (8) using a “time-constant of
tracking” Λ > 0:

e(t)
de f
= qN(t)−q(t) tracking error , (8a)(

Λ+
d
dt

)2

e(t) = 0 desired behavior leading to (8b)

q̈Des = q̈N +2Λė+Λ
2e . (8c)

The numerical values are given in Table 2. Whenever the controlled axis was
changed the adaptivity was switched off for a short period defined by the parameter
“time-slot of inactive adaptivity”. This was necessary for “clearing the memory”
of the adaptive controller that had inadequate antecedents since the past data at axle
switching belonged to the previously controlled axle.

Table 2
The parameters of the adaptive controller and the numerical simulator

Parameter Value
Λ [s−1] 4
Kc [nondimensional] 0.5
Dc [nondimensional] 0.6
Jc [nondimensional] 0.2
x∗ [nondimensional] (dependent) 1.435116
Ac ∈ IR3[ s2

rad ,
s2

rad ,
s2

m ]T [−0.75,−2,−2]T

δ t [s] Cycle time 10−3

∆t [s] Time-slots for q1, q2, and q3 [2,2,1]T

τNA [s] Time-slot of inactive adaptivity 5×10−3

Numerical integrator’s method Runge-Kutta 4(5) of SCILAB ver. 5.5.2
Maximum allowed time step in integration Automatic
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4.2 Simulation Results

The comparison of the operation of the non-adaptive and adaptive controllers can
be done by using Figs. 3–5.

Figure 3
Tracking of q1 in the non-adaptive (upper chart) and the adaptive (lower chart) cases: qN

1 : black, q1: red
lines, the time slots are indicated by the step function (brown line): increasing values belong to q1, q2,
and q3, respectively
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Figure 4
Tracking of q2 in the non-adaptive (upper chart) and the adaptive (lower chart) cases: qN

2 : blue, q2:
magenta lines, the time slots are indicated by the step function (brown line): increasing values belong to
q1, q2, and q3, respectively
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Figure 5
Tracking of q3 in the non-adaptive (upper chart) and the adaptive (lower chart) cases: qN

3 : green, q3:
ocher lines, the time slots are indicated by the step function (brown line): increasing values belong to q1,
q2, and q3, respectively

More details are revealed by Figs. 6–8, displaying the tracking errors versus time.
It is evident that within its own time-slot each of the adaptively controlled axle was
adjusted to track the nominal motion that was prescribed to it. In the non-adaptive
slots they left the nominal trajectory. However, due to the rotation of the adaptive
slots the motion of each axle was kept in the vicinity of the nominal trajectory.
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Figure 6
Tracking error of q1 in the non-adaptive (upper chart) and the adaptive (lower chart) cases: qN

1 − q1:
black line, the time slots are indicated by the step function (red line): increasing values belong to q1, q2,
and q3, respectively

– 110 –



Acta Polytechnica Hungarica Vol. 13, No. 1, 2016

Figure 7
Tracking error of q2 in the non-adaptive (upper chart) and the adaptive (lower chart) cases: qN

2 −q2: blue
line, the time slots are indicated by the step function (red line): increasing values belong to q1, q2, and
q3, respectively
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Figure 8
Tracking error of q3 in the non-adaptive (upper chart) and the adaptive (lower chart) cases: qN

3 − q3:
green line, the time slots are indicated by the step function (red line): increasing values belong to q1, q2,
and q3, respectively

The generalized force Q1 exerted by the controller is given in Fig. 9. The adaptive
and the non-adaptive cases worked with control torques within the same order of
magnitude.
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Figure 9
The control torque Q1 in the non-adaptive (upper chart) and the adaptive (lower chart) cases; the time
slots are indicated by the step function (blue line): increasing values belong to q1, q2, and q3, respectively

The operation of the controller can be understood by considering the “desired” and
the “realized” second time-derivatives of the generalized coordinates, as they are
given in Figs. 10–12.
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Figure 10
The “desired” q̈Des

1 (black lines) and the realized q̈1 (red lines) values in the non-adaptive (upper chart)
and the adaptive (lower chart) cases; the time slots are indicated by the step function (brown line):
increasing values belong to q1, q2, and q3, respectively
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Figure 11
The “desired” q̈Des

2 (blue lines) and the realized q̈2 (magenta lines) values in the non-adaptive (upper
chart) and the adaptive (lower chart) cases; the time slots are indicated by the step function (brown line):
increasing values belong to q1, q2, and q3, respectively
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Figure 12
The “desired” q̈Des

3 (green lines) and the realized q̈3 (ocher lines) values in the non-adaptive (upper
chart) and the adaptive (lower chart) cases; the time slots are indicated by the step function (brown line):
increasing values belong to q1, q2, and q3, respectively

Evidently, in the appropriate adaptive sessions, the suggested fixed point transfor-
mation precisely realized the kinematically prescribed trajectory tracking, for the
actually controlled coordinate.

Conclusions

In this paper, a novel fixed point transformation, called “Stretched Sigmoids Gener-
ated Fixed Point Transformation (SSGFPT)” was suggested, for the realization of
“Adaptive Optimal Control” for an underactuated Classical Mechanical system, a
TORA model.
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It was shown that for SISO systems of monotonic increasing response functions
of bounded derivatives this controller can realize globally stable operation. This
operation is possible because, in this case, the fixed point transformation used for
transforming the computation of the necessary control force into the problem of
finding the fixed point of a contractive map via iteration, has unbounded basin of
attraction. Furthermore, it guarantees very fast convergence, if the actual point is
far from the fixed point.

The main point of the optimization considered herein, is the idea of using cost-
function free optimization, in which, the necessary compromise between the con-
tradictory prescriptions, is found via time-sharing, realized by rotating time-slots.
In contrast to the traditional optimal control, that formally is made complicated,
because of the use of cost functionals, the herein applied approach allows simple
combination with a non Lyapunov function-based adaptive design.

The numerical simulations well exemplified the operation of the suggested method.

In our future work, we should like to proceed in two separate directions. First, we
wish to generalize the SSGFPT method from SISO to multivariable (MIMO) sys-
tems. Second, we wish to study the possibilities to include further limiting factors
in the computations. Traditionally these factors appear as contributions to the cost
functions.
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[39] J.K. Tar, L. Nádai, I.J. Rudas, and T.A. Várkonyi. RFPT-based adaptive con-
trol stabilized by fuzzy parameter tuning. In Proc. of the 9th European Work-
shop on Advanced Control and Diagnosis (ACD 2011), Budapest, Hungary,
pages 1–8, 2011.
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