
Acta Polytechnica Hungarica Vol. 5, No. 4, 2008

 – 29 –

Controlling Communication and Mobility by
Types with Behavioral Scheme

Martin Tomášek
Department of Computers and Informatics, Faculty of Electrical Engineering and
Informatics, Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
e-mail: martin.tomasek@tuke.sk

Abstract: This paper presents a type system of mobile ambients suitable for expressing
communication and mobility of mobile code application. The main goal is to avoid
ambiguities and possible maliciousness of some constructions in mobile ambients. The type
system presents behavioral scheme that statically defines and checks access rights for
authorization of ambients and threads to move. We proved the soundness theorem for the
type system and we demonstrated the system by showing how to model mobile code
paradigms.

Keywords: ambient calculus, mobile code, type system

1 Introduction

The calculus of mobile ambients [1] is based on concurrency paradigm
represented by the π -calculus [2]. It introduces the notion of an ambient as a
bounded place where concurrent computation takes place, which can contain
nested subambients in a hierarchical structure, and which can move in and out of
other ambients, i.e., up and down the hierarchy what rearranges the structure of
ambients. The communication can only occur locally within each ambient through
a common anonymous channel. Communication between different ambients has to
be performed by movement and by dissolution of ambient boundaries.

The ambition of mobile ambients is in general to express mobile computation and
mobile computing. Mobile ambients can express in natural way dynamic
properties (communication and mobility) of mobile code systems, but there is still
question of deeper control and verification of mobility properties (like access
rights or mobility control). Usual approaches apply type systems which adds more
properties to the pure calculus. Our paper presents the type system for ambient
calculus that abstracts various properties of mobility and communication as a
behavioral scheme of a process.

M. Tomášek Controlling Communication and Mobility by Types with Behavioral Scheme

 – 30 –

2 The Ambient Calculus

Mobile ambients model several computational entities: mobile agents, mobile
processes, messages, packets or frames, physical or virtual locations,
administrative and security domains in a distributed system and also mobile
devices. This variety makes that in principle there are no differences among
various kinds of software components when expressing by mobile ambients. In
mobile ambients there are implicitly two main forms of entities, which we will
respectively call threads and ambients. Threads are unnamed sequences of
primitive actions to be executed sequentially, generally in concurrency with other
threads. They can perform communication and drive their containers through the
spatial hierarchy, but cannot individually go from one ambient to another.
Ambients are named containers of concurrent threads. They can enter and exit
other ambients, driven by their internal processes, but cannot directly perform
communication. It is very important to ensure indivisibility and autonomous
behavior of ambients (this is also important e.g. for objects).

Communication between ambients is represented by the movement of other
ambient of usually shorter life, which have their boundaries dissolved by an open
action to expose their internal threads performing local communication operations.
Such capability of opening an ambient is potentially dangerous [3, 4, 5]. It could
be used inadvertently to open and thus destroy the individuality of an object or
mobile agent. Remote communication is usually emulated as a movement of such
ambients (communication packages) in the hierarchy structure.

We explore a different approach, where we intend to keep the purely local
character of communication so that no hidden costs are present in the
communication primitives, but without open operation. This solves the problem
of dissolving boundaries of ambients, but disables interactions of threads from
separate ambients. We have to introduce new operation move for moving threads
between ambients. The idea comes from mobile code programming paradigms [6]
where moving threads can express strong mobility mechanism, by which the
procedure can (through move operation) suspend its execution on one machine
and resume it exactly from the same point on another (remote) machine. This
solves the problem of threads mobility and by moving threads between ambients
we can emulate communication between the ambients.

Such adaptations of mobile ambients operations we can express computational
entities of mobile programs in more natural way. Another purpose for this
approach is to prefer simplicity and understandability of designed type system for
mobile ambients later on.

We define abstract syntax and operational semantics of our calculus. It is based on
abstract syntax and operational semantics of ambient calculus including our new
constructions.

Acta Polytechnica Hungarica Vol. 5, No. 4, 2008

 – 31 –

2.1 Abstract Syntax

The abstract syntax of the terms of our calculus in Table 1 is the same as that of
mobile ambients except for the absence of open and the presence of the new
operation move for moving threads between ambients. We allow synchronous
output and the asynchronous version is its particular case.

Table 1
Abstract syntax

::M = mobility operations

 | n name

 | in M move ambient into M

 | out M move ambient out of M

 | move M move thread into M

 .| M M ′ path

::P = processes

 | 0 inactive process

 || P P′ parallel composition

 !| P replication

 []| M P ambient

 (: [])| n Pν P B name restriction

 .| M P action of the operation

 .| M P〈 〉 synchronous output

 (:).| n Pμ synchronous input

We introduce types already in the term syntax, in the synchronous input and in the
name restriction. The defined terms are not exactly the terms of our calculus, since
the type constructions are not yet taken into account, this is done by the typing
rules in the next section.

M. Tomášek Controlling Communication and Mobility by Types with Behavioral Scheme

 – 32 –

2.2 Operational Semantics

The operational semantics is given by reduction relation along with a structural
congruence the same way as those for mobile ambients.

Each name of the process term can figure either as free (Table 2a) or bound (Table
2b).

Table 2
Free (a) and bound (b) names

() { }fn n n= ()bn n = ∅

() ()fn in M fn M= () ()bn in M bn M=

() ()fn out M fn M= () ()bn out M bn M=

() ()fn move M fn M= () ()bn move M bn M=

(.) () ()fn M M fn M fn M′ ′= ∪ (.) () ()bn M M bn M bn M′ ′= ∪

()fn = ∅0 ()bn = ∅0

(|) () ()fn P P fn P fn P′ ′= ∪ (|) () ()bn P P bn P bn P′ ′= ∪

(!) ()fn P fn P= (!) ()bn P bn P=

([]) () ()fn M P fn M fn P= ∪ ([]) () ()bn M P bn M bn P= ∪

((: [])) () { }fn n P fn P nν = −P B ((: [])) () { }bn n P bn P nν = ∪P B

(.) () ()fn M P fn M fn P= ∪ (.) () ()bn M P bn M bn P= ∪

(.) () ()fn M P fn M fn P〈 〉 = ∪ (.) () ()bn M P bn M bn P〈 〉 = ∪

((:).) () { }fn n P fn P nμ = − ((:).) () { }bn n P bn P nμ = ∪

a) b)

We write { }P n M← for a substitution of the capability M for each free
occurrences of the name n in the term P . The similarly for { }M n M← .

Structural congruence is shown in Table 3 and it is standard for mobile ambients.
The (SAmbNull) rule is added to get a form of garbage collection, because of
absence of the open operation.

In addition, we identify processes up to renaming of bound names (α-conversion)
as shown in Table 4. By this we mean that these processes are understood to be
identical (e.g. by choosing an appropriate representation), as opposed to
structurally equivalent.

Acta Polytechnica Hungarica Vol. 5, No. 4, 2008

 – 33 –

Table 3
Structural congruence

equivalence:
P P≡ (SRefl)
P Q Q P≡ ⇒ ≡ (SSymm)

,P Q Q R P R≡ ≡ ⇒ ≡ (STrans)
congruence:
 | |P Q P R Q R≡ ⇒ ≡ (SPar)

 ! !P Q P Q≡ ⇒ ≡ (SRepl)

 [] []P Q M P M Q≡ ⇒ ≡ (SAmb)

 (: []) (: [])P Q n P n Qν ν≡ ⇒ ≡P PB B (SRes)

 . .P Q M P M Q≡ ⇒ ≡ (SAct)

 . .P Q M P M Q≡ ⇒ 〈 〉 ≡ 〈 〉 (SCommOut)

 (:). (:).P Q n P n Qμ μ≡ ⇒ ≡ (SCommIn)

sequential composition (associativity):
 (.). . .M M P M M P′ ′≡ (SPath)

parallel composition (associativity, commutativity and inactivity):
 | |P Q Q P≡ (SParComm)

 (|) | | (|)P Q R P Q R≡ (SParAssoc)

 |P P≡0 (SParNull)

replication:

 ! | !P P P≡ (SReplPar)

 ! ≡0 0 (SReplNull)
restriction and scope extrusion:
 (: [])(: []) (: [])(: [])n m n m P m n Pν ν ν ν′ ′≠ ⇒ ≡P P P PB B B B (SResRes)

 () (: []) | (: [])(|)n fn Q n P Q n P Qν ν∉ ⇒ ≡P PB B (SResPar)

 (: []) [] [(: [])]n m n m P m n Pν ν≠ ⇒ ≡P PB B (SResAmb)

 (: [])nν ≡P 0 0B (SResNull)

garbage collection:
 (: []) []n nν ≡P 0 0B (SAmbNull)

M. Tomášek Controlling Communication and Mobility by Types with Behavioral Scheme

 – 34 –

Table 4
α-conversion

(: []) (: []) { } ()n P m P n m m fn Pν ν= ← ∉P PB B (SAlphaRes)

(:) (:) { } ()n P m P n m m fn Pμ μ= ← ∉ (SAlphaCommIn)

The reduction rules in Table 5 are those for mobile ambients, with the obvious
difference consisting in the synchronous output and the missing open operation,
and with the new rule for the move operation similar to the “migrate” instructions
for strong code mobility in software agents.

Table 5
Reduction rules

basic reductions:

 [. |] | [] [[|] |]n in m P Q m R m n P Q R→ (RIn)

 [[. |] |] [|] | []m n out m P Q R n P Q m R→ (ROut)

 [. |] | [] [] | [|]n move m P Q m R n Q m P R→ (RMove)

 (:). | . { } |n P M Q P n M Qμ 〈 〉 → ← (RComm)

structural reductions:

 | |P Q P R Q R→ ⇒ → (RPar)

 [] []P Q n P n Q→ ⇒ → (RAmb)

 (: []) (: [])P Q n P n Qν ν→ ⇒ →P PB B (RRes)

 , ,P P P Q Q Q P Q′ ′ ′ ′≡ → ≡ ⇒ → (RStruct)

3 Type System

From the huge amount of complex behavioral properties of mobile processes we
abstract (extract) the type system that is simple enough to be easily used for
expressing communication and mobility properties of mobile ambients. The main
goal of our abstraction was the control of communication and mobility. We
defined some kind of access rights for movement of threads and ambients. Usual
approach presents type systems with dependent types. We defined process types
and operation types that are related to a behavioral scheme of the process. The
behavioral scheme is a construction which controls the communication and
mobility properties of the process.

Acta Polytechnica Hungarica Vol. 5, No. 4, 2008

 – 35 –

3.1 Types and Behavioral Scheme

We define communication types where both peers, receiver and sender, must be of
the same message type. This allows to keep the sense of communication. It also
secures the communication while only exchange of the correct messages is
allowed.

The restriction of the mobility operations is defined by types applying a
behavioral scheme. The scheme allows setting up the access rights for traveling of
threads and ambients in the ambient hierarchy space of the system.

Types are defined in Table 6 where we present communication types and message
types.

Table 6
Types

::κ = communication type

 | ⊥ no communication

 | μ communication of messages of type μ

::μ = message type

 []| P B� process with behavioral scheme B

 []| ′O aB B operation which changes behavioral schemeB to ′B

The behavioral scheme is the structure (, , ,)Reside Pass Moveκ=B� which contains
four components:

• κ is the communication type of the ambient’s threads

• Reside is the set of behavioral schemes of other ambients where the
ambient can stay

• Pass is the set of behavioral schemes of other ambients that ambient can
go through, it must be Pass Reside⊆

• Move is the set of behavioral schemes of other ambients where ambient
can move its containing thread

3.2 Typing Rules

Type environment is defined as a set 1 1{ : , , : }l ln nμ μΓ = K where each :i in μ
assigns a unique type iμ to a name in .

M. Tomášek Controlling Communication and Mobility by Types with Behavioral Scheme

 – 36 –

The domain of the type environment is defined by:

1 ()Dom ∅ =∅

2 (, :) () { }Dom n Dom nμΓ = Γ ∪

We define two type formulas for our ambient calculus:

1 :M μΓ A

2 : []PΓ PA B

Typing rules are shown in Table 7 and they are used to derive type formulas of
ambient processes. We say the process is well-typed when we are able to derive a
type formula for it using our typing rules. Well-typed processes respect the
communication and mobility restrictions defined in all behavioral schemes of the
system. It means such a process has the correct behavior. The type assignment
system is clearly syntax-directed and keeps the system simple enough.

Table 7
Typing rules

:
:

n
n
μ

μ
∈Γ

Γ A
 (TName)

: [] ()
: []

M Pass
in M

′Γ ∈
′ ′Γ

P
O a

A B B B
A B B

 (TIn)

: [] () () ()
: []

M Pass Reside Reside
out M

′ ′Γ ∈ ⊆
′ ′Γ

P
O a

A B B B B B
A B B

 (TOut)

: [] ()
: []

M Move
move M

′Γ ∈
′Γ

P
O a

A B B B
A B B

 (TMove)

: [] : []
. : []

M M
M M

′′ ′ ′ ′′Γ Γ
′ ′Γ

O O
O

a a

a

A B B A B B
A B B

 (TPath)

: []Γ 0 PA B
 (TNull)

: [] : []
| : []

P P
P P

′Γ Γ
′Γ

P P
P

A B A B
A B

 (TPar)

: []
! : []
P
P

Γ
Γ

P
P

A B
A B

 (TRepl)

: [] : [] ()
[] : []

P M Reside
M P

′Γ Γ ∈
′Γ

P P
P

A B A B B B
A B

 (TAmb)

Acta Polytechnica Hungarica Vol. 5, No. 4, 2008

 – 37 –

, : [] : []
(: []) : []
n P

n Pν
′Γ

′Γ
P P

P P
B A B

A B B
 (TRes)

: [] : []
. : []

M P
M P

′Γ Γ
′Γ

O P
P

aA B B A B
A B

 (TAct)

: [] : ()
. : []

P M
M P

μ κ μΓ Γ =
Γ 〈 〉

P
P

A B A B
A B

 (TCommOut)

, : : [] ()
(:). : []

n P
n P

μ κ μ
μ

Γ =
Γ

P
P

A B B
A B

 (TCommIn)

3.3 Soundness of the System

The usual property of subject reduction holds, which guarantees the soundness of
the system by ensuring that typing is preserved by computation.

Soundness theorem: Let : []PΓ PA B for some B . Then:

1 P Q≡ implies : []QΓ PA B

2 P Q→ implies : []QΓ PA B

Proof: The proof is standard, by induction on the derivations of P Q≡ and
P Q→ . Let’s consider only rule (RMove):

We assume [. |] | []P n move m P P m P′ ′′ ′′′= , [] | [|]Q n P m P P′′ ′ ′′′= , and
[. |] | [] : []n move m P P m P′ ′′ ′′′Γ PA B . This is given by (TPar), so that
[. |] : []n move m P P′ ′′Γ PA B and [] : []m P′′′Γ PA B . These are given by (TAmb),

so that : []nnΓ PA B , . | : []nmove m P P′ ′′Γ PA B and ()nReside∈B B for some

nB , and : []mmΓ PA B , : []mP′′′Γ PA B and ()mReside∈B B for some mB . This
ise given by (TPar), so that . : []nmove m P′Γ PA B , : []nP′′Γ PA B and this is
given by (TAct), so that : []nmove m ′Γ O aA B B and : []P′ ′Γ PA B for some
′B . This is given by (TMove), so that : []mmΓ PA B , : []m nmove mΓ O aA B B

and ()m nMove∈B B , then m′ =B B and : []mP′Γ PA B . Then according (TAmb)
[] : []n P′′Γ PA B where ()nReside∈B B and [|] : []m P P′ ′′′Γ PA B where

()mReside∈B B and we conclude [] | [|] : []n P m P P′′ ′ ′′′Γ PA B from (TPar).

M. Tomášek Controlling Communication and Mobility by Types with Behavioral Scheme

 – 38 –

4 Expressing Mobile Code Paradigms

Now we can look to how our typed calculus can express mobile code paradigms.
Let’s assume three mobile code paradigms [7]:

• remote evaluation,

• code on demand, and

• mobile agent.

4.1 Remote Evaluation

Remote evaluation is performed when a client sends a piece of code to the server
and server evaluates the code and client can get the results back from the server.
Also very general client-server paradigm can be expressed similar way as remote
evaluation.

We assume application of the server named Server, which executes transferred
code P from the client application named Client. The result of the execution is
sent back to the client as a message M.

[]
[. . . | (:).]

|

Server s S
Client c move s P move c M x C
System Server Client

μ
=
= 〈 〉
=

In order to make the System well-typed we define following behavioral schemes
of the processes in the system:

(, , ,)
(,{ }, ,)
(,{ }, ,{ })c sμ

= ⊥ ∅ ∅ ∅
= ⊥ ∅ ∅
= ∅

S

B
B B
B B B

As we can see schemes express that both Server and Client can be executed in the
System and Client can move threads (code for remote evaluation) to the Server.

4.2 Code on Demand

Code on demand describes the situation where a client wants to perform a code
that is presented by the server. Client asks for a code and server sends it to the
client where it can be evaluated.

Similarly as for remote evaluation we assume application of the server named
Server, which provides a code P to the client application named Client. Client
application asks for the code and the result of execution is processed as message
M.

Acta Polytechnica Hungarica Vol. 5, No. 4, 2008

 – 39 –

[(: []). . . |]
[. | (:).]

|

c sServer s p p P M S
Client c move s move c x C
System Server Client

μ
= 〈 〉

= 〈 〉
=

O aB B

In order to make the System well-typed we define following behavioral schemes
of the processes in the system:

(, , ,)
([],{ }, ,{ })
(,{ }, ,{ })

c s c

c sμ

= ⊥ ∅ ∅ ∅
= ∅
= ∅

O aS

B
B B B B B
B B B

As we can see schemes express that both Server and Client can be executed in the
System. Server can receive path (sequence of movement operations) for moving
the code to the Client. Client can send the request for the code to the Server.

4.3 Mobile Agent

Mobile agent is a paradigm where an autonomous code (agent) is sent from the
client to the server. By autonomous we mean that the client and server do not need
to synchronize the agent invocation and the agent is running independently and
concurrently within the server’s place.

We assume application of the server named Server, where the agent appication
named Agent will be moved from its home application named Home. The process
P of the agent is execuded at the Server and after the execution, Agent is moved
back Home. The movement of the Agent is defined by the path (sequence of in/out
operations) which expresses travel plan of the agent.

[]
[|]
[.]

|

Server s S
Home h Agent H
Agent a out h in s P out s in h
System Server Home

=
=
=
=

In order to make the System well-typed we define following behavioral schemes
of the processes in the system:

(, , ,)
(,{ }, ,)
(,{ }, ,)
(,{ , , },{ , },)

s

h

a s h s h

= ⊥ ∅ ∅ ∅
= ⊥ ∅ ∅
= ⊥ ∅ ∅
= ⊥ ∅

B
B B
B B
B B B B B B

As we can see schemes express that Agent can be executed either at the Server or
Home places and also can move through those places.

M. Tomášek Controlling Communication and Mobility by Types with Behavioral Scheme

 – 40 –

Conclusions

We defined formal tool for expressing dynamics of mobile code applications,
which is based on theory of mobile ambients. Presented changes to the ambient
calculus are suitable for expressing different kinds of mobility and they avoid
ambiguities and possible maliciousness of some constructions. The type system
statically defines and checks access rights for authorization of ambients and
threads to move by application of the process behavioral scheme. The usage of
type system is limited by its very simplicity and it does not prevent more
restrictive properties from being checked at runtime. We proved the soundness
theorem for the type system and we demonstrated the system by showing how to
model some common applications. We provided a simple language for distributed
system of mobile agents. As an expressiveness test, we showed that well-known
π-calculus of concurrency and mobility can be encoded in our calculus in a natural
way [8].

Acknowledgement

This paper was supported by the grants: VEGA 1/2174/05, VEGA 1/2176/05,
VEGA 1/3135/06, VEGA 1/4073/07, and KEGA 3/5166/07.

References

[1] Cardelli, L., Gordon, A. D.: Mobile Ambients. Theoretical Computer
Science, Vol. 240, No. 1, 2000, pp. 177-213

[2] Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Parts
1-2, Information and Computation, Vol. 100, No. 1, 1992, pp. 1-77

[3] Levi, F., Sangiorgi, D.: Controlling Interference in Ambients. Proceedings
of POPL’00, ACM Press, New York, 2000, pp. 352-364

[4] Bugliesi, M., Castagna, G.: Secure Safe Ambients. Proceedings of
POPL’01, ACM Press, New York, 2001, pp. 222-235

[5] Bugliesi, M., Castagna, G., Crafa, S.: Boxed Ambients. In B. Pierce (ed.):
TACS’01, LNCS 2215, Springer Verlag, 2001, pp. 38-63

[6] Fuggeta, A., Picco, G. P., Vigna, G.: Understanding Code Mobility. IEEE
Transactions on Software Engineering, Vol. 24, No. 5, May 1998, pp. 342-
361

[7] Ghezi, C., Vigna, G.: Mobile Code Paradigms and Technologies: A Case
Study. Mobile Agents: 1st International Workshop MA’97, LNCS 1219,
Springer-Verlag, 1997

[8] Tomasek, M.: Expressing Dynamics of Mobile Programs. PhD thesis,
Technical University of Košice, 2004

