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Abstract: Support Vector Regression is becoming one of the most attractive models for load 

forecasting, in recent years. The performance of Support Vector Regression deeply depends 

on its hyperparameters, such as, Kernel function, Kernel function parameters and a penalty 

factor. This paper proposes a methodology for the Grid Search hyperparameters of the 

Support Vector Regression model. In the training process, the optimal hyperparameters 

will specify conditions that satisfy requirements for minimizing evaluation indexes of Root 

Mean Square Error, Mean Absolute Percentage Error, Symmetric Mean Absolute 

Percentage Error and Mean Absolute Error. In the testing process, the optimal models will 

be used to evaluate the obtained results along with all other ones. It is indicated that the 

evaluation indexes of these optimal models are close to the minimum values of all models. 

Load demand data of Tasmania State, Australia, and Ho Chi Minh City, Vietnam were 

utilized to verify the accuracy and reliability of the Grid Search methodology. 
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1 Introduction 

Electrical load forecasting is an important element of any electrical power system, 

including, generation, transmission, distribution and the retail sale of electricity. 

According to the period of prediction time, load forecasting can be divided into 

four categories: Very Short Term, Short Term, Medium Term, and Long Term [1, 

2]. In recent years, Support Vector Regression (SVR) has been becoming an 

attractive tool for time series forecasting, especially for load forecasting [3-13]. 

Generally, SVR shows better generalization performance with the rule of 

Structural Risk Minimization in comparison with other learning methods such as 

Neural Networks that are based on Empirical Risk Minimization [3-5, 12]. 

However, the performance of SVR strongly depends on its hyperparameters. The 
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more different the hyperparameters, the more different the output values of the 

SVR model. In this regard, the hyperparameters chosen for an SVR model is 

essentially important to get reliable forecasting results [14-16]. A variety of 

methods, such as Genetic Algorithms or Grid Search, have been considered to 

optimize the hyperparameters. Grid Search is a tuning technique that is performed 

to obtain the optimum values of hyperparameters by going through all 

combinations of hyperparameters in the search range. To evaluate the performance 

of hyperparameters in case of load forecasting, different evaluation indexes can be 

used, such as Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean 

Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error 

(SMAPE), Mean Absolute Error (MAE), etc. According to recent studies, most 

Grid Search methods have only focused on the parameters of the SVR model, 

such as penalty coefficient C, kernel function K, and kernel parameter  [17-22]. 

In addition, the criterion to evaluate the performance of the model is mostly based 

on one unique evaluation index, which is usually either MAPE or MSE [17, 19-

22]. In this study, the SVR Grid Search methodology is proposed with the 

consideration of the hyperparameters that not only determine the SVR network 

structure, like conventional Grid Search methods, but also represent the 

characteristics of input data. The first proposed hyperparameter is the number of 

lag observation of data used as input of the model, and the second hyperparameter 

is the differencing order of data. In addition, the study investigates simultaneously 

four most common evaluation indexes, including RMSE, MAPE, SMAPE, and 

MAE, to evaluate the performance of the SVR model during the training and 

testing processes. In the training process, optimal hyperparameters are obtained to 

meet the minimum requirement of evaluation indexes. In the testing process, these 

optimal models will be compared to all other ones to evaluate the Grid Search 

methodology. Load demand data of Tasmania State, Australia, and Ho Chi Minh 

City, Vietnam, will be analyzed through the training and testing processes to 

verify the accuracy and the reliability of the Grid Search methodology. The 

experiments were implemented using the scikit-learn library in the Python 

environment with Google Colab, a free GPU on the cloud for running large-scale 

machine learning projects. 

This paper is organized as follows, in Section 2, a brief introduction to an SVR 

model along with proposing the SVR Grid Search methodology is presented. In 

Section 3, experiments and an analysis of the obtained results are discussed. The 

conclusions are shared in Section 4. 
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2 Research Method 

2.1 Supporting Vector Regression 

Considering a set of data { , }i ix y , i =1, …, N; where xi 
nR is the input vector 

with n dimension, yi R is the target value, and N is the total number of data 

patterns. The basic concept of the SVR is to map nonlinearly the original input 

data x into a higher dimensional feature space 
hR by using a non-linear mapping 

function () : n hR R  . Hence, the SVR function is formulated as follows [3-7, 

24, 33]: 

( ) ( )Tf x x b    (1) 

where ω represents the weight vector and b is a bias term. The coefficients ω and b 

are estimated by minimizing the regularized risk function R as shown in (2): 
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where C is the regularized constant determining the trade-off between the 

regularization term (the first term) and the empirical error (the second term). The 

term ε defines the ε zone as shown in Figure 1 [4, 7], and Lε is called the ε 

insensitive loss function as follows: 
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Figure 1 

Definition of ε, ξi, ξi
* of SVR 

ξi, ξi
*
 are slack variables that quantify how far data is above or below the ε tube. 

As can be seen from Figure 1, the training data points that lie outside of the ε 

insensitive tube can be obtained by: 
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( ) ,
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y f x points below the tube
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By substituting the equations (4) and (3) for (2), the equation (2) can be expressed 

by (5) and subject to constraints expressed in (6): 
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The parameters of the f(x) can be found by using the Lagrange function as shown 

in (7), where αi
*
, αi are Lagrange multipliers and K(xi, x) are Kernel function, 

defined as the dot product between ( )T

ix  and ( )x : 
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f x x b K x x b   


      (7) 

2.2 Hyperparameters Tuning of Supporting Vector Regression 

The selection of several hyperparameters of the SVR model that can be listed as a 

type of Kernel function K, parameters of Kernel function , as well as the 

regularized constant C, is important to the prediction accuracy and have been 

considered in many recent works of literature [21-24]. In order to improve the 

accuracy of the SVR model, some hyperparameters of the characteristic of input 

data such as a number of lag observations that are used as input data, and 

differencing order of input data are proposed to be in combination with the above-

mentioned hyperparameters [25]. Hence, we focus on the following 

hyperparameters in this section: 

Number of input data N: 

Usually, in regression and time series forecasting problems, a large amount of data 

is stored in the form of time series: stock indices, weather measurements, 

electricity load, etc. Time series data is a set of observations on the values that a 

variable takes at different times according to a uniform time-frequency and can be 

defined by (8), where N is the number of observation values: 

 1 2( ) ( ), ( ), ..., ( )Nx t x t x t x t  (8) 
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The input variables of the SVR model are named by the lag time series values 

1 2( ), ( ), ..., ( )Nx t x t x t and the predicted output values are referred to the next 

values 
1( )Nx t 

. The number of input N is pre-specified by the available data that 

represents the number of lag observations used as input as shown in Table 1. 

Because of the seasonality of load times series, the number of input N can be 

chosen as the multiples of the period of time series. For instance, with the period 

of half-hourly time series of 48, the period of hourly time series is 24, …, and so 

on. 

Table 1 

The input and target values for times series 

Input Target 

1 2( ), ( ), ..., ( )Nx t x t x t  
1( )Nx t 

 

2 3 1( ), ( ), ..., ( )Nx t x t x t 
 

2( )Nx t 
 

… … 

1 1( ), ( ), ..., ( )h h N hx t x t x t  
 ( )N hx t 

 

Data differencing order: d 

Differencing is a method of transforming a time series dataset that can be used to 

remove the series dependence on time. Differencing is performed by subtracting 

the previous observation from the current observation as shown by (9), where d=0: 

no differencing, d=1: first differencing, and d>1: seasonal differencing. 

( ) ( ) ( )dy t y t y t d    (9) 

Kernel functions and their parameters 

The main function of the Kernel functions is to take low dimensional input space 

and transform it into a higher-dimensional space. Some basic Kernel functions are 

linear, Radial Basis Function (RBF), and sigmoid. The mathematical formulas are 

presented as follows: 

Linear: 

( , ) TK x y x y  (10) 

RBF: 

2

( , )
x y

K x y e
 

  (11) 

Sigmoid: 

( , ) tanh( )TK x y x y r   (12) 

where x and y are input vectors, r ≥ 0 is a free parameter,  > 0 is the parameters 

of Kernel function. 
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Regularized constant C 

C is the penalty parameter, which represents the error term between forecast 

values and observation values. C specifies the trade-off between errors on training 

data set and margin maximization. A smaller C will lead to more errors and 

usually produce a larger margin. When C increases to infinity, SVR becomes a 

hard-margin. 

2.3 Methodology of SVR Model 

According to Section 2.2, the hyperparameters of the SVR model considered in 

this paper consist of the following ones: number of input data N, data differencing 

order d, Kernel functions K, a typical Kernel function parameter , and 

Regularized constant C. Based on the SVR structure and these hyperparameters, 

the methodology of the SVR model is proposed in Figure 2. 

Data: 

[y1, y2, …,yn-h, yn-h+1,  yn-h+2,…, yn]

h: 

length of validation data

Split

History data: 

[y1, y2, …,yn-h]

Validation Data: 

yn-h+1,  yn-h+2,…, yn]

Training

Prediction & 

Evaluation

cfg ={N, d, K, γ, C}

model

Evaluation indexes:

RMSE, MAPE, SMAPE, MAE

 

Figure 2 

The methodology of the SVR model 

The input of SVR model in the paper consists of the hyperparameter cfg={N, d, K, 

C} that was predefined at certain values as mentioned in section 2.2, the Data, and 

the length (dimension) of the validation data h. The function of the SVR model is 

calculating evaluation indexes at the output as shown in Figure 2 which following 

three steps: 

Step 1: The original data ([y1, y2, …, yn]) are split into history data (y1, y2, …,yn-h) 

and validation data (yn-h+1, …, yn) using split function. The validation and history 

data have lengths of h and n-h, respectively. The history data used for the training 

process to build the SVR model, the validation data used for calculating 

evaluation indexes. 

Step 2: In the training stage, the SVR model is obtained after the training process 

by using history data and certain values of hyperparameter of N, d, K,  , C. 

Step 3: In the prediction and evaluation stage, prediction values are obtained based 

on the SVR model in step 2, and evaluation indexes (RMSE, MAPE, SMAPE, and 

MAE) between the prediction and validation values are calculated as follows 

equations [19-22, 27-32]: 
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where: [yn-h+1, yn-h+2, …,yn] is the validation values (real values), and 

1 2
ˆ ˆ ˆ[ , , ..., ]hy y y  is the prediction values. 

In the paper, the scikit-learn library in Python was used to build the SVR model 

[26]. The pseudocode of the training and prediction & evaluation stages is shown 

in Figure 3. 

 

Pseudocode of training stage 

 

Input:  

- History data [y1, y2, …,yn-h] 
- cfg: combination of tuning 

hyperparameters (N, d, K, γ, C) 

1: Differencing data: 

 

If d > 0: 

   History data = History data – 

History data [-d] 

2:  
Transform data into supervised 

format 

 

Transform History data into 

input X_train and output Y_train 

according the number of input 
data N  

3: Define SVR model: 

 
model = svm.SVR(kernel=K, 
gamma = γ, C=C) 

4:  Training model 

 
model.fit(X_train,Y_train) 
 

 Output: model 

(a) 

Pseudocode of prediction & evaluation stage 

 

Input:  

- History data: [y1, y2, …,yn-h] 
- Validation data: [yn-h+1, yn-h+2, …,yn] 

- model: model from training stage 

1: 
t = 1 

Repeat       

a: Difference History data and calculate offset 

 

If d > 0: 
    History data = History data – History data 

[-d] 

    Offset = History data [-d] 

b: 
Obtain the input X_test, the length of X_test is 

the number of input i. 

 X_test = History data [-N:] 

c: Predict for X_test and add offset  

 
 1  ˆ .   testmodel predict Xy    

1 1
ˆ ˆy y Offset   

d: 
Add actual observation to history for the next 
prediction value 

 
History data : [y1, y2, …,yn-h, yn-h+1]  

t = t+1 
 Until t = h 

2: Calculate evaluation indexes 

 

Calculate evaluation indexes between the 
validation values [yn-h+1, yn-h+2, …,yn] and the 

prediction values 
1 2
ˆ ˆ ˆ[ , , ..., ]hy y y  

 Output: RMSE, MAPE, SMAPE, MAE 

(b) 

Figure 3 

The SVR pseudocode: training stage (a); prediction & evaluation stage 
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2.4 SVR Grid Search Methodology 

Based on the hyperparameters tuning and the SVR model as earlier described, the 

methodology of the SVR Grid Search is proposed as shown in Figure 4. Each 

hyperparameters take a range of values, such as: N= {Nmin, …,Nmax}, …, C={Cmin, 

…, Cmax}. The combination for certain values of hyperparameter is cfgi={Ni, di, 

Ki, γi, Ci} and the total combination of hyperparameters is CFG={cfgi}. The 

training and the testing processes have the same combination of tuning 

hyperparameters CFG and the same length of validation data h. In the training 

and the testing processes, each component hyperparameter cfgi of CFG is inputted 

into the SVR model (Section 2.3) and the evaluation indexes are calculated at the 

output layer. The Min stage in Figure 4 takes a role of selecting optimal 

hyperparameters (cfgRMSE, cfgMAPE, cfgSMAPE, cfgMAE) that satisfies a minimum of 

the evaluation indexes (RMSEmin, MAPEmin, SMAPEmin, and MAEmin) 

correspondingly. In the Evaluating stage, these optimal hyperparameter models 

are compared to all other ones according to their evaluation indexes that were 

obtained in the testing process. 

Training data

Testing data

SVR model 

(Training process)
SVR model 

(Testing process)

CFG

Length of 

validation data h

Length of 

validation data h

E
v
a

lu
a

ti
o

n
 

In
d

e
x
e

s
 

CFG

EvaluatingMin

E
v
a

lu
a

ti
o

n
 

In
d

e
x
e

s
 

Figure 4 

The SVR Grid Search methodology 

3 Experimental Results and Analysis 

3.1 Data Description and Hyperparameters Tuning 

In order to enhance the reliability of results, load demand data of Tasmania State, 

Australia, and Ho Chi Minh City, Vietnam were studied in our experiments. 

Tasmania State’s load demand dataset provides peak daily electricity demand in 

MW from 2013-03-10 to 2014-05-31, and so does Ho Chi Minh city load demand 

dataset - from 2017-10-09 to 2018-12-30. The characteristics of these load 

demand data, are presented in Table 2 and Figure 5. 
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Table 2 

Characteristics of load demand data 

Describe Tasmania state Ho Chi Minh City 

mean 1304.67 3452.78 

std 136.97 475.62 

min 987.26 1594.10 

max 1650.34 4138.50 

count 448 448 

Table 3 

The values of tuning hyperparameters 

Items Values 

Number of input data N 7, 28 

Data differencing order d 0, 1, 7 

Kernel functions K linear, RBF, sigmoid 

Kernel function parameter γ  0.01, 0.1, 1, 10, 100, 1000 

Regularized constant C 0.01, 0.1, 1, 10 

Number of combination  CFG 432 

 

(a) (b)  
Figure 5 

Load demand data: (a) Tasmania state, (b) Ho Chi Minh city 

The setup of the value ranges of the hyperparameters tuning for Tasmania state 

and Ho Chi Minh city load demand data is listed in Table 3. Because of weekly 

seasonality data, there is a numeric value of 7 assigned to number of input data N 

and the value of differencing order d. With N=7, the SVR model used 7 days (one 

week) before to predict the data of one day ahead; with N=28, the SVR model 

used 28 days (one typical month) before to predict the data of one day ahead. 

Combining all tuned hyperparameters gives 432 cases corresponding to 432 

possible models of SVR. The values of the length of validation data h is 28 (four 

weeks). 
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3.2 Experimental Results 

Table 4 shows the results of training and testing processes using Tasmania state 

load demand data. For the training process, the optimal model was selected 

according to the minimum values of evaluation indexes of RMSE, MAPE, 

SMAPE, and MAE. Obviously, we have the same optimal models in the case of 

RMSE and MAE, as well as in the case of MAPE and SMAPE. For the testing 

process, the column ‘Optimal’ shows evaluation indexes for the optimal model 

which was obtained from the training process, and the columns ‘Min’, ‘Average’ 

and ‘Max’ - the min, the average, and the max values for all possible models that 

can be generated by the combination of tuned hyperparameters CFG (432 

models). Analyzing Ho Chi Minh City load demand data also gave similar results 

shown in Table 5. 

Table 4 

The results of training and testing process in case of Tasmania state load demand data 

Evaluation 

indexes 

Optimal models  

of training process 

Evaluation of testing process 

 Optimal   Min   Average   Max  

RMSE (MW) [7, 0, 'linear', 0.01, 10] 74.66  69.75  102.74  386.62  

MAPE (%) [28, 1, 'rbf', 0.01, 0.01] 4.33  4.03  6.05  24.32  

SMAPE (%) [28, 1, 'rbf', 0.01, 0.01] 4.33  4.02  6.14  26.02  

MAE (MW) [7, 0, 'linear', 0.01, 10] 60.87  55.72  81.99  334.50  

Table 5 

The results of training and testing process in case of Ho Chi Minh city load demand data 

Evaluation 

indexes 

Optimal models  

of training process 

Evaluation of testing process 

 Optimal   Min   Average   Max  

RMSE (MW) [28, 7, 'linear', 0.01, 10] 115.25  111.81  283.59  632.74  

MAPE (%) [28, 7, 'linear', 0.01, 10] 2.47  2.43  6.67  18.72  

SMAPE (%) [28, 7, 'linear', 0.01, 10] 2.44  2.41  6.54  19.74  

MAE (MW) [28, 7, 'linear', 0.01, 10] 89.81  86.99  204.83  515.36  

Figure 6 indicates the distribution of difference evaluation indexes for the testing 

process toward Tasmania State load demand data. Figure 6a presents the box plot 

for the RMSE component with the first column for the distribution of all possible 

models and the second column for the optimal model. The same distributed data 

are plotted in Figures 6b, 6c, and 6d. In the same manner, results in the case of Ho 

Chi Minh City load demand data are shown in Figure 7. 
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(a) (b) (c) (d)

Figure 6 

The box plot of evaluation indexes for testing process in case of Tasmania state load demand data:     

(a) RMSE, (b) MAPE, (c) SMAPE, (d) MAE 

(a) (b) (c) (d)

Figure 7 

The box plot of evaluation index for testing process in case of Ho Chi Minh city load demand data:   

(a) RMSE, (b) MAPE, (c) SMAPE, (d) MAE 

Figure 8 shows the prediction series and the validation series for Tasmania State 

load demand data. Figures 8a, 8b, 8c, and 8d give the prediction series of the 

optimal, minimum, and maximum models and the validation series for RMSE, 

MAPE, SMAPE, and MAE in the testing process, respectively. With regard to Ho 

Chi Minh City load demand data, similar results were also obtained as shown in 

Figure 9. 

(a) (b) (c) (d)  

Figure 8 

The prediction and validation series for testing process in case of Tasmania state load demand data:   

(a) RMSE, (b) MAPE, (c) SMAPE, (d) MAE 
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(a) (b) (c) (d)

Figure 9 

The prediction and validation series for testing process in case of Ho Chi Minh city load demand data: 

(a) RMSE, (b) MAPE, (c) SMAPE, (d) MAE 

3.3 Evaluation and Discussion 

As described above, the optimal models in the training process were determined 

by minimizing evaluation indexes such as RMSE, MAPE, SMAPE, and MAE. 

The analysis of the results listed in Table 4 and Table 5 shows the existence of the 

optimal model that satisfied the minimum criteria for evaluation indexes of 

RMSE, MAPE, SMAPE, and MAE. In the case of Tasmania state load demand 

data, there existed a model that satisfied all RMSE, MAE, and the other ones for 

MAPE and SMAPE. In the case of Ho Chi Minh City load demand data, there was 

a unique model that satisfied all RMSE, MAPE, SMAPE, and MAE. 

The analysis of the data differencing order d is also shown in Tables 4, 5. The 

optimal value of d was 0 for RMSE and MAE, and the value of d was 1 for MAPE 

and SMAPE in the case of Tasmania. In the case of HCM, the optimal value of d 

was 7 for all evaluation indexes. Hence, transforming input data by representing 

the d hyperparameters can help to get better results than using original data (d=0). 

An analysis of the number of input N hyperparameter can be extracted from 

Tables 4, 5. In the case of Tasmania, the optimal value of N was 7 for RMSE and 

MAE indexes and 28 for MAPE and SMAPE indexes. In the case of HCM, the 

optimal value of N was 28 for all evaluation indexes of RMSE, MAPE, SMAPE, 

and MAE. The results show that with extending the hyperparameters by using the 

input N hyperparameter, we achieved a better optimal model than without using 

the N hyperparameter (in case that the number of input data may be fixed at 7, 28, 

…) 

It is worth noting, that the optimal model obtained in the training process does not 

guarantee the best results in the testing process. Let us analyze Table 4 in the case 

of Tasmania state load demand data. When using the optimal model in the testing 

process, evaluation indexes of RMSE, MAPE, SMAPE, and MAE were 74.66 
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MW, 4.33%, 4.33%, and 60.87 MW, respectively. Meanwhile, there were other 

models that gave better results in the testing process with the minimum values of 

69.75 MW, 4.03%, 4.02%, and 55.72 MW for RMSE, MAPE, SMAPE, and 

MAE, respectively. However, compared to the average values of all models with 

the values of 102.74 MW, 6.05%, 6.14%, and 81.99 MW and to the maximum 

values of all models with the values of 386.62 MW, 24.32%, 26.02%, and 334.50 

MW respectively, evaluation indexes of the optimal model was too small. In 

addition, analyzing the boxplot of the evaluation indexes shown in Figure 6 makes 

it clear that the evaluation indexes of the optimal models were close to the 

minimum value of all other models. Moreover, the prediction values of the 

optimal model shown in Figure 8 were very consistent with the validation values. 

Similar results were also obtained in the case of Ho Chi Minh City load demand 

data. These results clearly indicated that the optimal model received during 

training by applying the SVR Grid Search methodology can give good values in 

the testing process. Moreover, the SVR Grid Search methodology is thus suitable 

for most of the basic evaluation indexes such as RMSE, MAPE, SMAPE, and 

MAE. 

Conclusions 

An efficient SVR Grid Search methodology, based on the SVR model and their 

hyperparameters, was proposed, with reasonable analysis of Tasmania state and 

Ho Chi Minh City load demand data. In the training process, minimum evaluation 

indexes of RMSE, MAPE, SMAPE, and MAE were applied to specify the optimal 

model. In the testing process, evaluation indexes were used to compare the 

optimal model with all other ones. Both Tasmania State and Ho Chi Minh City 

load demands were used to verify the performance of the SVR Grid Search 

methodology. The results indicated the existence of an optimal model that 

satisfied the minimum requirement for evaluation indexes. Analyzing the obtained 

results in the testing process, showed that the evaluation indexes of these optimal 

models gave good results, close to the minimum and much smaller than the 

average of all models. The positive results obtained in this study suggest an 

improved and effective way to apply SVR in load forecasting. 
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