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Abstract: With the increased use of robots with different performance characteristics in 

areas such as search and rescue, patrolling and surveillance, the control of multiple robots 

with unequal capabilities have gained a lot of interest among robotics researchers. Also, 

the uncertainty of the sensors utilized on the robots for localization has made the problem 

of imprecise localization attractive. This paper aims to present the development and 

implementation of a multi-agent collaboration algorithm under localization uncertainty 

using Hopfield neural networks, guaranteed power Voronoi diagrams (GPVD or GPD), 

and coverage control. The agents are considered non-holonomic wheeled mobile robots 

under the assumption that their locations are not known precisely, but they are known to be 

in uncertain circles. The workspace is partitioned with a Guaranteed Power Voronoi 

Diagram (GPVD or GPD) algorithm which takes imprecise localization into account. Also, 

it is assumed that the actuation capabilities of the robots are different from each other and 

the agents do not know those performances beforehand. The performance parameters of the 

robots are learned by using the collaboration algorithm with Hopfield Neural Network 

(HNN) and then passed to the GPD algorithm. The GPD algorithm together with the HNN 

provides workspace partitioning for the robots so that the agents with poor actuation 

performances take smaller regions from the workspace while the agents with strong 

performances take greater regions. Thus, a collaborative coverage task is achieved which 

enables the robots to deploy themselves to an optimal configuration minimizing the total 

coverage cost. The simulation results in MATLAB show the efficiency of the algorithm. The 

experimental results with the Robot Operating System (ROS) are given. The results 

obtained are satisfactory since the algorithm has faster convergence and has the capability 

to assign the regions from the workspace considering the imprecise localization resulting 

from sensor characteristics. Finally, the algorithm is compared to the base collaboration 

method, important performance improvements had been observed. 

Keywords: Workspace allocation; Coverage control; Guaranteed Power Voronoi 

Diagrams; Hopfield Neural Network 
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1 Introduction 

The Multi-agent collaboration and coordination problems have been well studied 

in robotics literature over the last decades. Autonomous agents deploy themselves 

over the area to maximize sensor coverage. The Voronoi-based coverage control 

method became quite important due to its application potential in practice, for 

example, surveillance and security uses, patrolling and environmental monitoring 

applications, dealing with the deployment and allocation problems at the same 

time. 

The definition of the Voronoi-based coverage control problem is autonomous self-

deployment of the agents in the environment so that the optimal coverage 

configuration can be achieved. The Voronoi-based coverage control accomplishes 

the dynamic workspace partitioning by making use of Voronoi diagrams. Another 

definition of the coverage is to observe every point of a given region or to see it 

with a sensor having a field of view [11]. 

To summarize the new ideas of this paper with respect to the literature, in the 

previous method, which is about the adaptation to the performance variations of 

multiple robots [22], a non-linear estimator was used to enable the robots to learn 

their own parameters. In this work, a faster and more robust estimator based on 

HNN is utilized instead. Also, the localization uncertainty coming from sensors 

such as laser scanners or odometry is taken into consideration by using 

Guaranteed Power Voronoi Diagrams. In the base work, the localization 

uncertainty is not taken into consideration where the authors did the workspace 

partitioning by using the Power Voronoi Diagrams. 

The contributions of the work are further explained in the Contributions section. 

1.1 Related Studies 

Several self-deployment algorithms taking localization uncertainty [21], [14], 

[19], [28] into account exist in the literature using Guaranteed Voronoi Diagrams 

[6] and their variants. Also, a Power-Voronoi-based collaboration algorithm is 

studied by the authors [23]. Pierson, A. and the others investigated inter-robot 

trust adaptation in response to the relative performances by using multi-robot 

sensor coverage [24]. A multi-robot cooperative coverage algorithm is proposed in 

which the robots are spraying a large field by performing task allocation and 

coordination [10]. Additionally, Hopfield Neural Networks are well studied by the 

authors for estimating the system parameters online in robotics [1] and control [3], 

[9] applications. 

In the work [20], a multi-agent dynamic coverage method with anisotropic sensing 

footprints is proposed. Safety and convergence guarantees are taken into 

consideration. The agents are forced to search an area of interest collaboratively 

with local and global coverage strategies. Avoidance strategies are also developed. 
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In a recent paper [27], a framework for distributed coverage control for mobile 

sensors is discussed. In the multi-agent problem, the locational optimization is 

considered a special case of optimizing Kullback-Leibler divergence where space 

is density function space. The distributed coverage control laws are then 

formulated by minimizing distance functions. For a possible metric for distance 

functions, L
2
 distance is utilized. A mobile sensor network coverage problem is 

studied in another work [4]. The sensors have different velocity constraints and 

the effect of the measurement errors is investigated. In the study of the authors 

[16], the agents accomplish the persistent coverage task in a distributed way. The 

control law is cooperative, and the environment is structured. It is proven that no 

collision occurs between agents nor with obstacles. 

Also, there are many other related papers especially in the robotics and 

engineering areas that can be briefly summarized. In the work [15], a genetic 

algorithm approach is given to a networked high-performance drilling process. 

The algorithm is used for optimal tuning of linear controllers and the mutation part 

takes care of doing a search among the different linear controllers. Simulation and 

experimental results are given. In another paper [12], two open research surgical 

robot platforms are discussed. The paper gives the aims and related problems in 

the robotic surgery field. It also briefly introduces the research platforms. In the 

paper [8], the virtual technologies in engineering practice are discussed. The 

complex engineering product and related activities are created on the system level 

computer. The research results in the field of virtual technology are given. The 

paradigm in the virtual engineering area shifts to the Virtual Engineering Space 

(VES) approach. A new concept Knowledge Content Background (KCB) is 

introduced. In another work [26], a method for generating the optimal path for a 

traveling robot in a partially unknown environment is introduced. The method can 

handle both static and dynamic obstacles and a comparison with the Particle 

Swarm Optimization method is presented. In the study [30], a device for parallel 

robot investigations is given. The size of the elements of the device can be 

changed so that different robots can be realized. By reconfiguring the device, 

different characteristics can be tested. The main aim of the device is the 

construction studies. In the paper [31], the control problems in the surgical 

robotics area are discussed. For the precision in control methods used, the 

interaction between the manipulated tissues and the tool should be modeled. In the 

paper, the design and modeling of telesurgical systems is presented and possible 

control methods are summarized. 

1.2 Contribution 

The contribution of the paper is that it uses a coverage collaboration algorithm that 

calculates the weights of the agents automatically according to their actuation 

performances [22] under localization uncertainty [21], [14], [6] with HNN 

estimator [1, 3]. To the best of our knowledge, this is the first work in the 
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literature that uses an HNN estimator and takes the localization uncertainty into 

account in a coverage collaboration algorithm at the same time. The net 

contribution of this work is that it provides faster convergence for the multi-agent 

systems using Voronoi partitioning-based collaboration approaches under 

localization uncertainty by using HNNs. This enables the algorithm to compensate 

different capabilities of the agents such as actuation by assigning the areas from 

the workspace to the agents according to their performances and to account the 

imprecise localization. 

1.3 Paper Organization 

The paper is organized as follows. The first section gives the introduction, related 

studies and the contribution of the work. In the second section, the formal problem 

statement, preliminary information about workspace partitioning with Voronoi 

Diagrams, HNNs and locational optimization will be given. In the next section, 

the coverage control algorithm with HNNs and adaptation to performance 

variations will be investigated. In the fourth section, the stability analysis of the 

control and estimation algorithm will be discussed. After, MATLAB simulation 

results are given with different case studies. The next section gives the 

experimental setup and results. In the last section, the conclusions of the work will 

be explained. 

2 Problem Formulation 

In this section, preliminary information about Guaranteed Power Voronoi 

diagrams, HNNs, and locational optimization are presented. 

The formal statement of the problem is as follows. Consider a team of n non-

holonomic wheeled mobile agents. The aim is to maximize coverage according to 

locational optimization function by performing collaboration among the agents. 

The collaboration is achieved by estimating the actuation performances of the 

agents with HNNs which are not known beforehand. Then, the regions of the 

agents are assigned automatically by giving the performance parameters to the 

GPD algorithm. In the resultant configuration, the agents with strong actuators 

take larger portions from the workspace, while smaller regions are assigned to the 

robots with weak actuators. 

In the N-dimensional space 𝑆 ⊆ ℝ𝑁 is defined as a convex region. The positions 

of the robots are not known precisely, but known to be within an uncertain circle. 
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2.1 Guaranteed Power Voronoi Diagrams 

The Guaranteed Power Voronoi Diagrams (GPD or GPVD) [14] are the types of 

Voronoi diagrams in which the power distance is used and the generator points are 

known to be in uncertain regions. 

 

Figure 1 

Example Guaranteed Power Diagram (GPVD) with the weight w1 = 0.5 

The distance function is defined similarly to the one in the Guaranteed Voronoi 

Diagrams [6]. The main difference is that the distance function is a power distance 

in a guaranteed sense. The bisector is a hyperbola when the weights are zero. The 

definition of the GPV-cell is given below where 𝑟𝑖 ririis the radius of the 

uncertainty circle and 𝑤𝑖  is the weight of the cell: 

𝑉𝑖
𝑔
= {

𝑝 ∈ 𝑆 |(‖𝑝 − 𝑝𝑖‖ + 𝑟𝑖)
2 − 𝑤𝑖 ≤ (‖𝑝 − 𝑝𝑗‖ − 𝑟𝑗)

2
−𝑤𝑗 ,

𝑖 ≠ 𝑗, 𝑗 = 1,2, …𝑛
} (1) 

Figure 1 gives an example of GPVD. The region of the first region is greater than 

the other ones since the weight of the first cell is given as 0.5. 

2.2 Locational Optimization 

Let us define 𝑆 ⊆ 𝑅𝑁 as a bounded environment, 𝜙: 𝑅𝑁 → 𝑅+ as a density 

function, and ℓ: 𝑅+ → 𝑅 as a non-decreasing performance function. Then, the 

locational optimization function ℌ is given as below: 

ℎ(𝑞, 𝑝𝑖 , 𝑤𝑖) = ℓ(‖𝑞 − 𝑝𝑖‖) − 𝑤𝑖  (2) 

ℌ(𝑝1, 𝑝2, … 𝑝𝑚) =∑ ∫ ℎ(𝑞, 𝑝𝑖 , 𝑤𝑖) 𝜙(𝑞)𝑑𝑞V𝑖

𝑚

𝑖=1
 (3) 
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Here, the V𝑖 is defined as Voronoi region i, m gives the number of the site points, 

𝑤𝑖  represents the weight of the i
th

 cell and the site point of the corresponding 

Voronoi cell is given as 𝑝𝑖 , as it can be viewed in Figure 2. 

 

Figure 2 

The position of the robot and the centroid location 

The mass MV𝑖  and centroid 𝐶V𝑖  of a Voronoi region can be defined as given below 

[13]: 

Υ𝑖(ℎ, 𝑞) = ∫ ℎ 𝑑𝑞
 V𝑖

 (4) 

𝐶V𝑖 =
1

MV𝑖
Υ𝑖(𝑞 𝜙(𝑞), 𝑞) (5) 

MV𝑖 = Υ𝑖(𝜙(𝑞), 𝑞) (6) 

The performance function is taken as ℓ(‖𝑞 − 𝑝𝑖‖) = ‖𝑞 − 𝑝𝑖‖
2. So, the locational 

optimization function ℌ can be written as below: 

ℌ(𝑝1, 𝑝2, … 𝑝𝑚) =∑ ∫ ℎ(𝑞, 𝑝𝑖 , 𝑤𝑖) 𝜙(𝑞) 𝑑𝑞 V𝑖

𝑚

𝑖=1
  (7) 

The partial derivatives of the function ℌ are taken with respect to 𝑝𝑖  to find the 

closed-form solution of the locational optimization function. Then, it can be 

shown that the locational optimization function given in (7) can be minimized by 

using the centroid positions given in (5). As a result, the solution is the result 

where the positions are equal to the centroid locations of the agents. 

For the holonomic case 𝑝̇𝑖 = 𝑢𝑖 , the coverage control law is given for i
th

 agent as: 

𝑝̇𝑖 = 𝑢𝑖 (8) 

𝑢𝑖 = 𝐾𝑝(𝐶V𝑖 − 𝑝𝑖) (9) 

Here, 𝑝𝑖  gives the position of the i
th

 agent where 𝐾𝑝 is a positive-definite gain 

matrix. 

2.3 Hopfield Neural Networks 

The Hopfield Neural Network as presented in [1], is a non-autonomous non-linear 

dynamical system in continuous time that is able to estimate the parameter vector 

according to the parameterization of a given dynamical system. Similar to other 

online parameter estimators, it is able to give the time-evolving estimate of the 

parameters of the actual dynamical system. 
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Figure 3 

A Hopfield Neural Network with three neurons 

Figure 3 gives an example of a Hopfield Network with three neurons. The 

network is in discrete-time and the previous values of the outputs yi of the neurons 

are fed back to the inputs xi of the neurons. 

Since the parameterization of the system is given in the design stage of the HNN, 

there is no need to train the network. Only the convergence parameters should be 

adjusted in order to perform a fast and robust estimation. The weights of the 

network are automatically calculated according to the parametrization of the 

system. Also, the state vector in the network and the resulting differential equation 

enables the parameter vector to converge to the real parameter values. 

Consider a Hopfield Neural Network of M neurons. Let xi be the total input to 

neuron i, sj be the state or output of the neuron j, Wij be the weight associated with 

the connection from neuron j to neuron i and Ii  be the bias of the neuron i. Then, 

the state equations of the HNN can be given as: 

𝑑𝑥𝑖

𝑑𝑡
(𝑡) = −(∑ 𝑊𝑖𝑗(𝑡)𝑠𝑗(𝑡) + 𝐼𝑖(𝑡)

𝑀
𝑗=1 ) (10) 

𝑠𝑖(𝑡) = 𝛼 tanh (
𝑥𝑖(𝑡)

𝛽
) (11) 

The total input-state relation is given as in (11) where 𝛼, 𝛽 > 0 and 𝑖 ∈ 𝑀. 

𝑑𝑥

𝑑𝑡
(𝑡) = −(𝑊(𝑡)𝑠(𝑡) + 𝐼(𝑡)) (12) 

𝑠(𝑡) = 𝛼 tanh (
𝑥(𝑡)

𝛽
) (13) 

The matrix representation of the HNN is defined in (12) and (13). 

In this work, in order to find the performance parameters of the agents, the 

Hopfield Neural Network is used to perform online parameter estimation.         
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The choice of the utilization of the HNN as a parameter estimator is made since 

other approaches like classification with neural networks have accuracy 

limitations. 

3 Coverage Control with Agents with Unequal 

Actuation Capabilities 

In this section, the point-offset control law for non-holonomic robots is given. 

Then, the parameter estimation with HNN is explained. After, the adaptation to 

actuation performance variations algorithm is introduced. 

The actuation performances are defined as different capabilities of the agents. For 

example, weak motors and wheel slip can be counted as weak actuation 

performances, besides powerful motors and favorable terrain are the examples of 

the strong actuation capabilities. The collaboration algorithm learns the 

performance variations of the agents by estimating model parameters without 

prior knowledge and compensates them by giving large regions to the powerful 

agents and smaller regions to the weak ones. 

3.1 The Control Law 

The control of the agents is a crucial issue in the coverage collaboration task. 

After the agent calculates its own centroid location, a control law driving the agent 

to the position should be executed. In other words, a control law should be 

selected and designed in order to perform the desired coverage task successfully. 

In the literature, there are many works about non-linear controllers for robotics 

applications. To summarize the recent ones, a stochastic nonlinear model 

predictive control (MPC) [7], a nonlinear MPC trajectory controller [18], a 

feedback linearization controller for trajectory tracking for a flexible robot [2], a 

nonlinear high accuracy feedback linearization control of flexible robots [5] are 

the related control papers in the literature that are suggested to the reader. 

The selected structure of the control law consists of the non-holonomic point-

offset control law and the coverage controller given in equation (9). The point-

offset controller for the non-holonomic agents consists of a reference point P and 

a distance l from the center of the robot [17, 25] to the point P. The velocity of the 

reference point P can be transformed to the linear (𝑣) and angular (𝜔) velocities 

by using the matrix equation given below where 𝜃 is the heading angle of the 

robot: 

(
𝑣
𝜔
) = (

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

−
𝑠𝑖𝑛𝜃

𝑙

𝑐𝑜𝑠𝜃

𝑙

) (
𝑥̇
𝑦̇
) (14) 
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After substituting the velocities from the coverage control law in (9) with the (14), 

the control law becomes: 

𝑢𝑖 = 𝐾𝑝 (
𝑐𝑜𝑠𝜃𝑖 𝑠𝑖𝑛𝜃𝑖

−
𝑠𝑖𝑛𝜃𝑖

𝑙

𝑐𝑜𝑠𝜃𝑖

𝑙

) (𝐶V𝑖 − 𝑝𝑖) (15) 

The 𝐾𝑝 is selected so that the control law gives a fast and stable response. Also, 

the controller is designed in continuous time, but for the discrete-time, a high 

sampling rate is selected [29] according to the kinematics having in mind that the 

trajectories calculated by the robots and the dynamics of the robots are slow. The 

design process of the controller is iterative. First, a high sampling rate is chosen 

empirically and then the controller gains are adjusted under the physical limits of 

the robots. The chosen gains are validated by performing a simulation. The 

process is repeated iteratively until the resulting stable gains are found. The 

simulation results in the related sections show that the sampling rate is sufficient 

for the kinematics of the agents under the physical constraints of the robots. 

In order for the robot to avoid the collisions, the center P should be checked 

against collisions with radius 𝜌 = 𝑙 + 𝑟𝑟𝑜𝑏𝑜𝑡 , where 𝑟𝑟𝑜𝑏𝑜𝑡  is the radius of the 

robot. 

3.2 Parameter Estimation with HNNs 

In order to estimate parameters of the system given in (8), the system should be 

rewritten in linear in parameters (LIP) form: 

𝑝̇𝑖 = 𝐾𝑝(𝐶V𝑖 − 𝑝𝑖) (16) 

𝑝̇𝑖 = 𝐾𝑝𝐶V𝑖 − 𝐾𝑝𝑝𝑖  (17) 

𝑝𝑖 = −𝐾𝑝
−1𝑝̇𝑖 + 𝐶V𝑖  (18) 

𝑦 = 𝑝𝑖 − 𝐶V𝑖 = −𝐾𝑝
−1𝑝̇𝑖 (19) 

𝑦 = −(
1/𝐾𝑝,1 0

0 1/𝐾𝑝,2
) 𝑝̇𝑖 (20) 

𝑦 = (
−𝑝̇𝑖,𝑥 0

0 −𝑝̇𝑖,𝑦
) (
1/𝐾𝑝,1
1/𝐾𝑝,2

) (21) 

Then, the parameter estimation vector is defined as follows: 

𝜃𝑒𝑠𝑡 = (
1/𝐾𝑝,1
1/𝐾𝑝,2

) (22) 

The LIP form of the system becomes: 

𝐴 = (
−𝑝̇𝑖,𝑥 0

0 −𝑝̇𝑖,𝑦
) (23) 



M. Turanli et al. Multi-Robot Workspace Allocation with Hopfield Networks and Imprecise Localization 

 – 178 – 

𝑦 = 𝑝𝑖 − 𝐶V𝑖  (24) 

𝑦 = 𝐴 𝜃𝑒𝑠𝑡 (25) 

The weight matrix W and bias I in equation (12) can be calculated as in the 

following equations: 

𝑊 = 𝐴𝑇𝐴 (26) 

𝐼 = −𝐴𝑇𝑦 (27) 

𝜃̂𝑒𝑠𝑡 = (
𝑠1(𝑡)
𝑠2(𝑡)

) (28) 

𝐾𝑖 =

(

 
 
 

1
𝜃̂𝑒𝑠𝑡,1
⁄

1
𝜃̂𝑒𝑠𝑡,2
⁄

)

 
 
 

 (29) 

By using (12), (13) together with (23), (24), (26) and (27) the parameters of the 

closed-loop system (16) can be estimated online. The estimated parameters can be 

calculated by using the equations (28) and (29). 

The equation (12) can be implemented by using numerical integrators. 

As explained in Section 2.3, there is no need to train the network because the 

parametrization of the system dynamics is already given. 

For the testing results of the HNN, the reader is referred to the given source code 

and dataset in the following repository: https://github.com/mertturanli/hnn/ 

3.3 Estimating the GPVD Weights 

The adaptation algorithm in this section is based on the algorithm in work [22]. 

Assuming that 𝐾𝑖 is obtained by using (28) and (29) after the estimation, the 

values of the parameter vector 𝐾𝑖 is transferred to the weight estimator. The output 

of the weight estimator is passed to the GPD workspace partitioning algorithm. 

For the weight 𝑤𝑖  of the agent i, the adaptation law is: 

𝛿𝑖 = 𝑤𝑖 − 𝑓(𝐾𝑖) (30) 

𝑤̇𝑖 = −𝑘𝜔∑ (𝛿𝑖 − 𝛿𝑗)
𝑗∈𝑁𝑖

 (31) 

where 𝑘𝜔 is a positive coefficient and 𝑁𝑖 represents the neighbors of the agent i. 

The function 𝑓(𝐾𝑖) is related to the desired performance and chosen as 𝑓(𝐾𝑖) =

‖𝐾𝑖‖. 

about:blank
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Assuming that 𝐾𝑖 is obtained for the agent i, the weights are calculated by using 

the estimation law in (30) and (31). For the implementation, a numerical integrator 

should be used in order to calculate the estimated weight value. 

4 Stability Analysis 

To prove the stability of the control and estimation laws, first, a Lyapunov 

function candidate should be defined as given below for 𝑉3: 𝜃𝑒𝑠𝑡 + (−𝑐, 𝑐)
𝑀 → ℝ: 

𝑉 = 𝑉1 + 𝑉2 + 𝑉3 (32) 

𝑉1 =∑
1

2
‖𝐶V𝑖 − 𝑝𝑖‖

2

𝑖
 (33) 

𝑉2 = ∑ 𝑤𝑖𝑖  (34) 

𝑉3 = ∑ −
1

2𝑐
∑ 𝑙𝑛 ((1 +

𝜃̃𝑒𝑠𝑡(𝑖,𝑗)

𝑐−𝜃𝑒𝑠𝑡(𝑖,𝑗)
)
𝑐−𝜃𝑒𝑠𝑡(𝑖,𝑗)

(1 −
𝜃̃𝑒𝑠𝑡(𝑖,𝑗)

𝑐+𝜃𝑒𝑠𝑡(𝑖,𝑗)
)
𝑐+𝜃𝑒𝑠𝑡(𝑖,𝑗)

)𝑀
𝑗=1𝑖  (35) 

where 𝜃̃𝑒𝑠𝑡(𝑖,𝑗) = 𝜃𝑒𝑠𝑡(𝑖,𝑗) − 𝜃̂𝑒𝑠𝑡(𝑖,𝑗) and 𝜃̂𝑒𝑠𝑡(𝑖,𝑗) is defined as the output of the j
th

 

neuron of the parameter estimator of the i
th

 agent. Also, c is a positive constant 

[1]. 

First, if we consider the state vector as 𝑥𝑖 = (𝐶V𝑖 − 𝑝𝑖 𝑤𝑖 𝜃̃𝑒𝑠𝑡(𝑖))
𝑇
, it can be 

seen that  𝑉(𝑥 = 0) = 0. Also,  𝑉3(𝑥) > 0 as given in proof in [1]. So, 𝑉(𝑥) > 0. 

Taking the derivative of the Lyapunov function yields: 

𝑉̇1 =∑ −(𝐶V𝑖 − 𝑝𝑖)
𝑇
𝑝̇𝑖

𝑖
 (36) 

𝑉̇1 =∑ −(𝐶V𝑖 − 𝑝𝑖)
𝑇
𝐾𝑝(𝐶V𝑖 − 𝑝𝑖) ≤ 0

𝑖
 (37) 

The first term is negative semi-definite. 

𝑉̇2 = ∑ −𝑘𝜔 ∑ ((𝑤𝑖 − 𝑓(𝐾𝑖)) − (𝑤𝑗 − 𝑓(𝐾𝑗)))𝑗∈𝑁𝑖
= 0𝑖  (38) 

Also, the second term is zero. Taking the derivative of the third term becomes: 

𝑉̇3 =∑ −
1

𝑐 𝛽
𝜃̃𝑒𝑠𝑡(𝑖)
𝑇  𝑊𝑖  𝜃̃𝑒𝑠𝑡(𝑖) ≤ 0

𝑖
 (39) 

where 𝑊𝑖 is the weight matrix for i
th

 agent and clearly positive semi-definite. For 

𝛽 > 0, 𝑐 > 0 the third term is negative semi-definite. 

The trajectories and estimation errors are bounded since the 𝑉̇ ≤ 0. The weights 

are bounded since the ∑ 𝑤̇𝑖𝑖  becomes a stable filter as given in the proof in [22]. 

To complete the proof, the following theorem is introduced from [1]: 
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Theorem 1: The equilibrium point 𝜃̃𝑒𝑠𝑡(𝑖)
∗ = 0 is globally asymptotically stable if 

𝐼 ⊂ [𝑡0, ∞) and ⋂ ker(𝐴(𝑡)) = {0}𝑡∈𝐼 . 

From the Theorem 1 and the proof in [1], it can be concluded that for a non-

degenerate interval 𝑡 ∈ 𝐼, the equilibrium point  𝜃̃𝑒𝑠𝑡(𝑖)
∗ = 0 is globally uniformly 

asymptotically stable and the equilibrium point is unique. 

From LaSalle’s Invariance Principle, the largest invariant set defined by 𝑉̇ = 0 

should be found. 𝑉̇ = 0 occurs only when 𝐶V𝑖 = 𝑝𝑖 and 𝜃̃𝑒𝑠𝑡(𝑖) = 0. These 

equilibrium points are unique, and the case corresponds to the case that the 

tracking and estimation errors become zero. From the control and estimation laws, 

it can be concluded that the set is an invariant set. Thus, the system is globally 

asymptotically stable. 

Corollary 1: In the steady-state, the estimation vector converges to its real value 

and 𝑤𝑖 − 𝑓(𝐾𝑖) converges to a common value for all agents [22]: 

lim𝑡→∞(𝐾𝑖) =𝐾𝑖  (40) 

lim𝑡→∞(𝑤𝑖 − 𝑤𝑗) =𝑓(𝐾𝑖) − 𝑓(𝐾𝑗) (41) 

From the stable filter theory, in the steady-state, the weights converge to their final 

values, as stated in the referenced paper [22]. Also, from (41) the value of 

𝑤𝑖 − 𝑓(𝐾𝑖) converges to a common value for all agents. 

The stability analysis is done in continuous time since the nonlinear systems are 

continuous in nature. However, the implementation is carried out in discrete-time 

and for this purpose, a high sampling rate is selected [29] according to the 

kinematics of the agents since the trajectories of the robots and the dynamics of 

the agents are slow and the dynamics are neglected in design. Also, the numerical 

integrations in the estimators are converted into discrete-time trapezoidal 

integrations in order to get accurate results in discrete-time. 

5 Simulation Results 

The simulations are done in MATLAB environment with the map sizes of 5x5 and 

10x10 meters. The parameters in the simulation are 𝑘𝜔 = 0.2, 

𝐾𝑝 = 𝑑𝑖𝑎𝑔([1 1]), 𝑟𝑟𝑜𝑏𝑜𝑡 = 0.11, 𝑙 = 0.1, 𝛼 = 3000 and 𝛽 = 1. Also, the 

uncertainty radius is given as 𝑟𝑖 = 0.1 meters. 

The simulation is performed with 15 agents. In Figure 4 and Figure 5, the position 

errors and the coverage cost are given, respectively. The position errors of the 

robots asymptotically converge to zero and the coverage cost is settled to a 

minimum value after the coverage task is completed. 
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Figure 4 

Position errors 

 

Figure 5 

Coverage cost 

 

Figure 6 

Parameter estimation errors 

 

Figure 7 

The value of 𝑤𝑖 − 𝑓(𝐾𝑖) 

Figure 6 shows the asymptotic convergence of the parameter estimation errors of 

the Hopfield Network, obeying Theorem 1. 

In Figure 7, the value of 𝑤𝑖 − 𝑓(𝐾𝑖) is given which converges to a common point 

among the agents as given in the Corollary 1. 

Figure 8 and Figure 9 represent the weight of agents and the trajectories, 

respectively. The weight of the first agent has a lower value than the other agents 

since it has a degraded performance different from the other ones. The trajectories 

of the agents converge to the optimal coverage positions, as seen in Figure 9. 

Table 1 shows the region ratios of the agents at the end of the simulation. The 

region of the first agent is smaller than the regions of the other agents. 

The results show that the HNN estimator outperforms well compared to the base 

method [22] which is a non-linear adaptive estimator. The HNN provides faster 

convergence and more robust estimation according to the simulation results, as it 

can be seen from the parameter estimation errors. As a result, the coverage time 

can be improved. 
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Figure 8 

The weights of the agents 

 

Figure 9 

The trajectories of the agents 

Table 1 

Region ratios of the agents at the end configurations 

Agent Region Ratio Agent Region Ratio 

1 0.0349 9 0.0592 

2 0.0560 10 0.0661 

3 0.0537 11 0.0688 

4 0.0602 12 0.0614 

5 0.0669 13 0.0496 

6 0.0572 14 0.0652 

7 0.0527 15 0.0629 

8 0.0615 - - 

6 Experiments 

The experiments were carried out with two Turtlebot 2 agents in 2x2 meter 

environment. The first agent had a 10% actuation performance degradation. The 

agents start at initial configurations and perform the collaborative coverage task. 

6.1 Experimental Setup 

The experiments were carried out with two Turtlebot 2 agents in ITU Robotics 

Laboratory. The computers on the robots are Acer Aspire E11 with Intel Celeron 

N2940 processors and 4 GB of memory running Ubuntu 14 and ROS Indigo. The 

Turtlebot 2 agents are differential drive robots having a maximum velocity of 0.65 

m/s and a maximum payload of 5 kg. The weight of the robot is 6.3 kg. 
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Figure 10 

The initial configurations of the robots (ITU Robotics Laboratory) 

Figure 10 illustrates the experimental setup in the ITU Robotics Laboratory. The 

localization information is taken from the wheel odometry of the robots. The ROS 

driver “kobuki_node” is used for the Turtlebots. The communication between the 

agents is performed by using publisher/subscriber architecture and ROS topics. 

The robots are connected to a 450 Mbps Wi-Fi N access point. 

The ROS master computer is a laptop PC running Ubuntu and ROS Kinetic. The 

computers on the robots are connected to the ROS master node over the Wi-Fi 

network. 

6.2 Experimental Results 

The experiment starts with a ROS node named as Coverage node running for each 

agent separately in a decentralized way. Each node estimates its own 𝐾𝑖 vector 

from its own motion by using HNNs by using (12) and (13) and then calculates 

the weight of the agent by using (30) and (31). The node then passes the weights 

to the GPD algorithm. After the centroid locations are found by using the GPV-

cells and the non-holonomic control law is executed. The obtained velocities are 

sent to the corresponding topic of the agent. 

The coverage node is running on the controller PC of the agent on ROS real-time 

in a distributed way. The robots communicate with each other and estimate their 

own performance parameters, estimate the weights and calculate the GPD regions. 

Then, they execute the control law after finding the centroid positions. 

The experiment is repeated three times and the results are given in the table of 

region ratios. 

Figure 11 shows the overall coverage cost of the agents for the first experiment. 

The cost converges to its local minima as the coverage task completes. Also, in 

Figure 12, the estimation errors show asymptotical convergence to zero. 
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Figure 11 

Coverage cost 

 

Figure 12 

Estimation errors 

Figure 13 illustrates the value of 𝑤𝑖 − 𝑓(𝐾𝑖). As given in Corollary 1, the value 

converges to the same value among the agents. Lastly, Figure 14 depicts the 

weight values calculated by the online estimator. As expected, the weight of the 

first agent is less than the other agent. 

 

Figure 13 

The value of 𝑤𝑖 − 𝑓(𝐾𝑖) 

 

Figure 14 

The weights of the agents 

In Figure 15, the trajectories of the two agents are given. The black circles denote 

the initial configurations while the red circles show the final configurations. 

At the end configuration, the obtained regions are given in Figure 16 for the first 

experiment. The region ratio of the first agent is less than the second one. In the 

first experiment, the 𝛼 parameter is taken as 𝛼 = 6000. 

At the last configuration, the obtained region ratios are given in Table 2 for the 

second, third, and fourth experiments. Here, in the three experiments, the Hopfield 

parameter 𝛼 is taken as 𝛼 = 3000. The region ratio of the first agent is less than 

the other agent in each experiment. The results taken from the three experiments 

are similar. The distributed algorithm assigns the weights to the agents according 

to their performances. The video of the experiment can be viewed at: 

https://web.itu.edu.tr/turanlim/video/exp-tb2.mp4. 

 

about:blank
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Figure 15 

The trajectories of the agents 

 

Figure 16 

The GPD plot obtained from the first experiment 

Table 2 

Region ratios of the agents at the end configuration with HNN of three experiments 

Agent Region Ratio 

Experiment 1 

Region Ratio 

Experiment 2 

Region Ratio 

Experiment 3 

1 0.1950 0.1917 0.2120 

2 0.6484 0.6534 0.6342 

Similar results were obtained in experiments compared to the MATLAB 

simulations. The agents with greater actuation performances take greater regions 

than the weaker ones. Also, the estimation errors show that the HNN estimator 

outperforms well compared to the base method [22] which is a non-linear adaptive 

estimator. 

Conclusion 

In the paper, a coverage collaboration algorithm for non-holonomic wheeled 

mobile agents which learns the actuation performances of the agents by using 

HNNs and allocates the areas of the workspace to the agents according to their 

performances under localization uncertainty is introduced. The robots do not know 

their performances beforehand. By estimating their own performances, they 

perform the collaborative coverage task by minimizing the locational optimization 

function. Meanwhile, the GPD algorithm is used to take the positioning 

uncertainty of the agents into account. Also, the control law drives the robots to 

their optimal configurations. So, the optimal coverage is accomplished in a 

decentralized manner. The simulation results in MATLAB show the efficiency of 

the algorithm. The results are verified with field experiments done with the ROS. 

The algorithm provides faster convergence and a more robust estimation 

performance compared to the base method in the literature. Also, it takes the 

localization uncertainty into account coming from the localization sensors. 
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