
Acta Polytechnica Hungarica Vol. 16, No. 10, 2019

 – 65 –

SIT-based Functional Dependency Extraction

Balázs Tusor, János T. Tóth, Annamária R. Várkonyi-Kóczy

Department of Mathematics and Informatics, J. Selye University

Elektrárenská cesta 2, 945 01 Komárno, Szlovákia

E-mail: tusorb@ujs.sk; tothj@ujs.sk; koczya@ujs.sk

Abstract: In the digital age, being able to determine the relationships between attributes in

datasets is advantageous for many fields of information technology, such as data mining,

machine learning, etc. There are inherent rules, functional dependencies that are derived

from the nature of the data, of which many are not trivially obvious to the human data

manager. This paper presents a new method to extract such relationships. It uses

Sequential Indexing Table structures that can implicitly indicate if the values of an attribute

are determined by the combination of the values of the attributes preceding it in the layered

architecture, i.e. is functionally dependent on those attributes. A new algorithm is given to

use this feature to extract functional dependencies, and the performance is analyzed using

real-life datasets.

Keywords: functional dependency extraction; data processing; functional dependencies;

data mining; sequential indexing tables

1 Introduction

Data management has been an important part of information technology, gaining

more and more prominence in the past few decades. Fields such as big data [1] [2]

[3], business intelligence [4] [5] and even machine learning [6] [7] [8] [9] profit

tremendously from data analysis that helps discover various hidden relationships

between the features of data.

There are many functional dependencies (FDs) that inherently derives from the

nature of the data. Although many FDs can be recognized intuitively, (e.g. for a

persons database: the name, birth date and place are enough to uniquely identify

each person), but many of these relationships are often not trivial for human data

managers, thus there is a need for a fast, algorithmic extraction of such

relationships.

An extensive research has already been put into FD discovery. The three most

widely referenced to, classic approaches are TANE [10], FastFDs [11] and Dep-

miner [12]. While TANE uses an exhaustive breadth-first search on the data using

B. Tusor et al. SIT-based Functional Dependency Extraction

 – 66 –

a containment lattice to find the functional depedendencies that hold over them,

FastFD takes the difference set of the values of the data samples, applies heuristics

and a depth-first search to calculate the minimal covering of the created difference

sets. Even though they are efficient at finding FDs, most methods in the literature

scale badly with the size of the schema and the number of tuples (data samples),

which negatively impacts the time they require for operation [12] [13].

Sequential Indexing Tables and Sequential Fuzzy Indexing Tables (SITs and

SFITs [14]) have been proposed in order to implement a classifier that uses the

bare minimal steps necessary to classify patterns (i.e. find the known pattern

(class) that is the most similar to the input values).They are based on the idea of

Lookup Tables ([15] LUTs), which store the precalculated value or class label for

all possible input value combinations in suitable arrays [16]. Depending on the

problem space, this often results in very large, but sparse arrays (with only a small

portion of the stored data being useful). SITs are an attempt to reduce the area of

the problem space that is in the focus of the classification, thus only storing areas

that hold useful information. This is done sequentially, in a layered structure

where each layer restricts the problem space by a given value of an attribute,

gradually combining them until the search area is reduced to a single point

(SITs)or its fuzzy neighborhood (SFITs) in the problem space. The classification

performance of SFITs have been thoroughly investigated by the authors in

previous works [17] [18] [19] [20] [21].

SITs and SFITs have an implicit property that they can indicate the presence of

functional dependencies in the dataset they have been trained with. If the

information that an attribute carries (which is supposed to further restrict the

problem space by adding it to the combination of the sequence) is already

expressed in the combination of the previous attribute values (i.e. it is functionally

dependent on them) then it can be detected in the structure.

In this paper, we describe a new functional dependency extraction approach. It

builds upon the idea of using SIT structures to detect and subsequently extract the

functional dependencies that hold over the dataset schema considering the

available data.

The rest of this paper is as follows. In Section 2 the proposed method is described:

in Subsection 2.1 a formal definition of functional dependencies is given, then in

Subsection 2.2 the architecture of Sequential Fuzzy Indexing Tables is detailed,

while in Subsection 2.3 the new functional dependency extraction method is

proposed. In Subsection 3.1 the performance of the proposed method is evaluated,

while in Subsection 3.2 complexity analysis is given: Subsection 3.2.1 investigates

the time complexity, while 3.2.2. the spatial complexity of the proposed approach.

Subsection 3.3 describes possible ways for the expansion of the method in future

work. Lastly, the conclusions are drawn.

Acta Polytechnica Hungarica Vol. 16, No. 10, 2019

 – 67 –

2 Functional Dependency Detection

2.1 Functional Dependencies

Functional dependencies (FDs) are relationships between attributes of a dataset:

such a rule states that the value of an attribute is uniquely determined by the

values of other attributes. Formally: over a given relation schema (i.e. the set of

attributes) 𝑅, 𝐴 ∈ 𝑅 and 𝑋 ⊆ 𝑅. X→A functional dependency is valid in a given

relation r (i.e. the dataset) over R:∀𝑢, 𝑡 ∈ 𝑟, ∀𝐵 ∈ 𝑋: 𝑖𝑓 𝑡[𝐵] = 𝑢[𝐵], then

𝑡[𝐴] = 𝑢[𝐴]. For the rest of the paper, the attributes in the left side of a

dependency are regarded as the determinant attributes, and the attribute on the

right side is regarded as the dependent attribute.

2.2 Dependency Detection with Sequential Indexing Tables

SITs implement an iterative reduction of the problem space, using the values of

the input data directly to restrict the area of focus. In the layered structure of SITs

each layer corresponds to an attribute. An index array Λ is used in each layer to

stores index values that are assigned to each value combination that occurs in the

training dataset. The order of the attributes is significant, using two different

orderings results in two structures that are different in the sizes of their arrays

(though hold basically the same amount of information overall). Each index array

has as many columns as the size of the interesting domain of its corresponding

attribute (i.e. the range for that attribute in which the training dataset takes values

from), and as many rows as the number of index values (so-called index markers)

that have been assigned in the previous layer (in the first layer, the index array Λ𝐿0

consists of only one row).

Remark #1: Sequential Fuzzy Indexing Tables (SFITs) are the fuzzy extension of

SITs, in which an additional fuzzy array is used in each layer in order to handle

areas instead of strict integer values (thus adding a certain level of generalization

ability to the system, at the price of doubling the size of its structure). However,

for classical functional dependency detection and extraction SITs are sufficient as

well.

Remark #2: the floating-point values of each tuple are converted into integer

format within arbitrary bounds. This is generally done through a suitable linear

mapping function:

𝑋̃ ≅ 𝑎 ∙ 𝑋 + 𝑏 (1)

where input value X is scaled with a, and biased with b (a𝜖ℝ, b𝜖ℕ) then rounded.

B. Tusor et al. SIT-based Functional Dependency Extraction

 – 68 –

Figure 1

The architecture of Sequential Indexing Tables used for FD detection and extraction

The SIT structure and its usage can be seen in Fig. 1. Let us consider the 7 input

tuples t0…t6 (a), which have been loaded into the SFIT structure (b). In the first

iteration,tuple t0 = (1,4,0,3,2) is inserted. Since there is no marker in Λ1
𝐿0, a new

one is set: Λ1
𝐿0 = 0. This also marks that in the next layer the row #0 is considered.

In the second layer Λ0,4
𝐿1 = 0 is set, in the third Λ0,0

𝐿2 = 0, etc. Tuples t1 and t2 are

inserted similarly. However, for the values of t3=(1,3,1,5,3) there are already

markers in place in the first layer, and thus the insertion process follows the route

that the markers have marked (which is highlighted with dashed arrows): it only

begins inserting new markers in the second layer (L1). The input data and the rows

of the architecture in the figure are colored accordingly in order to help viewing

the logic behind the data structure. Each individual stored pattern or tuple realizes

a route from L0 to LN-1.

Acta Polytechnica Hungarica Vol. 16, No. 10, 2019

 – 69 –

In the figure, aside from the first layer, every change of color shows that there is a

branching in the ‘route of restriction’ (of the problem space) that the insertion of

the data takes throughout the structure.

In each layer, only a specific row is important for a given pattern (given by the

marker in the previous layer). Since each marker leads to a given row in the next

layer, a row with only one marker in it can be regarded as a straight path, while if

there are more than one markers, then it can be regarded as a junction. In the rest

of the paper, the former will be regarded as singular, while the latter as non-

singular rows. Out of the two cases, the latter has more importance, as it

introduces additional information to the system (distinguishes tuples based on

their attribute value). For classification problems, if the index array of a layer Li

only has singular rows, then it does not contribute to the classification process in

any meaningful way, therefore it can be ignored and thus save time. This is

because the tuples in the structure until layer Li are already uniquely distinguished

by the combination of the layers (or a subset of the layers) that precede it.Which

means that for given values of (at least one of) the previous layers, Li will only

take specific values, which is the definition of functional dependencies. Therefore,

if there are only singular rows in the index array of a (non-first) layer, then its

attribute is the dependent of a functional dependency, and the determinant

attributes are among the attributes belonging to the preceding layers.

This can be used to detect functional dependencies: take an ordering of the

attributes such that the investigated attribute is in the last place (N-1), and build

the structure. While filling the arrays, in order to avoid the need to examine the

whole of the index matrix of the last layer, the numbers of markers for each row

are stored in a column vector β. If any of the elements in is raised above one, a

variable α is incremented as well, which indicates if there are any non-singular

rows. Thus, after building only α is needed to be checked. If α=0, then the

attribute is functionally dependent.

2.3 Dependency Extraction with Sequential Indexing Tables

The structure described in Subsection 2.2 can also be used to determine which

layers are the determinants of the functional dependencies. The base idea is to

create an ordering in which the last layer (N-1) corresponds to the attribute that is

needed to be examined as the dependent attribute (i). If the index array of the last

layer is singular (i.e. all of its rows are singular, α=0), then the analysis can

commence (otherwise, the attribute is skipped).

B. Tusor et al. SIT-based Functional Dependency Extraction

 – 70 –

Figure 2

The operation of the FD extractor on a forward order

Figure 3

The operation of the FD extractor on a reverse order

The analysis is done in iterations. The structure is built again, but this time

without LN-2(the layer that directly precedes the last one). If α=0 in the newly

rebuilt structure, then attribute of LN-2 is not significant in the investigated

dependency, it can be ignored in the next steps and move on to the layer before it.

If α>0, then the preceding layers are no longer sufficient to uniquely identify each

stored tuples, information is lost if the layer is skipped. Thus, it is restored and

noted as being a part of the determinant. This is done until the first layer is

reached and examined.

This algorithm, however, only returns the FD that has an attr. in the highest layer

in the topology. This is illustrated in Fig. 2, where a simplified topology stores a

dataset, with a schema of R=(A, B, C, D, E, F) where ABF, ACF, BDF and

DEF functional dependencies hold. In the first iteration, E is ignored and proven

to be unnecessary, as A and B determines the values of F on their own (and are

thus marked with green). D and C are also insignificant in this regard (marked

with red). At the end of the analysis, the system returns with ABF. In order to

Acta Polytechnica Hungarica Vol. 16, No. 10, 2019

 – 71 –

extract the rest of the FDs, the evaluation needs to be restricted: before the next

round, attribute A is removed, as it is the highest in the topology among the

attributes of the found FD. In the next round, BCF is found, then after B is

removed, DEF. However, as it can be seen, this method in itself could not find

ACF, because A was removed prematurely (this is always the case when

multiple FDs have the same common attribute, but is high in the topology so it

gets removed before all of the FDs are discovered). This can be amended by

running the algorithm a second time, but for a quasi-reversed order (Fig. 3):

reversing the order of the potential determinant attributes but leaving the

dependent attribute at the end. The output of the system is the union of the two

sets of FDs discovered in each phase (normal and reversed order).

Figure 4

The algorithm of the FD extractor

B. Tusor et al. SIT-based Functional Dependency Extraction

 – 72 –

Figure 5

Divided schemas (the key attributes are marked with bold)

Fig. 4 summarizes the algorithm described above, with more details. The ordering

of the attributes is stored in 1xN array O, while the emission of certain attributes

or layers is done through 1xN array R, that stores which attributes are regarded in

the given iteration. It is used to remove the top attribute of the previously found

FD. On the other hand, the temporal removal of layers (from the bottom of the

structure) is stored in R’. For each examined attribute, first the auxiliary structures

are initialized (O and R), then the FD extraction step (marked by a bounding box

with doted borders). In the extraction step, the SIT structure is built using ordering

O regarding the attributes marked by R. If the index array of the last attribute is

singular α>0 then there are no more FDs regarding the attr. i, the next attribute is

regarded. Otherwise, R is copied into R’, the appropriate layer from the bottom

(but above Li) is marked as disregarded (R’ρ=0) and a new SIT structure is built

using order O and R’. If α>0, then reinstate the layer (R’ρ=1) and go on, until the

first layer is reached (ρ=0), at which point R’ marks the attribute of the

determinants of the discovered FD. Lastly, the first attribute of the FD is

determined (marked by a smaller boxed area in the figure with dashed border),

and R is set accordingly.

An interesting (and valuable) consequence of the algorithm is that it always

returns the minimal FDs, therefore the left side of the relation does not need to be

pruned to get the smallest determinant subset that determines the dependent

attribute on the right side. The significance of functional dependencies is

illustrated in Fig. 6. Examining the same dataset that was used in Fig. 1, the

method described above returned the following FDs: BD, DB, EC, ACE

and CDE.Therefore, the 5-attribute schema in Fig. 1 can be broken up into 3

schemas: (a) ACD, (b) ACE and (c) DB. From a database management viewpoint,

this is very valuable as it helps in keeping data consistency, makes modifications

easier (e.g. if a value of D changes, then only one element of schema ACD is

needed to be changed). Furthermore, if the schemas are stored in SITs, this

separation also reduces its size: the structure of ABCDE uses 108 elements, while

the 3 combined schemas need only 99 elements (which may not seem like a big

reduction, but for larger scales the gap between the numbers is also larger).

Acta Polytechnica Hungarica Vol. 16, No. 10, 2019

 – 73 –

3 Performance Evaluation

3.1 Experimental Results

The proposed functional dependency extraction method had been tested on 4 real-

life databases from the UCI data repository [23] on using an average PC (Intel®

Core™ i5-4590 CPU @ 3.30 GHz, 16 GB RAM).

In the first set of experiments, the Abalone dataset is analyzed with the proposed

method, and the effects of the scaling coefficient is examined. The dataset consists

of 4177 training samples with 9 attributes. Its original purpose is using the first 8

features (gender, length, diameter, height, whole weight, shucked weight, viscera

weight and shell weight) in order to determine the age of the animal (which is

measured by the rings of its shell), in hopes that a method can be found that does

not necessarily involve the expiration of the abalone (as the counting of the rings

requires sawing the shell in half, which has a detrimental effect on the health of

the creature.)

Table 1

Number of FDs found for each feature as dependent attribute of the Abalone dataset

Attribute

Scaling Factor

200 500 1000

Gender 3 6 7

Length 2 3 5

Diameter 2 4 5

Height 0 3 5

Whole_weight 3 2 4

Shucked_weight 1 5 5

Viscera_weight 3 2 4

Shell_weight 1 4 6

Rings 0 4 7

Number of all FDs found 15 33 48

Table 2

Average time requirements for FD extraction on the Abalone dataset based on the scaling factor

Scaling Factor

200 500 1000

Average time of FD extraction 4.323 s 13.543 s 23.806 s

Average time for building a single

SIT structure
0.024 s 0.048 s 0.0545 s

B. Tusor et al. SIT-based Functional Dependency Extraction

 – 74 –

Table 3

Average time requirements for FD extraction on the Abalone, Glass, Wisconsin breast cancer and Iris

datasets and the number of extracted FDs

N
u

m
b

er
 o

f

a
tt

ri
b

u
te

s

N
u

m
b

er
 o

f

tu
p

p
le

s

A
v

er
a

g
e

ti
m

e
o

f

a
 f

u
ll

 a
n

a
ly

si
s

1
 b

u
il

d
 t

im
e

fo
u

n
d

 n
o
.

O
f

F
D

s

N
u

m
b

er
 o

f
F

D
s

o
f

th
e

la
st

 a
tt

r.

Abalone

(a=1000)
9 4177 23.806 s 0.0545 s 48 7

Glass 10 214 1.13 s 0.04 s 70 8

Wisconsin

breast cancer
10 683 0.074 s 0.002 s 6 6

Iris 5 150 0.01 s <0.001 s 2 2

While the gender and the number of the rings are integer numbers, the rest of the

features are floating point numbers that are determined to the 3
rd

or 4
th

 fraction

digit. This requires a suitable scaling factor (ai) that transforms the data into a

suitable integer domain. Three different scaling factors are investigated: 200, 500

and 1000. Table 1 shows the results, listing the FDs for each attribute.

Interestingly, the larger the scaling factor, the more FDs are discovered that hold

on the dataset (15, 33 and 48, respectively). This is due to more details and thus

information is lost if the scaling factor is too low. On the other hand, the necessary

time is much larger (4.323, 13.543 and 23.806 seconds, respectively), due to the

larger sizes of the structure needed to be maintained and the large number of

iterations. The average building time of a single SIT structure on the other hand

took only 0.024, 0.048 and 0.054 seconds, respectively (Table 2). As for the

original purpose of the dataset, the discovered FDs show that the number of rings

cannot be directly determined from only the features that does not require the

demise of the animal (the closest one features length, diameter, whole weight and

shucked weight as the determinants, of which the last one causes the demise of the

abalone).

The performance of the FD extractor has been evaluated on 3 other datasets as

well: the Iris, the Glass and the Wisconsin breast cancer datasets. The Iris dataset

(which is about finding the species of iris plants: Iris Setosa, Iris Versicolor and

Iris Virginica) consists of 150 tuples and 5 integer valued attributes. It takes about

10 ms to find the two FDs that holds on the schema. Table 3 summarizes the

results. The Wisconsin breast cancer (WBC, determining the nature of mammary

tumors) dataset takes slightly more time (74 ms) to process the 683 tuples with 10

integer valued attributes, finding 6 FDs. Finally, in the Glass dataset (determining

Acta Polytechnica Hungarica Vol. 16, No. 10, 2019

 – 75 –

the type of glass from its chemical components) has been processed with 214

tuples of 10 floating point features (with suitable scaling factors), finding 70 FDs

in 1.13 seconds, of which 8 FDs had the type of glass as the dependent attribute.

Interestingly, for the WBC and Iris datasets only the classification target (type of

plant and tumor) are determined by the other attributes, but none of the other

attributes. The Solar flare data set has also been processed, but no FDs have been

found.

3.2 Complexity Analysis

3.2.1 Time Complexity

The computational complexity of FastFDs, TANE ([10][11]) and the SIT-based

FD detector and extractor is compared in Table 4. Let R denote the schema (the

set of attributes) and rmark the set of values in the dataset, and thus |R| and |r| the

number of each set, respectively. If only FD detection is the goal, then the

proposed method only requires building a SIT structure (each attribute value is

used for one layer only O(|r|∙|R|)), for each attribute:

O(|r|∙|R|
2
) (2)

FD detection is sufficient if the goal is to enhance the speed of a classifier: since

the dependent attributes do not contribute additional information into the

classification process, skipping them can speed up most classifiers.

If the detected FDs are needed to be extracted as well, then the detection step is

needed to be repeated for each attribute, and for each FDs in the dataset:

O(ϕ∙|r|∙|R|
3
) (3)

where ϕ is the number of FDs on a schema considering the given data. The

computational complexity of the proposed method is polynomial with respect to

the size of the schema (|R|), and is linear in the number of tuples (|r|), as opposed

to the other two methods.

Table 4

Time complexity analysis for Tane, FastFDs and the SIT-based FD detector and extractor

Method Computational

Complexity

TANE O(2|R|∙(|r|+|R|2.5))

FastFDs ~O(|R|∙|r|2+|R|∙|r|2log(|R|∙|r|2)

Dependency Detector SIT O(|r|∙|R|2)

Dependency Extractor SIT O(ϕ∙|r|∙|R|3)

B. Tusor et al. SIT-based Functional Dependency Extraction

 – 76 –

3.2.2 Spatial Complexity

Although the proposed method is less complex computation-wise than the other

described methods, it is important to examine its memory requirement as well.

The size of the main structure (the index matrices in each layer) of the FD

extractor only depends directly on the number of attributes and the size of the

domains of each attribute, while it is much less influenced by the number of

tuples. On the other hand, the number of tuples can be used as an upper bound to

the number of rows (ρ) in the index matrix of each layer:

𝜌𝑖 = {
 1 , 𝑖 = 0
𝛾𝑖−1 ≤ min(𝐷𝑖−1 ∙ 𝜌𝑖−1, |𝑟|) , 𝑖 > 0

 (4)

where ρi is the number of rows of the index array in layer i and γi-1 is the number

of the index markers in the previous layer. The latter number is typically only

known after counting the unique value combinations in the previous layer. Thus,

the building of the structure can be done in two ways: going through all of the

input data tuples in each layer to get the exact amount of unique value

combinations (and thus, γi), or construct a structure that is expectedly much larger

than necessary using the known upper bounds (from the domain size and number

of rows of the previous layer (𝐷𝑖−1 ∙ 𝜌𝑖−1), or the number of input tuples (|𝑟|));
then go through the input data once, note the γ values for each layer and rebuild

the structure with the accurate size. The latter obviously requires less time to do

(as the input data is only processed twice), at the cost of temporarily using more

memory.

The size of the whole structure is ideally:

𝑆 = ∑ 𝜌𝑖 ∙ 𝐷𝑖
|𝑅|−1
0 + 𝜌|𝑅|−1 + 1 (5)

Table 5

Spatial complexity analysis for Tane, FastFDs and the SIT-based FD extractor

Method Spatial Complexity

TANE O (
(|R| + |r|) ∙ 2|R|

√|R|
)

FastFDs O (|R| ∙
|r| ∙ (|r| − 1)

2
)

Dependency Extractor SIT O(|R| ∙ |r| ∙ 𝐷𝑚𝑎𝑥)

For most cases, it is likely that the lowest layer in the structure has |r| number of

rows (unless there is a significant number of redundant tuples), so using |r| as the

upper bounds for the row numbers for the worst-case scenario, the size of the

structure can be estimated:

𝑆 = ∑ |𝑟| ∙ 𝐷𝑖
|𝑅|−1
0 + |𝑟| + 1 (6)

Acta Polytechnica Hungarica Vol. 16, No. 10, 2019

 – 77 –

Thus, the spatial complexity of the SIT-based FD detector in the worst-case

scenario:

𝑂(|𝑅| ∙ |𝑟| ∙ 𝐷𝑚𝑎𝑥) (7)

The spatial complexity of FastFD, TANE ([10] [11]) and the SIT-based FD

detector and extractor is compared in Table 5. The complexity of TANE is

exponential, though it can be mitigated by keeping parts of the data on the hard

drive, which in turn slows the operation as reading and writing from hard drives is

significantly slower than memory operations. FastFD uses significantly less

memory, though it is still quadratic in the function of |r|.

The scaling of the input tuple values during the linear mapping step is also very

important, considering the spatial complexity of the system. Although higher

scaling factor values increase the chance of finding functional dependencies, they

also directly affect the size of the domain of their attributes in question, and

subsequently, the size of the SIT structure. Fig. 6 depicts how the size of the

structure changes with the scaling factor (ai) using the Abalone data set. The

dataset has 9 attributes, of which 7 have floating point values and 2 have integer

type values (thus the latter ones are not scaled). The 7 attributes are scaled using

10 different values (from100 to 1000), with the same factor in each step

(e.g. a0=a2=…=a6=100).

In the figure, the overall sizes of the main structure (the sum of the sizes of the

index matrices, i.e. how many numbers are needed to be stored in them) are

compared. As it can be seen, the scaling of the amount of stored data is more or

less linear. The smallest examined scaling factor (ai=100) yieldsa structure with

the size of 1940403 elements, while the largest (ai=1000)results in 24523818

elements. To put this into perspective, in order to store the latter amount of array

elements using short data type (2 bytes), the structure takes ~46.7 MB to store.

Remark: short data type can only be used if the number of indexes in any layer

(which in the last layer is the number of unique input tuples) does not exceed the

largest number that can be stored in a short type variable (65535). For the Abalone

data set this is true (since the number of input tuples is 4177), but for larger data

sets integer type variables (4 bytes) are needed instead, doubling the memory

requirement of the system.

B. Tusor et al. SIT-based Functional Dependency Extraction

 – 78 –

Figure 6

The change of the size of the structure (the amount of array elements stored) in the function of the

scaling factorusing the Abalone data set

3.3 Future Extensions

Finding clear rules (FDs) in real-life datasets is often hard, if not downright

impossible, especially when the amount of the data is very large (raising the

possibility of errors, noise or samples that are truly exceptions of the rule). For

such cases Approximate Functional Dependencies (AFDs) were defined as FDs

that hold on a sufficiently large subset of the available tuples. They can be

regarded as general rules that have some exceptions to them as well. Being able to

extract these rules could also be very advantageous because with them it is still

possible to make predictions towards the values of given attributes (e.g. in case of

the Solar flare dataset in which no clear FDs can be found, or the Abalone dataset

in which the age of the animal could still be predicted from the features that do not

require the its destruction). The SIT architecture can already detect the possibility

of an attribute being the dependent in an AFD, simply by examining how many of

the tuples end in singular and non-singular rows in the index array of the last

layer. If their number is sufficient, then ignoring the rest of the tuples (that end in

non-singular rows), the proposed method can be used to detect the FDs that hold

on them, and thus extract them as AFDs.

The main disadvantage of the proposed method is that its usage is limited in both

the number of attributes and the domain in which the attributes can take values

from. These directly determine the size of the structure, which can be too large to

manage with the average modern computers. The structure, however, can be

changed to omit the non-interesting areas (e.g. the empty elements seen in Fig. 1)

19,40

50,37

74,53

98,92
122,15

147,66

172,04

196,47

220,79

245,24

100 200 300 400 500 600 700 800 900 1000

Th
e

si
ze

 o
f

th
e

m
ai

n
 s

tr
u

ct
u

re

(x

1
0

0
0

0
0

)

The size of the scaling factor

Acta Polytechnica Hungarica Vol. 16, No. 10, 2019

 – 79 –

and only store the known values. However, this will increase the complexity of the

implementation of method and require parallel computing to keep the

management of the arrays fast. On the plus side, this can also make it possible to

process the tuples in batches, instead of one by one. This upgrade would make it

possible for the proposed method to be applied in Big Data applications as well.

Conclusion

In this paper, we describe a new functional dependency extraction approach. It

builds upon the idea of using Sequential Indexing Table structures to detect and

subsequently extract the functional dependencies that hold over the dataset

schema considering the available data.

The proposed method is shown to be able to extract FDs quickly (its

computational complexity is a linear function of the number of input tuples),

however, at the cost of larger memory usage. The size of the structure is primarily

influenced by the number of attributes and the size of the domain they can get

values from. The latter can be restricted with suitable scaling factors, although in

return of potential loss of information and thus less reliable operation.

In future work, the size problem of the structure will be amended, and the method

will be extended to be able to find Approximate Functional Dependencies as well

(by disregarding tuples that count as exceptions, if their number is low).

Furthermore, parallel programming techniques will be added into the method in

order to enhance its speed by processing the input data samples in batches instead

of one by one.

Acknowledgement

This publication was created due to support of the Research & Innovation

Operational Programme for the Project: "Support of research and development

activities of J. Selye University in the field of Digital Slovakia and creative

industry", ITMS code: NFP313010T504, co-funded by the European Regional

Development Fund.

References

[1] M. Jocic, E. Pap, A. Szakál, D. Obradovic, Z. Konjovic, "Managing Big

Data Using Fuzzy Sets by Directed Graph Node Similarity," Acta

Polytechnica Hungarica, Vol. 14, No. 2, 2017, pp. 183-200

[2] R. Spir, K. Mikula, N. Peyrieras "Parallelization and validation of

algorithms for Zebrafish cell lineage tree reconstruction from big 4D image

data," Acta Polytechnica Hungarica, Vol. 14, No. 5, 2017, pp. 65-84

[3] A. Vukmirović, Z. Rajnai, M. Radojičić, J. Vukmirović, M. J. Milenković,

"Infrastructural Model for the Healthcare System based on Emerging

Technologies," Acta Polytechnica Hun., Vol. 15, No. 2, 2018, pp. 33-48

B. Tusor et al. SIT-based Functional Dependency Extraction

 – 80 –

[4] T. Szántai, E. Kovács, A. Egri, "Inventory Control in Sales Periods," Acta

Polytechnica Hungarica, Vol. 15, No. 1, 2018, pp. 87-104

[5] V. Farrokhi, L. Pokorádi, S. Bouini, "The Identification of Readiness in

Implementating Business Intelligence Projects by Combining Interpretive

Structural Modeling with Graph Theory and Matrix Approach," Acta

Polytechnica Hungarica, Vol. 15, No. 2, 2018

[6] J. Parra, O. Fuentes, E. Anthony, V. Kreinovich, “Use of Machine Learning

to Analyze and – Hopefully – Predict Volcano Activity,” Acta Polytechnica

Hungarica, Vol. 14, No. 3, 2017, pp. 209-221

[7] D. Marček, M. Rojček, "The Category Proliferation Problem in ART

Neural Networks," Acta Polytechnica Hungarica, Vol. 14, No. 5, 2017, pp.

49-63

[8] N. Ádám, A. Baláž, E. Pietriková, E. Chovancová, P. Feciľak, "The Impact

of Data Representationson Hardware Based MLP Network

Implementation," Acta Polytechnica Hungarica, Vol. 15, No. 2, 2018, pp.

69-88

[9] L. Nyulászi, R. Andoga, P. Butka, L. Főző, R. Kovacs, T. Moravec, "Fault

Detection and Isolation of an Aircraft Turbojet Engine Using a Multi-

Sensor Network and Multiple Model Approach," Acta Polytechnica

Hungarica, Vol. 15, No. 2, 2018, pp. 198-209

[10] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen, "TANE: An

efficient algorithm for discovering functional and approximate

dependencies," The Comp. Journ., Vol. 42, No. 2, 1999, pp. 100-111

[11] C. Wyss, C. Giannella, and E. Robertson, “FastFDs: A heuristic-driven,

depth-first algorithm for mining functional dependencies from relation

instances,” In Proc. of the Int. Conf. of Data Warehousing and Knowledge

Discovery (DaWaK), 2001, pp. 101-110

[12] T. Papenbrock et.al.,"Functional Dependency Discovery: An Experimental

Evaluation of Seven Algorithms," Proceedings of the VLDB Endowment,

Vol. 8, No. 10, 2015, pp. 1082-1093

[13] N. Asghar, A. Ghenai, "Automatic Discovery of Functional Dependencies

and Conditional Functional Dependencies: A Comparative Study," 2015

[14] A. R. Várkonyi-Kóczy, B. Tusor, and J. T. Tóth, “A Multi-Attribute

Classification Method to Solve the Problem of Dimensionality,” in Proc. of

the 15
th

 Int. Conf. on Global Research and Education in Intelligent Systems

(Interacademia’2016), Warsaw, Poland, Sept. 26-28, 2016, pp. PS39-1 –

PS39-6

[15] Maher, David. W. J. and John F. Makowski. "Literary Evidence for Roman

Arithmetic with Fractions", Classical Philology, Vol. 96, No. 4, 2001, pp.

376-399

Acta Polytechnica Hungarica Vol. 16, No. 10, 2019

 – 81 –

[16] B. D. Zarit, B. J. Super, F. K. H. Quek, “Comparison of five color models

in skin pixel classification,” in Proc. of the International Workshop on

Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time

Systems, Corfu, Greece, Sep. 26-27, 1999, pp. 58-63

[17] B. Tusor, A. R. Várkonyi-Kóczy, J. T. Tóth, “Active Problem Workspace

Reduction with a Fast Fuzzy Classifier for Real-Time Applications,” IEEE

International Conference on Systems, Man, and Cybernetics, Budapest,

Hungary, October 9-12, 2016, pp. 4423-4428, ISBN: 978-1-5090-1819-2

[18] A. R. Várkonyi-Kóczy, B. Tusor, J. Tóth, “Robust Variable Length Data

Classification with Extended Sequential Fuzzy Indexing Tables,” 2017

IEEE Int. Instr. and Meas. Tech. Conf. (I2MTC) 22-25 May, 2017, Torino,

Italy, pp. 1881-1886

[19] B. Tusor, A. R. Várkonyi-Kóczy and J. T. Tóth, “A Fuzzy Data Structure

for Variable Length Data and Missing Value Classification,” 16
th

International Conference on Global Research and Education, 25-28 Sept.

2017, Iasi, Romania, pp. O.21-1 – O.21-6

[20] B. Tusor, G. Simon-Nagy, A. R. Várkonyi-Kóczy and J. T. Tóth,

“Personalized Dietary Assistant - An Intelligent Space Application,” 21
st

IEEE Int. Conference on Intelligent Engineering Systems (INES 2017),

Larnaca, Cyprus, 20-23 October, 2017, pp. 27-32

[21] B. Tusor, A. R. Várkonyi-Kóczy, J. Bukor, “An ISpace-based Dietary

Advisor,” 2018 IEEE International Symposium on Medical Measurements

and Applications (MeMeA) 11-14 June, 2018, Rome, Italy, pp.1-6

[22] B. Kamiński, M. Jakubczyk, P. Szufel, "A framework for sensitivity

analysis of decision trees". Central European Journal of Operations

Research, Vol. 26, No. 1, 2017, pp. 135-159

[23] D. Duaand C. Graff, UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School

of Information and Computer Science, 2019

