
Acta Polytechnica Hungarica Vol. 18, No. 6, 2021

 – 107 –

Fast Regular and Interval-based Classification,

using parSITs

Balázs Tusor
1
, Annamária R. Várkonyi-Kóczy

2

1
Doctoral School of Applied Informatics and Applied Mathematics

Óbuda University, Budapest, Hungary; E-mail: tusor.balazs@kvk.uni-obuda.hu
2
Institute of Automation, Óbuda University, Budapest, Hungary

E-mail: varkonyi-koczy@uni-obuda.hu

Abstract: Parallelized Sequential Indexing Tables (parSITs), are classifiers that have been

developed for the processing of large volumes of data rapidly. Their base idea is

implementing a sequential indexing table structure with parallelization techniques, using a

sequence of Lookup Tables in order to build a chain of value combinations. Although the

inference (evaluation) method, that it was originally developed for, is very fast, its

performance significantly depends on the arbitrary order of the attributes, in multi-class

cases, thus, reducing its classification performance. In this work, we introduce a new

inference method, that increases the classification performance of the classifier, at the cost

of a small increase in computational complexity.

Keywords; Big Data classification; interval-based classification; parallel computing;

sequential indexing tables; lookup tables; machine learning

1 Introduction

Machine learning has been one of the most important areas of computer science in

the past couple of decades. Numerous systems have been developed to address

many different kinds of machine learning problems in a wide range of scientific

fields. To mention a few recent developments, machine learning has been

successfully used in biomedical engineering [1] [2], spam email detection [3],

movement detection [4], the recognition of electromyographic hand gesture

signals for prosthetic hand control [5], Big Data systems [6] [7] [8], etc.

Parallelized Sequential Indexing Tables (parSITs) are classifiers that have been

developed for processing large volumes of data rapidly. Their base idea is

implementing a sequential indexing table structure [9] [10] with parallelization

techniques, using a sequence of Lookup Tables [11] in order to build a chain of

value combinations, describing the data extracted from the training data in a

compact way, organized into a layered structure where each layer takes care of a

B. Tusor et al. Fast Regular and Interval-based Classification, using parSITs

 – 108 –

given dimension of the problem space (i.e. a given attribute from the training

data).

In previous work, we developed a training algorithm for the parSIT classifier [12]

[13], along with a simple inference (evaluation) method that focuses on finding

the index that is the closest to the given input value for each attribute. However,

although this leads to a very fast inference, its performance also significantly

depends on the arbitrary order of the attributes (which directly influences the

structure itself). This has the disadvantage that for input samples that are very

similar to a learned sample in all but one attribute, if that attribute is situated high

in the structure, the classifier has a high chance to misclassify the sample, or not

recognize it at all.

In order to solve this problem, in this paper a new inference method is presented

for the parSIT that uses a different approach: instead of choosing the closest

values, it evaluates all values within a given range. Although this results in a

higher computational complexity inference and a higher implementation

complexity, but it is shown that it also boosts the classification performance

significantly.

The rest of this paper is structured as follows. In Section 2 the parSIT classifier is

described alongside the proposed new method: In Subsection 2.1 the general

architecture is presented, while Subsections 2.2 and 2.3 briefly summarize the

training procedure and the proximity-based inference algorithm, respectively; and

finally, in Subsection 2.4 the new interval-based inference algorithm is proposed

in detail. Section 3 illustrates the classification performance of the new method in

Subsection 3.1 compared to the proximity-based inference, then complexity

analysis is given in Subsection 3.2. Finally, Section 4 concludes the paper and

presents some future work possibilities.

2 Parallelized Sequential Indexing Tables

2.1 General Architecture

The parSIT classifier builds and maintains a layered structure that models the

problem space based on the data used for its training. The structure built from the

data of an N-dimension classification problem (thus, the data having N data

attributes and 1 class attribute) consists of N+1 layers, where the first N layers

handle the attributes of the data, each one regarding the values of corresponding

attribute of the input data. Fig. 1 (a) shows an example for a trained network that

has been built using training dataset X (shown in (b)).

Acta Polytechnica Hungarica Vol. 18, No. 6, 2021

 – 109 –

Figure 1

The general architecture of ParSITs (a) trained on a given training dataset (b)

The array elements are colored accordingly to the training sample (t0..t9) that it

represents. The first “root” layer contains a 1D index array Λ(0), which stores all

different input values gained from the first attribute (x0), sorted and free of

duplicates. The elements in the index arrays are called markers in the following.

The layers are connected so for each trained data tuple, an implicit “route” can be

followed in order to gain the class label in the last layer that is associated with the

given tuple.

In Fig. 1, it can be seen that x0 has 4 different values in the training dataset, thus,

the size of the index array Λ(0) is 4. The first element (Λ0
(0)

= 1.1) belongs to

training tuples t3 and t4. Since these two tuples have different values in their

second attribute (x1), in the second layer they take up two different array elements

(given by their values: ‘6’ and ‘9’). However, since they share the same first

attribute value, they make up a group in the second layer, which is addressed by

the position of the marker of their first value in the previous layer (η0). Each group

in a given layer is accounted for by storing their starting locations in a given 1D

array α
(i)

 (where i denotes which layer it belongs to) and the number of markers in

each group in 1D array β
(i)

. For example, the starting location of the group (g0) of

the mentioned 2 markers in the second layer is α
(1)

=0, while it contains β
(1)

=2

markers. This way, the evaluation is faster, since not all of the markers are need to

be regarded, only the groups marked by the significant markers in the layer before

it. In the root layer, there are no additional arrays, since all markers are observed.

The last (class) layer contains one index array Λ(𝑁) that contains the class labels,

and an occurrence array Θ that accounts for how many times each given value

sequence has been seen during the training. Occurrence values that are higher than

one (Θ𝑗 > 1, for all j elements) indicate redundancy in the training data, while

groups in Λ(𝑁) that have more than one markers in them indicate inconsistency in

the training data (i.e. there are two or more tuples that share the same attribute

values, but differ in class label).

B. Tusor et al. Fast Regular and Interval-based Classification, using parSITs

 – 110 –

2.1 Training Algorithm

The training of the parSIT structure builds the Λ, α and β arrays for each layer, one

layer at a time. It uses parallel computing to sort the values of the given attribute,

then build a temporary array H, and remove the redundant elements to gain the

compact representation of the given attribute. Let P denote the number of training

tuples.

Figure 2

The training of the first layer of the structure shown in Fig. 1

Fig. 2 shows the training procedure for the root layer, processing attribute 0.

The attribute values of X
(0)

 (a column array taken from x0) is sorted alongside a

simple in an increasing sequence array S (containing values from 0 to P-1), using

X
(0)

 as key. The sorting results in X’
(0)

 and S’. After that, the redundant elements in

X’
(0)

are flagged in flag array F for ∀𝑝 ∈ [0, 𝑃 − 1]:

𝐹𝑝 = {
1, 𝑖𝑓 𝑋𝑝−1

(0)
= 𝑋𝑝

(0)
 𝑎𝑛𝑑 𝑝 ≠ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

Then, a parallel computing technique called parallel prefix sum (PPS, [14]) is used

on array F to gain array M, which indicates the new place of each attribute value

in the reduced array Λ:

Λ𝑀𝑝

(0)
= {

𝑥0
(0)

 𝑖𝑓 𝑝 = 0

𝑥𝑝
(0)

 𝑖𝑓 𝑝 ≠ 0 𝑎𝑛𝑑 𝐹𝑝 = 1
 (2)

The size of Λ is determined from the last value of M:

𝑚 = 𝑀𝑃−1 + 1 (3)

Furthermore, by using S’ to rearrange M, we gain the temporary array H that is

used to distinguish the groups in the next ((i+1)
th

) layer:

𝐻𝑆𝑝

(𝑖+1)
= 𝑀𝑝, ∀𝑝𝜖[0, 𝑃 − 1] (4)

Acta Polytechnica Hungarica Vol. 18, No. 6, 2021

 – 111 –

Figure 3

The training of the second layer of the structure shown in Fig. 1

The training of the rest of the layers (i > 0) is similar (shown in Fig. 3), with the

difference that H is also used to sort the data: X
(i)

, H
(i)

 and S are all sorted by H

first, then X second, thus, gaining an ordering (X’’
(i)

, H’’
(i)

 and S’’) where each

group is represented in the order of their “parent” markers in the previous layer

(i.e. the value that they share in their previous (i - 1) attribute), and the markers

within each group are sorted as well. Thus, H is indicating their group number.

Similarly, to the root layer, in the next steps the flag array F is determined:

𝐹𝑝 = {
1, 𝑖𝑓 𝑥′′𝑝−1

(𝑖)
= 𝑥′′𝑝

(𝑖)
 𝑎𝑛𝑑 𝐻′′𝑝−1

(𝑖)
= 𝐻′′𝑝

(𝑖)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

which is used to create marker placement array M by applying parallel prefix sum

on array F. Array H
(i+1)

 is calculated using Eq. (4) and the compact index array is

determined:

Λ𝑀𝑝

(𝑖)
= {

𝑥0
(𝑖)

 𝑖𝑓 𝑝 = 0

𝑥𝑝
(𝑖)

 𝑖𝑓 𝑝 ≠ 0 𝑎𝑛𝑑 𝐹𝑝 = 1
 (6)

After that, all non-layers (i > 0) calculate the starting locations (𝛼(𝑖)) and the

group sizes (𝛽(𝑖)) for each group j:

𝛼𝑗
(𝑖)

= 𝑚𝑖𝑛{𝑘 | 𝜂𝑘 = 𝑗} (7)

𝛽𝑗
(𝑖)

= {
𝛼𝑗+1

(𝑛)
− 𝛼𝑗

(𝑛)
, 𝑖𝑓 𝑖 < 𝑔 − 1

𝑚 − 𝛼𝑗
(𝑛)

, 𝑖𝑓 𝑖 = 𝑔 − 1
 (8)

In the last layer, the algorithm ends after the occurrence array Θ is calculated.

B. Tusor et al. Fast Regular and Interval-based Classification, using parSITs

 – 112 –

2.2 Proximity-based Inference

Figure 4

An illustration for the proximity-based inference algorithm for a single input sample

Fig. 4 depicts the proximity-based inference algorithm. In the root layer, it simply

polls each marker Λ𝑖
(0)

 for each input sample value x𝑝
(0)

, i.e. calculates their

distances, and chooses the index number of the marker that is the closest to the

given input value:

𝐻𝑝 = argmin∀𝑖 (𝑑(Λ𝑖
(0)

− x𝑝
(0)

)) (9)

where d() is a suitable distance measure. In this research, we use the Euclidian

distance, but various other distances can be used, such as a Gaussian function.

marker is chosen for each input tuple p (𝑝 ∈ [0, 𝑃 − 1]), and only the

corresponding groups are polled in the next layer:

𝐻𝑝 = argmin∀𝑖 (𝑑 (Λ𝜐𝑝+𝑖
(𝑛)

− x𝑝
(𝑛)

)) (10)

where 𝜐𝑝 is the starting position of the group that belongs to the chosen marker Hp

in the previous layer for each tuple p:

𝜐𝑝 = 𝛼𝐻𝑝
 (11)

Finally, the output of the proximity-based inference is an array y given by the

indices in the last layer:

𝑦 = Λ𝑧
(𝑁−1)

 (12)

where the index is the most regularly occurring class that belongs to the marker

chosen in the previous layer:

𝑧 = argmax∀𝑖 (Θ𝜐𝑝+𝑖) (13)

Acta Polytechnica Hungarica Vol. 18, No. 6, 2021

 – 113 –

2.2 Interval-based Inference

As it was mentioned in the introduction, the proximity-based inference method is

very fast, but has a disadvantage that it focuses on only one marker in each layer.

For example, in the structure shown in Fig. 1, if the input tuple is t10=[1.5 10],

then, the closest learned tuple should be [2.4 10] (as their Euclidian distance is

d(t9,t10)=0.9), but the inference will choose [1.1 9] (d(t3,t10) = 1.07), because 1.5 is

closer to 1.1 than to 2.4. This often leads to misclassification, decreasing the

classification accuracy of the system.

While the proximity-based inference described in the previous subsection focuses

on quickly finding the value that is the closest to the currently examined input

value for each input sample, the interval-based inference investigates the area

around the known values as well, thus, can regard multiple values for each input

sample.

Fig. 5 illustrates the inference algorithm for a single input [2 4], where the ρ

ranges of each attribute are defined at [1.5 3] (i.e. for the first attribute, the interval

[0.5, 3.5] is investigated, while for the second attribute the interval [1, 7] is

regarded). In the figure, each “route” is color-coded to make the paths of the

inference more easily discernable.

In the root layer (L0), the first 3 markers are polled as positive (i.e. being part of

the sought interval), so in the next layer (L1), the groups linked to them (markers

#0 to #5) are regarded, comparing their values to the interval of the second

attribute. In the given example, only markers (η1) #0, #2, #4 and #5 are polled as

positive, so in the last (class) layer the class markers (Λ
(2)

) and their occurrences

(θ) are counted.

Figure 5

An illustration for the interval-based inference algorithm considering one input sample

B. Tusor et al. Fast Regular and Interval-based Classification, using parSITs

 – 114 –

The output of the system can be either the class with the highest occurrence rate,

or the whole array of classes with their measured occurrence rates (as statistical

information to enhance classification performance). If the inference stops before

reaching the class layer (i.e. does not find any markers that are close enough to the

input sequence), then the default class is returned (which has the highest overall

occurrence rate).

Remark: An easy way to determine the range value for each attribute is

determining the size of their domain (i.e. the largest value their attribute can take)

and set the range to an arbitrary percentage of it.

Figure 6

An illustrative example for the detailed steps of the interval-based inference algorithm processing the

root layer of the structure in Fig. 5, considering 3 input samples (set X)

Figure 7

The continuation of the interval-based inference algorithm, processing the second and third layers of

the structure in Fig. 5

Acta Polytechnica Hungarica Vol. 18, No. 6, 2021

 – 115 –

A more detailed illustration for the interval-based inference algorithm is shows in

Figures 6 and 7, where the input data set X (with 3 samples: t0=[2 4], t1=[3.8 5]

and

t2=[1.1 1]) is evaluated for the structure in Fig. 1, using range parameters

ρ=[1.5 3]. For easier readability, each row is colored in accordance to their

corresponding sample. Since the amount of positively polled markers is varied

among the input samples, the coloring also indicates how many elements are used

in each row. Fig. 6 shows the evaluation of the root layer, while Fig. 7 depicts its

continuation for the rest of the structure.

The algorithm is implemented through matrices, where each row processes a

given input sample. The goal in each layer is to determine which groups of

markers have to be regarded in the next layer, and at the last layer, the

determination of the class distribution among the selected markers, for each input

sample.

Let us consider 𝑇: 𝑃 × 𝑆Λ(0) 2D array in the beginning, where P is the number of

the input samples and 𝑆Λ(0) is the size of the 1D index array in the root layer.

T is used to store the list of the markers that is needed to be evaluated in the next

layer. For the root layer, T
(i=0)

 simply contains an increasing sequence of numbers

from 0 to 𝑆Λ(0) − 1:

𝑇𝑝,𝑗
(𝑖=0)

= 𝑗 ∶ ∀𝑗 ∈ [0, 𝑆Λ(0) − 1], ∀𝑝 ∈ [0, 𝑃 − 1] (14)

In order to determine the size of the array T
(i+1)

(i > 0), temporary 2D array 𝛤 with

size 𝑃 × 𝑆Λ(𝑖) is created in each given layer. It is initialized with zeros, then in

each row p, a given element 𝛤𝑝,𝑗 is set to 𝛽𝑗
(𝑖)

, if the corresponding Λ𝑇𝑝,𝑗

(𝑗)
 marker

value is within the 𝜌 range of the given input attribute value 𝑋𝑝,𝑖:

𝛤𝑝, 𝑇𝑝,𝑗
= {

𝛽𝑇𝑝,𝑗

(𝑖+1)
 if 𝑋𝑝,𝑖 − 𝜌 ≤ Λ𝑇𝑝,𝑗

(𝑗)
 and Λ𝑇𝑝,𝑗

(𝑗)
≤ 𝑋𝑝,𝑖 + 𝜌

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (15)

for all 𝑗 ∈ [0, 𝑆Λ(0) − 1] and all 𝑝 ∈ [0, 𝑃 − 1]. In Figures 6 and 7, the modified

cell values are marked with blue font color.

After that, parallel prefix sum (PPS) is done on 𝛤 in order to collect the number of

all elements (which are needed to be regarded in the next layer) for each row,

gaining 𝛤′. As a result of the PPS step, the last column contains these values,

which are collected in array 𝜑 (with size 𝑃 × 1):

𝜑𝑝 = 𝛤′𝑝, 𝑆
Λ(𝑖)−1 (16)

for all 𝑝 ∈ [0, 𝑃 − 1], and the largest such number in ST (which is the size of

T
(i+1)

):

𝑆𝑇 = max∀𝑝 𝜑𝑝 (17)

B. Tusor et al. Fast Regular and Interval-based Classification, using parSITs

 – 116 –

In order to construct T
(i+1)

, another temporary 2D array: 𝛷 is created (with size

𝑃 × 𝑆𝑇). In 𝛷 the index numbers of the markers (to be regarded in the next layer)

are needed to be collected. However, this is not done by directly addressing the

elements of 𝛷: instead, it is done indirectly, by using the elements in 𝛤 that polled

positively (𝜐(𝑝, 𝑗) = 𝛤𝑝,𝑗) to set only the relevant starting positions: 𝛷𝑝,𝜐(𝑝,𝑗).

These are marked with red font color in Figures 6 and 7:

 If the first element in a row in 𝛤 is polled positive (its value is bigger than 0),

then the first element in the same row of 𝛷 is set to 0, since that is the

leftmost marker:

𝛷𝑝,0 = 𝛼0
(𝑖+1)

 (18)

 If its value in 𝛤 is 0 (i.e. polled negative), then the sought sequence does not

start at 0. However, the starting position can still simply be determined from

𝛤′ (using 𝜐(𝑝, 𝑗) = 𝛤𝑝,𝑗
′):

𝛷𝑝,𝜐(𝑝,𝑗−1) = 𝛼𝑗
(𝑖+1)

, if 𝑗 > 0 and 𝛤𝑝,𝑗 > 0 (19)

Remark: it is important to note that at this point 𝛤 only shows if an element polled

positive or not, while the position information is taken from 𝛤′.

For example, in Fig. 6 the first row (p=0) of 𝛤 is [2 2 2 0], while 𝛤′ is [2 4 6 6].

This shows that only the first 3 elements polled positive, so the first element of the

same row in 𝛷 is set to 0, then the 2
nd

 element (j=1) sets 𝛷0,𝜐(0,𝑗−1) = 𝛷0,𝜐(0,0) =

𝛷0,2 to 𝛼𝑗=1
(𝑖=1)

= 2; while the 3
rd

 element (j=2) sets 𝛷0,𝜐(0,𝑗−1) = 𝛷0,𝜐(0,1) = 𝛷0,4

to 𝛼𝑗
(𝑖+1)

= 𝛼2
(1)

= 4.

After that, the corresponding ending locations are set for each row p in 𝛷, for each

positively polling element j in 𝛤:

𝛷
𝑝, 𝜐(𝑝,𝑗−1)+𝛽𝑗

(𝑖+1)
−1

= 𝛼𝑗
(𝑖+1)

+ 𝛽𝑗
(𝑖+1)

− 1 (20)

These elements are marked with green font color in 𝛷 in Figures 6 and 7. If there

are no groups that have more than 2 elements (𝛽𝑗
(𝑖+1)

> 2), then 𝛷 can be already

used as T
(i+1)

 in the next layer. However, if there are more than 2 elements in at

least one group, then there will be “holes” (zeros) in the rows, which is why 𝛷 is

only a temporary array that is used to construct T
(i+1)

.

With 𝛷 set up, T
(i+1)

 is initialized (with the same size as 𝛷), however, with ones.

The elements of T
(i+1)

 are calculated differently for the first element in each row p:

𝑇𝑝,0
(𝑖+1)

= 𝛷𝑝,0 (21)

and subsequent elements:

𝑇𝑝,𝜐(𝑝,𝑗−1)
(𝑖+1)

= 𝛷𝑝,𝜐(𝑝,𝑗−1) − 𝛷𝑝,𝜐(𝑝,𝑗−1)−1 (22)

Acta Polytechnica Hungarica Vol. 18, No. 6, 2021

 – 117 –

This can be seen in Figures 6 and 7, where the affected array elements are marked

with cyan font color. After that, parallel prefix sum is done on T
(i+1)

, and the

evaluation moves onto the next layer.

Figure 8

The last step of the interval-based inference algorithm

Fig. 8 shows the last step of the evaluation, when the last layer is reached. Class

collector array 𝜅 is constructed (with size 𝑃 × 𝑘) and using T
(N-1)

, the occurrences

are counted in 𝜅 for each 𝑗 ∈ [0, 𝜑𝑝 − 1], ∀𝑝 ∈ [0, 𝑃 − 1]:

𝜅𝑝, Θ
𝑇

𝑝,𝑗
(𝑁−1)

= ∑ Θ
𝑇𝑝,𝑗

(𝑁−1)
𝜑𝑝−1

𝑗=0
 (23)

Finally, the output array y is calculated for all p:

𝑦𝑝 = {
argmax∀𝑗 𝜅𝑝,j if 𝜑𝑝 > 0

default otherwise
 (24)

In Fig. 8, for the first sample (p=0) the class distribution of A, B and C is 3/7, 2/7

and 2/7, respectively, thus the output is A. For the third sample (p=2) the search

has reached a dead end at layer #1, thus, the default class (A) is returned.

3 Performance Evaluation

3.1 Experimental Results

The proposed new inference method had been tested on two real-life benchmark

problems from the UCI data repository [15] that are very commonly used to test

the classification performance of machine learning methods. The implementation

has been done on an average PC (Intel® Core™ i5-4590 CPU @ 3.30 GHz, 16

GB RAM), using CUDA v9.2 and Thrust v1.9 [16].

In the first set of experiments, the Wisconsin Breast Cancer (WBC) [17] dataset is

used to compare the classification performances of the proximity-based inference

(PBI) method and the new interval-based inference (IBI) method. The dataset

consists of N=9 attributes and P=500 training samples, which have been separated

into a training and a testing dataset, in various training to testing ratios (TTRs)

from 5:95% (i.e. 5% of the 500 samples are used for training and 95% for testing),

to 95:5% (vice versa). The parSIT is trained for each TTR and the same trained

structure is used for the PBI and IBI phases.

B. Tusor et al. Fast Regular and Interval-based Classification, using parSITs

 – 118 –

Table 1

The calculation of classification measures: recall, precision and balanced accuracy

 Recall Precision Balanced Accuracy

Formula
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
𝐾

In order to measure the performance, the recall, precision [18] and balanced

accuracy rates [19] have been measured. Table 1 summarizes the formulas with

which these values are derived, where K is the number of classes (K=2 in case of

the WBC dataset). The data is calculated from the true positive (TP), true negative

(TN), false positive (FP) and false negative (FN) results from the inference.

For each class, the recall ratio shows how many instances of a given class are

positively identified, while the precision ratio shows how many of all positive

claims are actually true. The balanced accuracy ratio shows how well the

classifier can identify both the positive and negative samples.

The inference results are compared in Figs. 9-11. For the interval-based inference,

ρ=15% range value is used. As it can be seen in Fig. 9, the recall ratio of the

proximity-based inference peaks around 96%, then slowly declines to 77% as the

amount of training data ratio decreases (relative to the testing data size).

The reason for this is the “narrow” search approach the PBI method uses in the

problem space, only considering one value for each given attribute. However, the

proposed interval-based method is more stable, providing a 94-97.4% recall rate

even with fewer training data, since it expands the search area in the problem

space to a wider region, thus, can better utilize the same trained structure.

Figure 9

Comparison of the recall rates of the two inference methods using the WBC dataset

As Fig. 10 shows, their precision ratio is roughly the same (90-96%), although in

case of lower TTRs (lower than 15:85%) the original PBI method preforms better,

implying that the higher recall rate is at the cost of a lower precision rate.

Acta Polytechnica Hungarica Vol. 18, No. 6, 2021

 – 119 –

In terms of balanced accuracy (Fig. 11), we can also see that the new IBI method

provides a more stable (>95%) performance for the considered TTRs, while the

PBI shows a slow decline for decreasing training set cardinalities.

Figure 10

Comparison of the precision rates of the two inference methods using the WBC dataset

Figure 11

Comparison of the balanced accuracy rates of the two inference methods using the WBC dataset

Table 2 summarizes the results, breaking down the considered TTR spectrum into

5 intervals (from left to right in the figures): very high (the cases where the

training to testing set ratios are more than 4:1 (80:20), i.e., there are more than 4

times as many training samples as testing samples), high (4:1 – 1.5:1), moderate

(1.5:1 – 1:1.5), low (1:1.5 – 1:4) and very low (less than 1:4). The recall, precision

and balanced accuracy rates have been averaged in these intervals, which can be

seen in the table. The difference (∆) in percentage between the IBI and PBI

measures is also shown (marked with bold text), which indicates how the new IBI

algorithm really performs compared to the PBI method.

Table 2

Comparison of the recall, precision and balanced accuracy rates using the WBC dataset

TTR (%)
Recall (%) Precision (%) Balanced accuracy(%)

PBI IBI ∆ PBI IBI ∆ PBI IBI ∆

Very High 94.2 97.1 2.9 92.7 94.1 1.4 95.0 96.8 1.7

High 93.2 96.7 3.5 93.3 92.9 - 0.3 92.3 93.6 1.2

B. Tusor et al. Fast Regular and Interval-based Classification, using parSITs

 – 120 –

Moderate 90.8 97.0 6.2 92.3 93.6 1.2 93.3 96.6 3.4

Low 88.5 97.5 9.0 91.9 91.5 - 0.4 92.1 96.2 4.1

Very Low 82.6 98.6 16.0 91.1 88.3 - 2.8 88.9 95.6 6.7

As it can be seen, while the precision is roughly the same (with very little

difference) for very high to moderate TTRs, while for lower TTRs the precision of

the IBI method is worse than that of the PBI method. On the other hand, a steady

increase can be seen in the recall and balanced accuracy rates for the difference in

favor of the IBI method as the TTRs decrease.

The experiments have been done on a multi-class problem as well: The Iris

dataset, which consists of P=150 samples, N=4 attributes and K=3 classes.

The results are counted as follows: for each class j, if the classifier marks a given

input as part of the class, and if correct, it is counted as true positive, and false

positive otherwise. Similarly, if the inference marks the sample as not being part

of the class, then it counts to true negative if it is correct, and false negative if it is

not correct. The recall and precision rates are averaged among all classes.

Figs. 12-14 show the results of the classification using the same performance

measures. As it can be seen, the multiclass problem was much harder to the

proximity-based inference method, exactly due to the reason that has been

outlined in the introduction. The new inference method, however, provides not

only a more stable, but also much higher rate for all three performance ratios.

Figure 12

Comparison of the recall rates of the two inference methods using the Iris dataset

Although compared to the 2-class case of the previous experiment, the IBI method

shows a decrease in recall rate for lower TTRs, but it still generally provides a

better recall rate over the PBI method by at least 15 percentage points, as Fig. 12

indicates.

The precision rate of the IBI, on the other hand, is more stable in comparison to

that of the PBI, providing a rate of ~88% for all the considered TTRs while the

precision rate of the PBI is gradually decreasing with the TTR. This implies that

the IBI method is much better suited for multiclass problems.

Acta Polytechnica Hungarica Vol. 18, No. 6, 2021

 – 121 –

Figure 13

Comparison of the precision rates of the two inference methods using the Iris dataset

The balanced accuracy rate (Fig. 14) shows a very slow decline with the TTRs for

the IBI method, but still provides an at least 80% rate for the lowest TTRs, while

the PBI method only provides a ~70% balanced accuracy rate for the same.

In general, the IBI outperforms the PBI method by 10-15%.

Figure 14

Comparison of the balanced accuracy rates of the two inference methods using the Iris dataset

Table 3 summarizes the results (averaged for TTR intervals) for the Iris dataset,

the same way as Table 1 of the previous experiment. According to the results, the

recall and precision rates of the PBI method is roughly the same, ~70% on average

for very high to moderate TTRs, while decreasing to ~60% for lower TTRs.

The recall rate of the IBI method slowly decreases from ~90% to ~80%

throughout the TTR spectrum, while its precision rate stays around 88%, meaning

that the classes it marks as a positive hit are correct in the majority of time.

The balanced accuracy of the PBI is relatively stable at ~70-77.5% throughout the

TTR spectrum (with a very slow decrease for lower intervals), while that of the

IBI method slowly decreases from ~92.8% to ~85.2%.

B. Tusor et al. Fast Regular and Interval-based Classification, using parSITs

 – 122 –

Table 3

Comparison of the recall, precision and balanced accuracy rates using the Iris dataset

TTR (%)
Recall (%) Precision (%) Balanced accuracy(%)

PBI IBI ∆ PBI IBI ∆ PBI IBI ∆

Very High 69.7 90.5 20.8 69.5 88.9 19.4 76.1 92.8 16.7

High 71.4 88.7 17.3 70.9 90.0 19.0 70.0 88.8 18.8

Moderate 70.1 86.7 16.7 70.0 88.8 18.8 77.5 89.9 12.4

Low 67.5 84.8 17.3 67.5 88.2 20.7 75.7 88.5 12.9

Very Low 61.6 80.4 18.8 61.2 87.5 26.3 70.0 85.2 15.2

The effects of range parameter ρ to the classification performance has also been

examined. Fig. 15 shows the recall, precision and balanced accuracy rates of the

interval-based inference, on the Iris dataset (using 70% of the samples for training

and 30% for testing). As it can be seen, at ρ = 5%, all the performance measures

are at their maximum and maintain a high value until around 15%, where a steady

decline begins. The recall decreases to 33%, which is expected for a 3-class

problem, as the covered interval is large enough to cover the whole domain, thus,

only returning the default class for any given inputs. The balanced accuracy falls

to 50%, while the precision rises back to ~75% for higher ρ values.

Figure 15

Performance measure analysis of using different range sizes on the Iris dataset

Remark: For large range values, the ~75% precision rate is caused by the way the

measure is calculated, i.e. taking the ratio between the true positive findings and

all positive claims (TP+FP). If there are no positive claims for a given class at all,

then the recall for that class is 0%, while the precision is 100% (since none of the

positive claims are wrong). In this case, the classifier only returns the default

class, which means 100% precision for the two other classes, while only 25-33%

precision for the default class, which makes the average, approximately 75%.

Interestingly, for the WBC dataset, ρ = 25% provided the best results, even though

the performance for Iris dataset peaked at ρ = 5%, which shows that the optimal ρ

value is primarily dependent on the given data. Thus, it is recommended that for

Acta Polytechnica Hungarica Vol. 18, No. 6, 2021

 – 123 –

any given problem, the inference should be tried for different values between 5%

and 30%, to find the value that is most suitable.

3.2 Complexity Analysis

The computational or time complexity of the proximity-based inference is

O(N∙m), where m is the average number of markers per layer. Since the new

interval-based inference method uses parallel prefix sum twice in each layer, it

will be inherently slower than the proximity-based counterpart, at O(N∙m∙log2m).

The new method also requires more parallel processing units to compute, which

can limit its usability for large index arrays, if the range parameter is also large.

However, both methods still only marginally dependent on the amount of input

data (as the number of processes contributes to the time complexity, given that

they are needed to be managed by the parallel computing framework).

Remark: It is recommended to set the order of the attributes to such that, the one

with the least value variety, is the root layer, since both inferences have to poll all

elements of the index array in the root layer.

Conclusions

In this paper, a new inference method is presented for Parallelized Sequential

Indexing Table classifiers. While the original inference method uses a proximity-

based algorithm, where the inference is only considering a one route (a single

series of attribute values closest to the input data values) through the problem

space, the newly proposed algorithm, does a more thorough search through, by

regarding intervals of values for each attribute and thus, provides a more accurate

classification.

The new interval-based inference method has been tested on two real-life

benchmark problems that are very commonly used to test the classification

performance of machine learning methods. Overall, the original proximity-based

inference method has a lower computational complexity, thus it has a faster

operation, requires fewer processing units, and according to the test results, it

performs reasonably well on 2-class problems (with a balanced accuracy rate of

~88.9-95%), though less so on multiclass problems (~70-77.5%), due to the higher

complexity of the problem. The proposed new inference method has a slightly

higher computational complexity and thus, have a slower operation compared to

that of the proximity-based inference method, it is more intensive regarding the

processing units, but in return it performs slightly better on 2-class problems

(~93.6-96.8% balanced accuracy rate) and much better on multiclass problems

(~85.2-92.8%) compared to the proximity-based systems, even though they both

use the same trained classifier.

The experiments have shown that the proposed inference method can provide

good classification metrics, even for multiclass problems (~80% recall, ~87.5%

B. Tusor et al. Fast Regular and Interval-based Classification, using parSITs

 – 124 –

precision and ~85.2% balanced accuracy rates), for cases where the testing data

cardinality significantly outweighs that of the training data, meaning that with it

the parSIT classifier is a reasonable choice for a low-complexity, fast training and

fast performing classifier for such problems.

In future work, we will further improve the proposed inference method, in order to

increase its speed, and based on the classifier, we will develop new methods,

where the processing order of the inputs are not bounded by a single ordering

scheme.

Acknowledgement

Supported by the ÚNKP-19-3-IV-OE-56 New National Excellence Program of the

Ministry for Innovation and Technology.

References

[1] S. Hussein, P. Kandel, C. W. Bolan, M. B. Wallace, U. Bagci, "Lung and

Pancreatic Tumor Characterization in the Deep Learning Era: Novel

Supervised and Unsupervised Learning Approaches," in IEEE Transactions

on Medical Imaging, Vol. 38, No. 8, pp. 1777-1787

[2] S. Roy et al., "Deep Learning for Classification and Localization of

COVID-19 Markers in Point-of-Care Lung Ultrasound," in IEEE

Transactions on Medical Imaging, Vol. 39, No. 8, pp. 2676-2687

[3] Gibson, B. Issac, L. Zhang, S. M. Jacob, "Detecting Spam Email With

Machine Learning Optimized With Bio-Inspired Metaheuristic

Algorithms," in IEEE Access, Vol. 8, pp. 187914-187932

[4] J. Yun, J. Woo, "A Comparative Analysis of Deep Learning and Machine

Learning on Detecting Movement Directions Using PIR Sensors," in IEEE

Internet of Things Journal, Vol. 7, No. 4, pp. 2855-2868

[5] G. Jia, H. -K. Lam, S. Ma, Z. Yang, Y. Xu, B. Xiao, "Classification of

Electromyographic Hand Gesture Signals Using Modified Fuzzy C-Means

Clustering and Two-Step Machine Learning Approach," in IEEE Trans. on

Neural Syst. and Rehabilitation Engineering, Vol. 28, No. 6, pp. 1428-1435

[6] M. Jocic, E. Pap, A. Szakál, D. Obradovic, Z. Konjovic, "Managing Big

Data Using Fuzzy Sets by Directed Graph Node Similarity," Acta

Polytechnica Hungarica, Vol. 14, No. 2. 2017, pp. 183-200

[7] R. Spir, K. Mikula, N. Peyrieras "Parallelization and validation of

algorithms for Zebrafish cell lineage tree reconstruction from big 4D image

data," Acta Polytechnica Hungarica, Vol. 14, No. 5. 2017, pp. 65-84

[8] A. Vukmirović, Z. Rajnai, M. Radojičić, J. Vukmirović, M. J. Milenković,

"Infrastructural Model for the Healthcare System based on Emerging

Technologies," Acta Polytechnica Hun., Vol. 15, No. 2, 2018, pp. 33-48

Acta Polytechnica Hungarica Vol. 18, No. 6, 2021

 – 125 –

[9] A. R. Várkonyi-Kóczy, B. Tusor, J. T. Tóth, “A Multi-Attribute

Classification Method to Solve the Problem of Dimensionality,” in Proc. of

the 15
th
 Int. Conf. on Global Research and Education in Int. Sys.

(Interacademia’2016), Warsaw, Poland, 2016, pp. PS39-1–PS39-6

[10] B. Tusor, A. R. Várkonyi-Kóczy, J. T. Tóth, “Active Problem Workspace

Reduction with a Fast Fuzzy Classifier for Real-Time Applications,” IEEE

International Conference on Systems, Man, and Cybernetics, Budapest,

Hungary, October 9-12, 2016, pp. 4423-4428, ISBN: 978-1-5090-1819-2

[11] B. D. Zarit, B. J. Super, F. K. H. Quek, “Comparison of five color models

in skin pixel classification,” in Proc. of the International Workshop on

Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time

Systems, Corfu, Greece, Sep. 26-27, 1999, pp. 58-63

[12] B. Tusor, J. T. Tóth, A. R. Várkonyi-Kóczy, "Parallelized Sequential

Indexing Tables for Fast High-Volume Data Processing," 2020 IEEE

International Instrumentation and Measurement Technology Conference

(I2MTC), Dubrovnik, Croatia, 2020, pp. 1-6

[13] B. Tusor, A. R. Várkonyi-Kóczy, "Memory Efficient Exact and

Approximate Functional Dependency Extraction with ParSIT," 2020 IEEE

24
th

 International Conference on Intelligent Engineering Systems (INES),

Reykjavík, Iceland, 2020, pp. 133-138

[14] M. Safari, W. Oortwijn, S. Joosten, M. Huisman, “Formal Verification of

Parallel Prefix Sum,” In: Lee R., Jha S., Mavridou A. (eds) NASA Formal

Methods. NFM 2020. Lecture Notes in Computer Science, Vol. 12229,

Springer, Cham, 2020

[15] D. Dua, C. Graff, UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School

of Information and Computer Science, 2019

[16] A. V. George, S. Manoj, S. R. Gupte, S. Mitra, S. Sarkar, "Thrust++:

Extending Thrust Framework for Better Abstraction and Performance,"

2017 IEEE 24
th

 International Conference on High Performance Computing

(HiPC), Jaipur, 2017, pp. 368-377, doi: 10.1109/HiPC.2017.00049

[17] O. L. Mangasarian, W. H. Wolberg: "Cancer diagnosis via linear

programming", SIAM News, Vol. 23, No. 5, September 1990, pp. 1&18

[18] M. Buckland, F. Gey: “The relationship between recall and precision,”

Journal of the American Soc. for Inf. Science, Vol. 45, No. 5, 1994, pp. 12-

19

[19] V. García, R. A. Mollineda, J. S. Sánchez, "TI - Index of Balanced

Accuracy: A Performance Measure for Skewed Class Distributions", in:

Pattern Recognition and Image Analysis, Springer Berlin Heidelberg, pp.

441-448, 2009

