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Abstract: Electrical load simulator system (ELSS) is a test rig used to apply medium range 

aerodynamics loads on flight actuation system in real time experiments. A novel high 

performance fractional order adaptive robust torque control law is proposed for Electrical 

Load Simulator which is subjected to extra torque disturbance, friction, and parametric 

uncertainties. Adaptive fuzzy system is used to estimate extra torque disturbance and 

parametric uncertainty is estimated using discontinuous projection based adaptive control. 

A friction observer is used to compensate nonlinear friction. Stability of closed loop is 

derived using Lyapunov method .The proposed method ensures transient performance of 

ELSS system subjected to none zero initial conditions. Frequency testing and extra torque 

elimination tests are performed using PID, integer order sliding mode control and the 

proposed controller. The efficiency of proposed controller is verified using extensive 

numerical simulations. 

Keywords: Electrical load simulators; Fractional calculus; Backstepping control; Fuzzy 

logic system 

1 Introduction 

Electrical load simulator system is important laboratory-based hardware in the 

loop (HIWL) test rig that is used to exert aerodynamics loads on control surfaces 

of a flight vehicle according to flight conditions. The laboratory setup consists of a 

loading motor which is directly connected to the flight actuation system through a 

stiff shaft. During torque loading experiment movement of flight actuator is a 

strong disturbance for ELS loading motor which induce extra torque [1]. Different 

integer order control techniques are proposed in literature to compensate extra 

torque disturbance. A velocity synchronization control is proposed for electro 

hydraulic load simulator in [1]. The same technique is proposed for eliminating 

influence of extra torque in electrical load simulators [2]. In the above cited work, 

velocity of actuator is approximated using its nominal model, but practically 
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parametric uncertainty can degrade control performance of ELS system. To rectify 

the same problem some robust control techniques are presented in literature such 

as disturbance observer based control [3], H-infinity control [4] and variable 

structure sliding mode control [5]. The robust control techniques in [3-5] ensure 

good tracking performance with known dynamics and disturbance bounds. Direct 

torque control is proposed for ac dynamometer [6]. In practice a direct torque 

control is hard to realize based on measured states due to measurement noise. A 

novel speed and mechanical torque estimation algorithm is proposed for ac 

dynamometer [7]. Design of a high performance dynamometers is proposed in [8] 

and a nonlinear predictor based controller is proposed in [9, 10]. 

It is hard to design and realize a high performance control for systems which is 

subjected to nonlinear friction. To overcome the problem, different control 

techniques are proposed in literature. Several techniques such as adaptive fuzzy 

compensation for robot manipulators in [11], friction state predictor [12], robust 

state observer [13] and modified Lugre model based friction compensation in [14] 

are successfully applied to compensate nonlinear friction. Friction compensation 

using fuzzy logic system is efficient but tuning process of membership function 

and fuzzy rules is very tedious. Similarly friction observers are effective as long as 

identified models and their parameters are accurate. For electro hydraulic load 

simulators, friction modeling and its compensation methods are discussed in [15]. 

Back stepping is a recursive nonlinear control method which has been successfully 

applied to many nonlinear systems. The control method is very effective in 

situation if system parameters are uncertain. In order to formulate high 

performance control for servo drive, several controllers are proposed using 

backstepping method. A high performance torque controller is proposed in [16], 

adaptive position control using fuzzy and neural network in [17, 18] and integral 

backstepping methods are proposed and validated [19-22]. A robust IMC–PID 

controller is formulated using H-infinity and model matching approach [23]. The 

above work shows excellent tradeoff between robustness and performance but the 

major limitation is that both robustness and performance are not decoupled totally. 

To ensure robustness of PI and PID controllers, tuning process is introduced for 

integral type servo system which is subjected to parametric uncertainties [24]. 

To achieve performance objectives, fractional order control offers more degree of 

freedom as compared to integer order. The first fractional order controller 

“CRONE” was proposed in 1996 [25]. Later on researcher extended the idea and 

developed PID and adaptive fractional PID controllers [26]. Several fractional 

order sliding mode controllers are presented in literature [27-30]. An integer order 

robust gain scheduled speed controller is proposed in [35], which ensures stability 

and performance of the closed loop over a wide range of operation. For good 

control performance, a robust digital controller with iterative tuning is proposed in 

[36]. 
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Based on the above literature survey, this work is focused on developing a 

fractional order adaptive fuzzy backstepping torque control for electrical load 

simulator. Fuzzy logic system is used to estimate lumped disturbance due to extra 

torque and uncertainty in friction compensation. To estimate uncertain parameters 

of load simulator, adaptive laws are derived using Lyapunov function method. 

Detailed numerical simulations are presented to prove effectiveness of the 

proposed control method. 

2 Problem Formulation 

PMSM motor is used as loading device in ELS system. The dynamics of ELS 

system in d-q reference frame can be written as 

3
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d s
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(1)      

In Eq. (1) [ ]d qi i  represents d-axis and q-axis currents, mw  represents angular 

speed ofloading motor, [ ]d qu u  represents d-axis and q-axis voltages, [ ]sq sdL L

represents inductances, sR  is winding resistance, [ ]mP  represents number of 

pole pairs and magnetic flux of rotor, [ ]J 
 
represents total inertia and damping 

coefficient and [ ]e f LT T T  represent the electromagnetic , friction and loading 

torque respectively. Assuming that inertia and damping coefficient of torque 

sensor are very small, and then the reduced dynamics can be written as 

( )
L s m aT K   

                                                                                                
(2) 

Here [ ]m a  represents angular positions of ELS loading motor and flight 

actuator respectively and sK is the total stiffness of torque sensor and connecting 

shaft. Dynamics of electrical load simulator and its detailed mathematical 

formulations are given in [31]. State space representation of ELS system is 

derived in [31] and re- written as 

1 2

2 2 ( )extra f

x x

x Ax Bu Cf T CT



    

                                                      

(3) 
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Here 
1 2[ ]x x  represents system states, u  is the control effort, ( )extraf T  is the extra 

torque disturbance, 
fT  is friction torque. From Eq. (3) parameters of state equation 

are defined in [31] as t b

s

k k
A

JR
 , s t

s

K k
B

JR J


   and

sK
C

J
 . Here tk  represents 

motor torque constant, mbk P   is back emf constant, J  is total inertia of system. 

All other parameters are defined above. Practically parameters of ELS system are 

uncertain. To include the effect of uncertain parameters in state model, define

1 A  , 2 B  and ( )extra fF Cf T   . Here f  is the friction compensation 

error due to uncertainty in friction model. Eq. (3) can be represented as 

1 2

2 1 2 2

x x

x x u F 



   

                                                                                        

(4) 

Remark 2.1 In Eq. (4) ( )extra fF C f T   and f  is the friction compensation 

error. Friction torque is compensated using Lugre model to be discussed later. 

Lugre model based compensation control may not be perfect due to parametric 

uncertainty in Lugre model, so its effect is included in the state model. The 

unknown component F is the lumped disturbance which is to be estimated using 

fuzzy logic system. 

Assumption 1: The extent of the parametric uncertainty is known and bounded 

such that 

maxmin{ : }                                                                                  (5) 

Here  represents unknown parameter vector, min and max  are bounds of 

uncertain parameters and   represents set of uncertain parameters. 

Assumption 2: State vector 1 2[ ]x x is available to formulate control law and 

noise free. 

Remark 2.2 In practical situations, state vector 1 2[ ]x x may contain measurement 

noise. In this work Assumptions 2 is made to validate the effectiveness of 

fractional order control law to be derived later. The state estimation problem will 

be addressed in future research using algebraic method. 

The control objective is to get ELS torque motor to track a desired reference 

loading command vector [ ]r rx x . State errors vector 1 2[ ]z z can be defined as 

1

2

1

2

r

r

x x

x x

z

z

 


 
                                                                                                         

(6) 

The objective of this work is to design adaptive robust fuzzy fractional order 

backstepping controller for torque tracking loop of ELS loading system. 
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2.1 Fractional Calculus & Fuzzy Logic System 

Definition 1. Fractional operator is defined as a tD  [26] 

( ) 0
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(7) 

Here a and t are the limits of operation,  is the order of fractional operator and 

R  is set of real numbers. 

Definition 2. Riemann–Liouville fractional order difference- integral of function 

( )f t is given by [26]. 

1
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(8) 

Here  is the gamma function and 1m m N     

Definition 3. The Caputo, 
s
 fractional order difference- integral of function ( )f t is 

given by [26]. 
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Rieman-Liouville and Caputo definitions are very much similar; the only 

difference lies in dealing the initial conditions. In Rieman-Liouville definition, 

initial conditions are fractional order while for Caputo definition it is of integer 

order. 

Lemma 2.1 If integral of fractional derivative a tD
 of a function ( )f t  exits, 

then [30] 

1
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(10)
 

Here 1k k  
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Lemma 2.2 The fractional integral operator a tD 
 with 0   is bounded such 

that [30] 

|| ( ) || || || ; 1 ; 1a t p pK KD f f p       
                                            

(11) 

Stability of fractional order control theory is the emerging research area. Stability 

of fractional order systems has been discussed by several authors. In [37], 

Matignon states that 

Theorem 1: The system of the form
0 0, (0)tD x Ax x x    is asymptotically 

stable if arg( ( )) 2eig A   and each component of the states decays 

towards 0 like t  . Also this system is stable if either it is asymptotically 

stable, or those critical eigenvalues that satisfy arg( ( )) 2eig A   have 

geometric multiplicity one. 

To approximate a continuous unknown function, fuzzy logic system is proposed. 

The output of SISO fuzzy logic system with centre average defuzzifier, product 

inference and singleton fuzzifier is given by following relation [11]. 

1

1
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, 1,2.........
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i

i
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A i j
l

j M

A i
l

u x y

y j m

u x
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
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 



                                                                   (12)                                              

Here ix is the input parameter vector, jy  is the output parameter vector, M
 

represents the total number of rules and ( )l
i

iA
u x is the membership function vector. 

Equation (12) can be simplified as 

( ), 1,2.........j jy x j m  
                                                                               

(13) 

Here j is the parameter vector which is adaptive term, ( )x is fuzzy basis 

function vector and 
_ l

jy is a free parameter. 

Lemma 2.3 [17] Let ( )f x be a continuous function defined on a compact set 

then for a any constant scalar 0k  , there exit a fuzzy logic system in form of (13) 

such that 

| ( ) ( ) |jxSup f x y x k    
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2.2 Approximation of Fractional Operator 

In this work fractional operator is approximated using Oustaloup's recursive 

method as given in [34]. Let fractional operator is represented as; 

( ) ; ; [ 1 1]W s s R     
                                                                     

(14)
                                                                                   

 

Let the function  ( )W s  is approximated using a rational function of the form;  
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The above function is approximated for a frequency range of [ ]b hw w  using the 

following relations: 
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Here [ ]b hw w  represents high and low frequencies.
 

2.3 Lugre Model Friction Compensation 

In this work Lugre model is proposed for compensating friction torque. The 

compensation control is given [32] 
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Here ( )g v is the stribeck effect, sv is the stribeck velocity, mw
 
represents angular 

velocity of loading motor, cf  is coulomb friction, sf  is static friction, ẑ  is the 
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estimated average bristle defection, 0  is the stiffness of the bristles, 1  is the 

damping term and 2 is the viscous friction coefficient. 

3 Fractional Order Adaptive Robust Torque 

Controller 

Let a non singular fractional order sliding surface is defined as 

1
1 21s D z c z  

                                                                                               
(18)                                      

Here 1 0c  ,   is order of fractional operator and
P

q
  . A two step controller 

using backstepping sliding method is proposed. 

Step1. Let fist virtual control t is defined as 1 . Differentiate 1Z  in Eq. (6) 

1 1 rZ x x 
                                                                                                          

(19)                                          

To calculate virtual control 1 , the Lyapunov function is 2
1 1

1

2
V z . 1

st
 derivative 

of 1V yields 

1 1 1 1 1( )rV z z z x                                                                                             

1 1 1 rk z x                                                                                                        (20) 

If 1 0k   then 1 0V   

Step2. Differentiating 2z  in Eq. (6), one obtains; 

2 2 1 1 2 2 1Z x x u F         
                                                                

(21) 

In Eq. (21) parameters 1  and 2  are unknown so we cannot formulate control 

law directly. To estimate the unknown parameters Eq. (18) is modified as 

2 1 1 2 21 2 2 2 1( ) ( )Z x x u u F             
                                     

(22) 

Differentiate Eq. (18) 

1
1 21 2

1
s D c zz z  
 

                                                                                      
(23) 

Combine Eqs. (22) and (23) 
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1 1
1 1 2 1 1 2 21 2 2 2 1( )( ) ( )s D z c z x x u u F                 

            
(24) 

The Lyapunov function 2V  is  

2 2 2 2
2 1 2 1 1 3 2 2
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Here 1 2,  and 3 represent learning rates of fuzzy system and parameters 

estimation algorithms. Differentiate Eq. (25)  
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Combine Eq. (24) and (26)  
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Using Eq. (27) a fractional order torque control law is given by 

1 1
1 2 1 2 1 1

12

1 1
[ sgn( )]u x F z D z Q s

c
 






     
                                   

(28)                                                                                           

Here 1 1,c Q  and   are positive constants greater than zero. 

3.1 Stability Proof and Convergence Analysis 

To prove stability of closed loop system, combine Eq. (25) and Eq. (24), one 

obtains 

1
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(29) 

Fuzzy error fe  is defined as [11]  

ˆ

ˆ( )

f

i i i

e F F

F F  

 

                                                                                                      
(30)                                                                                                                                                                                                                             

Combining Eq. (29) and (30), the following fractional order adaptive laws are 

derived  
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1 1
1 2 1 2 2
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(31) 

Combine Eqs. (29) & (31) and simplify 

1
2 1 1 2[ sgn( )]V s c Q z s  

                                                                                 

(32) 

Eq. (32) is always negative, if 1 10 :Q Q   ,  : 1 2   and 1 0c  . Here is 

the system uncertainty. So 

1
2 1 1 2| | | | 0V c Q z s                                                                                      (33) 

If  2 0V   exits then reaching condition of sliding surface is satisfied and 0s  .  

So Eq. (18) is written as

1
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1
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Theorem 1 1A c  , and arg( ( ))eig A  . Now arg( ( )) 2eig A   is 

constantly established. State errors of above modified Eq. (18) converges towards 

0 like t  if the following conditions hold, i.e. 1 0c   and 0 1  . 

To prove error convergence property, it is necessary to prove r st t   [30]. 

Here rt  represents reaching time. At rt t , 0s  , so Eq. (18) can be written as 
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Eq. (34) can be written as 

2 1 2[ ] [ ]D D z c D z                                                                                         (35) 

Using Lemma 2.1, Eq. (35) is written as 
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At rt t  left hand side of Eq. (36) under fractional integration is equal to zero. i.e. 

1
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Using Eq. (36) and (37), one obtains 
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2 1 2z c D z  

                                                                                                    

(38)

    
Multiply Eq. (38) by 1D ; the resultant equation is given as 

2 1
1 1 2D z c D z  

                                                                                              

(39)

   

 

Now multiply Eq. (39) by 2D  and apply Lemma 2.1, one obtains;

      

 

2 1
2 1 1

1 1 1 1 2

( )
( ) [ ] ( )

2r r

r
t rt t t

t t
z t D z z t c D z 


 




                                           (40)

    

If 0 1  , then 1D  represents fractional integrator hence Lemma 2.2 can be 

applied to right hand side of Eq .(40) as 

1
1 2 1 2( ) || ||c D z c K z                                                                                    (41)

    
Combine Eq. (40) and (41); 

1
1 1 1 1 2

( )
|| ( ) [ ] || || ( ) || || ||

2r r

r
t t t t r

t t
z t D z z t c K z 




                                       (42) 

If 1( ) 0sz t t  and 2 ( ) 0sz t t   then it is necessary to prove r st t   . Eq. 42 

is written as 

1
1 1|| [ ] ( ) || 2 || ( ) ||

r rt s r rt t tD z t t z t                                                                      (43)

       

 

Simplifying Eq. (43) as 

1

2

2 || ( ) ||

|| ||
r

r
r s

t t

z t
t t

z 

                                                                                             (44)

        

From Eq. (44) it is concluded that tracking errors convergence occurs in finite 

time. 

Remark 3.1. Discontinuous projection operator is used to simulate the adaptive 

laws proposed in Eq. (31). The projection operator is defined as 

( )
i ipojp pr 

                                                                                                 

(45) 

Here 0  is the adaptation gain matrix and i  represents the adaptive algorithm 

as derived in Eq. (31). The projection operator is defined as [16] 

max

min

0 0

( ) 0 0
i

i

ip

If p p and

oj If p p and

Otherwise

pr

  


    
 

                                                     (46) 
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In Eq. (46), iP  is the estimated parameters vector, minp is the lower limit of 

uncertain parameters and maxp represents the upper bound of parameters. 

Block diagram of proposed control scheme is shown in Figure 1 

FuzzyController

.(31)[3]

Adaptive Law

Eq

.(28)

Controller

Eq

sK

1 2x x 
 

.(31)[1,2]

Adaptive Laws

Eq

 1 2e e



 




r rx x   
ELS Motor

Friction

Observer






a

 

Figure 1 

Fractional order controller for ELS system 

4 Results and Discussions 

To verify performance of proposed controller, parameters of ELS system and 

controller are tabulated in Table 1. There are many tests which can be done to 

qualify the performance of load simulator namely static loading, frequency test, 

gradient loading and extra torque elimination. Main focus of this article is to 

verify performance of load simulator for frequency testing and extra torque 

elimination. 

Reference command of ELS torque motor is 10* (2 *10* )rT Sin t  with 

frequency 10 Hz. Torque tracking performance is compared in Fig. 2. From results 

obtained it is clear that transient error introduced as a result of nonzero initial 

conditions is effectively compensated in case of fractional order controller at 

0.4  . The maximum transient error with integer order control is 15Nm  for 

time interval 0 0.03 sect  . Using proposed fractional order control the same 

error is reduced to10Nm   at fractional power 0.2  and 5Nm  at fractional power 

0.4  . Tracking error comparison is given in Fig. 3. As from previous analysis 

of Fig. 2, best transient performance are achieved at 0.4  which is shown as 

region A  in Fig. 3. At the same time region B  of Fig. 3 shows steady state 

performance. At 0.4   a negligible steady state error is introduced, however 
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this error is not very big and acceptable. At  0.2   and 0.3   the proposed 

control offer better transient performance and their respective steady state errors 

are also comparable to integer order control. Similar results are obtained and 

presented in Fig. 4. Control signal simulations are shown in Fig. 5. Practically 

computer output is restricted to 10Volts . As shown in the simulations fractional 

order method generates high values of control signal in transient time but at the 

same time practically it is restricted to 10Volts . Moreover using proposed 

method chattering phenomena is minimized in steady state. Inspite of  high control 

action in transient time , the calculated rms fractional order control at 0.4   is 

almost equal to integer order control. For integer order, rms control effort is 6.95 

volts and for fractional order it is 7 volts. So fractional order control effort is 

almost comparable to its integer counterpart, while it offers the advantage of 

chattering minimization. A detailed discussion about chattering reduction using 

fractional order control is discussed in [33]. Using proposed method, control 

signal is saturated for 0.01t   sec. To apply actual control effort, saturation 

compensation control is proposed as presented in [38]. For 0.01t   saturation 

compensation control is effective as shown in Fig. 6. The estimated control effort 

due to saturation phenomena is prominent for 0.01t   sec and after 0.01t   sec 

the estimated value is not very big. The reason is very obvious because the control 

effort without saturation compensation saturates for 0.01t   sec and after 

0.01t   sec, it is within the maximum limits. 

Simulation results of fuzzy estimated lumped disturbance F  is shown in Fig. 7a. 

Friction compensation control is shown Fig. 7b. The estimated state parameters 

are shown in Fig. 8a & b. From simulations it is clear that the estimated 

parameters converge to their true values without overshoots and oscillations. 

Adaptive laws derived in Eq. 31 are used for online parameters estimation. Eq. 31 

contains sliding surface s which is fractional order. As fractional operator is 

adjustable so the proposed parameters estimation laws give more degree of 

freedom to adjust convergence speed and overshoots as compared to its integer 

counterparts. 

Finally performance of proposed control is compared with its integer version and 

feed forward PID when ELSS is subjected to nonzero initial conditions. Fig. 9 

compares transient tracking response using feed forward PID control, Integer 

order TSMC control and proposed control method. The reference command of 

ELS torque motor is 10* (2 *10* )rT Sin t  with frequency 10 Hz. The initial 

conditions of state vector are 10 20 3.3 55
T T

x x       . Parameters of PID control are

20.2PK  , 8.5IK  and 0.01DK  taken from [2]. From Figure 9 it is concluded 

that using proposed method transient tacking error due to none zero initial 

conditions is effectively compensated at fractional power 0.5. Using feed forward 

PID control and integer order TSMC control transient tracking error is 

approximately 3.5Nm . Steady state response is shown in Figure 10. From 
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simulation results is concluded that as compared to Feed forward PID, integer 

order TSMC the proposed method compensate steady state error effectively. 

Although steady state performances of all three controllers are almost comparable, 

the proposed controller performs better to suppress transient errors. Since ELSS is 

used to qualify a crucial part of flight control system, so both transient and steady 

state control performance of ELSS system should be guaranteed. Fractional order 

control requires more computational burden but with advent of modern DSP 

processors and FPGA, s it is easy to implement algorithms with high processing 

requirements. This will increase overall cost of the implementations but in case of 

aerodynamics load simulators, good control performance is vital and cannot be 

compromised. 

Table 1 

Controller and ELS system Parameters 

ELSS Parameters Controller Parameters 
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Figure 2 

Tracking performance 1x  
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Figure 3 

Tracking error comparison 1x  

 

Figure 4 

Tracking error comparison 2x  
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Figure 5 

Control input comparison without saturation compensation 
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Figure 6 

Control input comparison with saturation compensation 
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Figure 7 

(a) Estimated F  (b) Friction estimation 

 

Figure 8 

(a) Estimated ' 'a  (b) Estimated ' 'b  
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Figure 9 

Error comparison under different control schemes 

 

Figure 10 

Enlarged view and steady state error comparison 

Conclusions 

A high performance adaptive robust controller is proposed for ELSS torque 

tracking problem using fractional calculus. The proposed control offers 

advantages including chattering minimization and robustness for tracking errors 

due to nonzero initial condition. Moreover the uncertain parameters estimation 

laws offer more degree of freedom to adjust the convergence speed of estimated 

parameters. Numerical simulations are performed to compare the proposed 

controller with integer order TSMC and feed forward PID control. From 

simulation results it is concluded that proposed fractional order controller is 

superior to integer order TSMC and feed forward PID control. 
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