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Abstract: It is known that, due to the Central Limit Theorem, the probability distribution
of the uncertainty of the result of data processing is, in general, close to Gaussian – or to
a distribution from a somewhat more general class known as infinitely divisible. We show
that a similar result holds in the fuzzy case: namely, the membership function describing
the uncertainty of the result of data processing is, in general, close to Gaussian – or to a
membership function from an explicitly described more general class.
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1 Introduction
1.1 Formulation of the problem
In the probabilistic approach to uncertainty, the most widely used probability dis-
tribution is normal (Gaussian). This fact has been empirically confirmed: for more
than half of the measuring instruments, the probability distribution of the measure-
ment error is close to Gaussian; see, e.g., [8, 9].

This fact also has a theoretical explanation: in most cases, the measurement error is
caused by a joint effect of many small factors, and it is known that the distribution
of the sum of a large number of small independent random variables is close to
Gaussian. This theoretical explanation is known as the Central Limit Theorem;
see, e.g., [12]. According to this theorem, when the number of summed variables
increases, the probability distribution of their sum tends to Gaussian – this means
exactly that as this number becomes large, the corresponding distribution is close to
Gaussian.

In many practical situations, we do not know the corresponding distributions, all
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we have is expert estimates for the approximation errors. These expert estima-
tions are often described by using words from natural language like “small”, “ap-
proximately”, etc. A natural way to describe these estimates in precise computer-
understandable terms is to use fuzzy logic – which was specifically designed
for translating natural-language knowledge into such a precise form; see, e.g.,
[2, 3, 4, 6, 7, 13]. It is reasonable to expect that if we combine many such esti-
mates, we should also get the resulting overall estimate in a specific form. What is
this form? What is the resulting limit theorem – the analogue of the Central Limit
Theorem? These are the questions that we study in this paper.

1.2 Outline of this paper
First, in Section 2, we analyze the general problem of estimating uncertainty of the
result of data processing. In Section 3, we review the results related to the proba-
bilistic case. In Section 4, we formulate the corresponding fuzzy case as a mathe-
matical problem, and finally, in Section 5, we provide a solution to this problem.

2 Estimating Uncertainty of the Result of Data Pro-
cessing: General Formulation of the Problem

2.1 What is data processing: a brief reminder
One of the main objectives of science and engineering is to predict what will happen
in the world, and to come up with devices and techniques to make this future most
beneficial for us.

The state of the world is characterized by the values of several quantities. For ex-
ample, the state of the weather is described by temperature, humidity, wind speed,
and wind direction. So, predicting the future state of the world means predicting the
future values of these quantities.

Similarly, each device, each control strategy can be characterized by some numbers:
e.g., if we control a car, then at each moment of time, we need to describe the value
of the acceleration (if any is needed), and – if needed – the angular velocity with
which the car is turning. So, coming up with the appropriate recommendations
means estimating the values of the relevant quantities.

In both cases, we need to find an estimate ỹ of each of the desired quantities y
based on all available relevant information – i.e., based on the known estimates
x̃1, . . . , x̃n of the corresponding quantities x1, . . . ,xn. The estimates x̃i may come
from measurements or they may come from experts.

In the following text, we will denote the algorithm used for estimating the desired
quantity y by ỹ = f (x̃1, . . . , x̃n). Running these algorithms is what is usually called
data processing.

2.2 How do we select data processing algorithms?
We select each data processing algorithm so as to best describe the relation between
the corresponding quantities y and xi. In other words, we select an algorithm f for
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which, to the best of our knowledge, the actual values of these quantities satisfy the
relation y = f (x1, . . . ,xn).

2.3 Need to take uncertainty into account
Measurement results are never absolutely accurate. Expert estimates are usually
even less accurate. In both cases, each available estimate x̃i is, in general, different
from the actual (unknown) value xi of the corresponding quantity. In other words,
there is, in general, a non-zero approximation error ∆xi

def
= x̃i − xi. Because of this,

the result ỹ = f (x̃1, . . . , x̃n) of data processing is, in general, different from the actual

value y = f (x1, . . . ,xn): there is an uncertainty ∆y def
= ỹ− y.

For practical purposes, it is important to gauge this uncertainty. For example, if
we are prospecting for oil, and we are estimating that a certain area contains 200
million tons, then our actions will depend on how accurate is this estimate. If it is
200±50, then we should start exploiting this area right away, but if it is 200±300,
then maybe there is no oil at all, so it is better to perform further research before
investing money in exploitation.

2.4 Data processing is often hierarchical
Data processing is often hierarchical, in the following sense. Instead of processing
all the inputs right away, we divide them into groups – e.g., by time and/or by
geographic locations. Then,

• first, we process inputs from each group, resulting in estimates for the com-
bined quantities z1, . . . ,zm, and

• then, we use these estimates for z j to estimate the desired value y.

This is how votes are counted in nation-wide elections, this is how data is often
processed.

2.5 Possibility of linearization
In most practical situations, the approximation errors ∆xi are relatively small. In
such cases, the terms which are quadratic in ∆xi can be safely ignored. For example,
even if ∆xi ≈ 20%, the square of this number is 4%, which is much smaller. So, if
we take into consideration that xi = x̃i −∆xi, expand the expression

∆y = f (x̃1, . . . , x̃n)− f (x1, . . . ,xn) = f (x̃1, . . . , x̃n)− f (x̃1 −∆x1, . . . , x̃n −∆xn)

in Taylor series, and keep only terms linear in ∆xi in this expansion – while ignoring
quadratic (and higher order) terms, we get an expression

∆y = c1 ·∆x1 + . . .+ cn ·∆xn, (1)

where

ci
def
=

∂ f
∂xi |(x̃1,...,x̃n)

.

This is the main expression that we will use in our analysis of uncertainty of the
result of data processing.

– 51 –



Julio C. Urenda et al. Fuzzy Analogue of the Central Limit Theorem

2.6 Linearization in the hierarchical case
In this case, in the first stage, we get

∆z j = c j1 ·∆x1 + . . .+ c jn ·∆xn, (2)

where many of the coefficients c ji – related to measurements xi not from the group
j – are 0s. Then, on the second stage, we get

∆y = c1 ·∆z1 + . . .+ cm ·∆zm. (3)

3 Probabilistic Case: Brief Reminder
3.1 Central Limit Theorem: reminder
As we have mentioned, measurement errors are usually relatively small. Measure-
ment errors corresponding to different measurements are usually independent. In
practice, the value n is usually large. For example, to predict tomorrow’s weather,
we use thousands of recordings of weather conditions at different locations in dif-
ferent moments of time. To analyze an earthquake, we use thousands of values
recorded by seismometers around it – or even, for a serious earthquake, all around
the world. Thus, the formula (1) describes the sum of a large number of relatively
small independent random variables. We have already mentioned earlier that, under
reasonable conditions, the resulting distribution is close to Gaussian – this is what
the Central Limit Theorem is about.

Thus, in the probabilistic case, we can conclude, with high confidence, that in many
practical situations, the probability distribution of the uncertainty ∆y with which we
determine the result y of data processing is close to Gaussian.

3.2 Beyond the Central Limit Theorem
As we have commented, the convergence to the Gaussian distribution occurs under
some reasonable conditions. What happens in the general case – when these con-
ditions are not satisfied? To answer this question, let us take into account that data
processing is often hierarchical.

If there is a limit theorem, according to which the probability distributions of the
sums (1)–(3) are close to distributions of a certain type, then all variables ∆z j have
distributions of this type, as well as the variable ∆y. Thus, these limit distributions
must have the property that a linear combination of thus distributed independent
variables should have the distribution of exactly the same type.

In precise terms, when we say that we have a distribution of a certain type, we
usually mean that there is a standard random variable ξ – e.g., normally distributed
with mean 0 and standard deviation 1 – and all other distributions of this type has
the same distribution as d · ξ , for some constant d. In this case, if di is the value
of the parameter d corresponding to ∆z j, then we can write ∆z j as d j · ξ j, and the
expression (3) as the sum

∆y = c1 ·d1 ·ξ1 + . . .+ cn ·dn ·ξn,
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i.e., equivalently, in the form

a1 ·ξ1 + . . .+an ·ξn, (4)

where we denoted a j
def
= c j ·d j.

In these terms, the above requirement states that each linear combination of identi-
cally distributed random variables ξ j should have the same type of distribution, i.e.,
that for all possible values a j, there should be the value a for which the sum (4) has
the same probability distribution as a ·ξ .

Distributions with this property are known as infinitely divisible. Gaussian distribu-
tion clearly has this property, but there are other distributions with this property –
e.g., Cauchy distribution, with the probability density function

f (x) =
1
π
· 1

1+ x2 .

4 Fuzzy Case: Formulation of the Problem
4.1 What would a limit theorem mean in the fuzzy case: analysis

of the problem
A similar argument can be repeated for the fuzzy case, when instead of probability
distributions, we have membership functions – that describe, for each possible value
x of the corresponding quantity, the degree (scaled to the interval [0,1]) to which this
value is possible.

In this case, similarly to the probabilistic case, the existence of the limit theorem
would mean that all linear combinations (1)–(3) are characterized by the same type
of membership functions. This would mean, in particular, that if the quantities ∆z j
are characterized by membership functions of this type, then their linear combina-
tion (3) is characterized by a membership function of the same type.

What does it mean “of the same type”? Similarly to the probabilistic case, a natural
interpretation is that we should select one single membership function µ0(x), and
consider membership functions that describe quantities of the type d · ξ , where the
quantity ξ is described by a membership function µ0(x).

What is the membership function of the quantity d ·ξ ? To answer this question, let
us recall that we can use different measuring units to describe the same value of the
physical quantity. For example, to describe length, we can use meters, or we can
use centimeters. If we replace the original measuring unit with a new one which is d
times smaller, then all numerical values are multiplied by d: e.g., 2 meters becomes
2 ·100 = 200 centimeters. In general, the original numerical value x in the new scale
is represented as x′ = d · x – and, vice versa, the new value x′ corresponds, in the
original scale, to the value x = x′/d. Thus, if, in the original scale, the degree to
which the value x is possible is µ0(x), then the degree µ(x′) to which the value x′ on
the new scale is equal to µ0(x′/d).
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So, quantities d · x are described by membership functions µ0(x/d). In these terms,
“membership function of the same type” means that we have a membership function
of the type µ0(x/d), i.e., for example, that the membership function of each quantity
∆z j is the same as the membership function of the product d j ·ξ j, where ξ j has the
membership function µ0(x).

Thus, if there is a limit theorem, then, similarly to the probabilistic case, we con-
clude that:

• if we have several quantities ξ1, . . . ,ξm with the same membership func-
tion µ0(x),

• then the membership function for a linear combination (4) should have the
same membership function µ0(x/a) as the quantity a ·ξ .

To describe this requirement in precise terms, let us recall how we can find the
membership function corresponding to a linear combination (4).

4.2 How to find a membership function corresponding to a lin-
ear combination: Zadeh’s extension principle

The value x is a possible value of the linear combination if there are some values ξ j
which are possible and whose linear combination (4) is equal to x. In general, “there
exists” means that either this property holds for one combination of values ξ j or for
another combinations of values, etc.:

(ξ1 is possible and . . . and ξn is possible and
m
∑
j=1

a j ·ξ j = x) or

(ξ ′
1 is possible and . . . and ξ ′

n is possible and
m
∑
j=1

a j ·ξ ′
j = x) or

. . .

where “or” combines all tuples (ξ1, . . . ,ξm) for which
m
∑
j=1

a j ·ξ j = x.

We know that all quantities ξ j are described by the same membership function
µ0(x). This means that we know, for each value ξ j, the degree to which this value is
possible – this degree is equal to µ0(ξ j). According to the general fuzzy methodol-
ogy, to find the degree of confidence in the above “and”-“or”-combination of such
statements, we need to use appropriate “and”- and “or”-operations f&(a,b) and
f∨(a,b) – also known as t-norms and t-conorms. Thus, the desired degree µ(x)
has the form

f∨

(
f&

(
µ0(ξ1), . . . ,µ0(ξm),d

(
m

∑
j=1

a j ·ξ j = x

))
,

f&

(
µ0(ξ

′
1), . . . ,µ0(ξ

′
m),d

(
m

∑
j=1

a j ·ξ ′
j = x

))
, . . .

)
.

Which “or”-operation should we choose? To make this choice, we need to take into
account that there are infinitely many tuples ξ j with the desired value x of the linear
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combination, and thus, infinitely many terms combined by “or”. For most “or”-
operations (e.g., for a+b−a ·b), as we combine more and more statements, we will
get closer and closer to 1. To avoid such a meaningless result, we need to use the
only operation that does not increase the value – namely, the operation maximum.
In this case, we get

µ(x) = max
ξ1,...,ξm

f&

(
µ0(ξ1), . . . ,µ0(ξm),d

(
m

∑
j=1

a j ·ξ j = x

))
.

Here, d(S) is the degree to which the corresponding statement is true. In our case,

the statement
m
∑
j=1

a j ·ξ j = x is either true or false.

• If this statement is false, its degree is 0, so the whole combination has de-
gree 0.

• If this statement is true, then its degree is 1, and this does not affect the result
of the “and”-operation, since f&(a,1) = a.

Thus, we have
µ(x) = max

ξ j :
m
∑

j=1
a j ·ξ j=x

f& (µ0(ξ1), . . . ,µ0(ξm)) . (5)

This formula – first derived by Zadeh – is known as Zadeh’s extension principle.

4.3 Which “and”-operation should we use?
In the previous text, we showed which “or”-operation to use. A natural next question
is: which “and”-operation should we use?

Some “and”-operations have the form

f&(a,b) = f−1( f (a) · f (b)) (6)

for some strictly increasing function f : [0,1] → [0,1], where f−1(x) denotes the
inverse function. Such “and”-operations are known as strictly Archimedean. It is
known (see, e.g., [5]), that for every “and”-operation t(a,b) and for every ε > 0,
there exists a strictly Archimedean “and”-operation f&(a,b) for which

|t(a,b)− f&(a,b)| ≤ ε

for all a and b.

The whole idea of an “and”-operation is that the value t(a,b) estimates the expert’s
degree of certainty in a statement A&B in a situation when we only know the ex-
pert’s degrees of certainty a and b in statements A and B. Experts can estimate their
degree of certainty only with some accuracy: we can usually distinguish between
7 and 8 on a 0-to-10 scale – which correspond to 0.7 and 0.8 – but it is doubtful
that anyone can distinguish between degrees of certainty 0.70 and 0.71 – which
correspond, for example, to marks 70 and 71 on a 0-to-100 scale. Since for suffi-
ciently small ε , ε-close values are practically indistinguishable, in practice, it would
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not make any difference if we use an ε-close strictly Archimedean “and”-operation
instead of the original one t(a,b).

So, from the practical viewpoint, it makes sense to assume that the actual “and”-
operation used in the formula (5) is strictly Archimedean, i.e., that this “and”-
operation has the form (6) for some strictly increasing function f (x). In this case,
the formula (5) takes the following form:

µ(x) = max
ξ j :

m
∑

j=1
a j ·ξ j=x

f−1( f (µ0(ξ1)) · . . . · f (µ0(ξm))). (7)

4.4 What does the limit property mean in this case
The above limit property means that the function µ(x) as described by the formula
(7) also has the same form as the membership function µ0(x), i.e., that it has the
form µ(x) = µ0(x/d) for some value d.

So, the desired limit property takes the following form: for each tuple a1, . . . ,am,
there exists a value d for which

µ0(x/d) = max
ξ j :

m
∑

j=1
a j ·ξ j=x

f−1( f (µ0(ξ1)) · . . . · f (µ0(ξm))). (7)

Let us call membership functions µ0(x) satisfying this property limit membership
functions. So, the question is: which membership functions are the limit ones?

5 Solution to the Problem: Description of All Possible
Limit Membership Functions

5.1 Let us simplify the problem
In order to describe all possible limit membership functions, let us first simplify the
above limit property as much as possible.

First, let us avoid the explicit use of the inverse function – since computing the
inverse function is, in general, not easy. We can achieve this if we apply the function
f (x) to both side of the equality (7). If we take into account that this function
is strictly increasing – so the largest (max) of its values is attained when x is the
largest – then we can conclude that

f (µ0(x/d)) = max
ξ j :

m
∑

j=1
a j ·ξ j=x

( f (µ0(ξ1)) · . . . · f (µ0(ξm))). (8)

Now, let us make the constraint on ξ j look simplest. For this purpose, let us denote

by v j
def
= a j · ξ j the terms which are added in this constraint. In terms of these new
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variables v j, we have ξ j = v j/a j. So, in terms of v j, the formula (8) takes the
following form:

f (µ0(x/d)) = max
v j :

m
∑

j=1
v j=x

( f (µ0(v1/a1)) · . . . · f (µ0(vm/am))). (9)

A further simplification can be done if we realize that in the formula (9), we only
use the composition of the functions f (x) and µ0(x), but not the functions by them-
selves. To simplify the condition, let us therefore denote this composition by

ν(x) def
= f (µ0(x)). (10)

In terms of this new function, the formula (9) takes the following form:

ν(x/d) = max
v j :

m
∑

j=1
v j=x

(ν(v1/a1) · . . . ·ν(vm/am)). (11)

Next, we can replace multiplication – which is more complex than addition – with
addition. There is a function specifically designed for this purpose – the logarithm
function, for which ln(a · b) = ln(a)+ ln(b). So, instead of using µ(x), it makes
sense to use ln(ν(x)). Since the logarithm is also a strictly increasing function, we
conclude that

ln(ν(x/d)) = max
v j :

m
∑

j=1
v j=x

(ln(ν(v1/a1))+ . . .+ ln(ν(vm/am))). (12)

A further minor simplification comes from the fact that since the values ν(x) are
smaller than equal to 1, the logarithms of these values are negative (or 0). Since it is
simpler to deal with positive numbers, let us multiply both sides of the formula (12)
by −1. The corresponding operation x → −x is strictly decreasing, so it changes
max to min. Thus, for the function

ℓ(x) def
= − ln(ν(x)), (13)

for which ν(x) = exp(−ℓ(x)), we conclude that

ℓ(x/d) = min
v j :

m
∑

j=1
v j=x

(ℓ(v1/a1)+ . . .+ ℓ(vm/am)). (14)

In particular, for m = 2, when v1 + v2 = x and thus, v2 = x− v1, we conclude that

ℓ(x/d) = min
v1

(ℓ(v1/a1)+ ℓ((x− v1)/a2)). (15)

Now, we are ready to analyze this formula.
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5.2 We have reduced our problem to a known problem in convex
analysis

The above formula can be rewritten as

ℓ0(x) = min
v1

(ℓ1(v1)+ ℓ2(x− v1)), (16)

where we denoted

ℓ0(x)
def
= ℓ(x/d), ℓ1(x)

def
= ℓ(x/a1), ℓ2(x)

def
= ℓ(x/a2). (17)

The corresponding combination of the two function is known in convex analysis
[10, 11], as the infimal covolution, or an epi-sum. It is usually denoted by

ℓ0 = ℓ1□ℓ2. (18)

It is known that, under reasonable conditions, this formula can be further simplified
if, instead of the original functions ℓi(x), we use their Legendre-Fechnel transforms

ℓ∗i (s) = sup
x
(s · x− ℓi(x)). (19)

Namely, it is known [11] that the Legendre-Fechnel transform of the infimal convo-
lution of two functions is equal to the sum of their Legendre-Fechnel transforms:

ℓ∗0(s) = ℓ∗1(s)+ ℓ∗2(s). (20)

5.3 Let us use this reduction
Let us describe the transform ℓ∗(s) of the function ℓi(x) = ℓ(x/ai) in terms of the
Legendre-Fechner transform F(s) of the function ℓ(x). Indeed, substituting the ex-
pression ℓi(x) = ℓ(x/ai) into the right-hand side of the formula (19), we conclude
that

ℓ∗i (s) = sup
x
(s · x− ℓ(x/ai)).

So, for the new variable z def
= x/ai, for which x = ai · z, we conclude that

ℓ∗i (s) = sup
z
(s ·ai · z)− ℓ(z)) = sup

z
((s ·ai) · z)− ℓ(z)),

i.e., ℓ∗i (s) = F(ai · s). Thus, the formula (20) takes the following form:

F(d · s) = F(a1 · s)+F(a2 · s). (21)

The requirement is that for every a1 and a2, there exists a value d = d(a1,a2) for
which the property (21) is satisfied. Differentiating both sides of this equality by a2,
we conclude that

s ·F ′(a2 · s) = a · s ·F ′(d(a1,a2) · s),

where we denoted

a def
=

∂d
∂a2 |(a1,a2)

.
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Dividing both sides by s, we conclude that

F ′(a2 · s) = a(d,a2) ·F ′(c · s).

In particular, for a2 = 1, we conclude that F ′(s) = a(d,1) ·F ′(d · s), i.e., that

F ′(d · s) = A(d) ·F ′(s),

where we denoted A(d) def
=

1
a(d,1)

. It is known (see, e.g., [1]) that every continuous

solution to this functional equation has the form F ′(s) = b · sα . Integrating, we
conclude that F(s) = B · sβ +C for some constants B, β , and C.

Substituting this formula into the condition (21), we conclude that C = 0 and thus,
that F(s) = B · sβ . It is known that if the Legendre-Fechnel transform of a function
is a power law, then the function itself is a power law, so

ℓ(x) = D · xγ (23)

for some D and γ , and thus, that the function ν(x) = exp(−ℓ(x)) has the form

ν(x) = exp(−D · xγ), (24)

and thus, for µ(x) = f−1(ν(x)), we have µ(x) = f−1(exp(−D · xγ)).

5.4 Conclusion: fuzzy analogue of the Central Limit Theorem
In the probabilistic case, due to the Central Limit Theorem, the uncertainty of the
result of data processing is described by a Gaussian distribution or, more generally,
by an infinitely divisible distribution.

Similarly, for the membership function µ(∆y) describing the uncertainty of the re-
sult of data processing, we can make the following conclusion:

• when the “and”-operation is the algebraic product, then

µ(∆y) = exp(−D · |∆y|γ); (25)

• in general, when the “and”-operation has the form

f&(a,b) = f−1( f (a) · f (b)),

then
µ(∆y) = f−1(exp(−D · |∆y|γ)). (26)
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