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Abstract: The present work deals with contact problems of GaAs-based solar cells. In the 

introduction the most basic GaAs-based solar cell structures are introduced. Then, the 

energy and electronic properties are investigated. In the third part of this publication, the 

technological aspects of the metallization are discussed. Here the surface patterns are 

investigated, that are formed at the surface of the Au/GaAs and Au/TiN/GaAs material 

systems, as the effect of the annealing process. The further aim of these investigations to 

investigate, how the properties of ohmic contact depends on the properties of the material 

system. If these relations are known, the relationships between different morphologies and 

their electric qualities will be also known. 

Keywords: solar cell; ohmic contacts; surface pattern; fractal dimension; structural entropy 

1 Introduction 

It is a well known fact that almost all of our energy sources originate with solar 

radiation, which is a renewable energy. One possible tool to directly utilize solar 

radiation, is the solar cell. The efficiency of solar cells is strongly influenced by the 

material band structure of the semiconductor. According to calculations, the optimal 

band gap is 1.4 eV. Such a material is, for example, GaAs. The efficiency of 

different solar cell structures may diverge from the theoretical calculations [1] in 

reality due to losses (thermal, reflection, recombination, etc) or due to cell 

construction issues (tandem, multiband solar cell, etc) [2]. 
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This efficiency barrier can be surpassed with multiband devices. A limit of such 

methods of efficiency improvement is the finite number of the different 

semiconductors that can be integrated in a single solar cell. This newer barrier, in 

turn, can be surpassed by using multiple heterojunction or nanostructure type GaAs 

based solar cells. These devices utilize a wider wavelength interval of the solar 

spectrum. 

Solar cells with single heterojunction GaAs-based structures are grown with metal-

organic vapor phase deposition, and these solar cells are produced with lithography, 

heat treating and dry etching technology. The structures of these cells are shown in 

Fig. 1. The heterojunction is formed on a n-GaAs substrate. First, a buffer layer is 

grown on the substrate, and then a back surface field is formed. The base and emitter 

are formed on this layer then a window layer is deposited. The forward contact is a 

Ti/Pt/Au layer; the hind contact is an AuGe/Ni/Au layer. 

 

Figure 1 

Structure of a single heterojunction GaAs solar cell (source: [3]) 

There are other possible structures as well. Such a possibility is GaAs thin layer on 

a flexible subtrate [4] or a sandwich structure of GaAs-Ge layers [5]. The goal 

regarding the latter structure was to increase the output current with Ge which has 

almost identical lattice constant than that of GaAs (Fig. 2). The 3 m thick GaAs 

layer absorbs the greater proportion of the spectrum of Sun. The other parts of the 

spectrum is absorbed by Ge layer between 0.9 m and 108 m. The greater part of 

the spectrum is absored by the first 500 nm of the 5 m thick Ge layer. The charge 

carriers that were generated in Ge drift to the GaAs layer and they are added to the 

charge carriers generated there. The quality of Ge and GaAs layers causes longer 

majority charge carrier lifetime thus the output current increases. 



Acta Polytechnica Hungarica Vol. 15, No. 6, 2018 

 

– 101 – 

 

Figure 2 

Structure of a single heterojunction ”sandwich” GaAs-Ge solar cell (source: [3]) 

Multiple heterojunction GaP/GaAs/Ge multiple bands solar cells are grown by 

metal-organic chemical vapor phase deposition or by molecular beam epitaxy. 

Multiple junction solar cells constist of single junction solar cells stacked onto each 

other. The structure of the multiple junction solar cells is such that the band gap of 

each layer is layer is thinner than that of the previous ones. The efficiency of these 

solar cells can be as high as 32%. 

The group called nanostructure solar cells, is a special subgroup of the multiple 

junction solar cells [4] [5] [6]. In the case of this special subgroup, multiple qunatum 

dot layers can be found in the band gap. These devices are referred to as IBQD 

IBQD - Intermediate Band Quantum Dot Sc. Numerous authors have already 

published papers on these structures [7] [8] [9] [10] [11]. These quantum dot layers 

are ”inserted” between the usual p and n layers. 

2 Electrical Aspects of the Contact 

2.1 Energy Structure at the Contact Function 

The contacts are vital parts of the GaAs based solar cells, since the device 

communictes with the environment through contacts. The III-V based compound 

semiconductors have several contact systems. The quality of these semiconductor 

systems play a key importance regarding the operation of solar cells and other 

electronic devices. The contact systems can be divided into two subcategories: 

Schottky and Ohmic ones. The latter will be discussed, in detail. 

When discussing Schottky-effect the work function of metals is first taken into 

consideration. The work function is the difference between vacuum level and Fermi 

level of energy. This energy (exit work) is necessery for an electron to exit the 

surface of a metal and leave to the free space. The I-V characteristics of a Schottky 

contact is asymmetric, the Ohmic contact has a linear I-V characteristics, thus the 
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latter is independent of voltage polarity. In practice, a contact is considered Ohmic, 

if the voltage drop of metal-semiconductor transition is less than that of the bulk 

semiconductor. The Ohmic contact can be replaced by Rc contact resistance. 

𝑅𝑐 =  (
𝑑𝐽

𝑑𝑉
)

−1

|
𝑉=0

                                                                                                      (1) 

where J is current density and V is the voltage drop. The value of contact resistance 

in case of medium doped n semiconductor-metal transition is largely determined by 

thermal emission, thus: 

𝑅𝑐 =  
𝑘𝐵

𝑞∗𝐴∗𝑇
∗ 𝑒

𝑞∗Φ𝐵𝑛
𝑘𝐵∗𝑇                                                                                                (2) 

Equation (2) demonstrates that if the goal was to attain a low resistance then the 

lowest potential barrier must be attained at the metal-semiconductor transition. If 

the Ohmic contact is strongly doped then field emission (tunnel effect) is the 

dominant component. In the latter case contact resistance can be expressed as 

 𝑅𝑐 ≈  𝑒
(

2∗Φ𝐵𝑛
ℎ

)∗(√
𝜀0∗𝜀𝑠∗𝑚0

𝑁𝐷
)
                                                                                                              (3) 

Ohmic contact can be constructed several ways [12]. One possible solution is to 

choose a metal that has less work function than that of the n type semiconductor, 

thus the potential barrier between the metal and the compound semiconductor is 

thin enough that the electrons can tunnel through it in both directions. Another 

possible solution is to prepare a thin strongly doped layer of the same material as 

that of the substrate. This way a n++/n or a p++/p strongly doped weakly doped 

transition zone is prepared that decrease the thickness of metal/compound 

semiconductor potential barrier. Thus, the current flows thru the potential barrier 

via tunnel effect, because of the thin potential barrier and the low contact resistance. 

The third possible solution is to ”simulate” gradual heterojunction with small band 

gap material. This means that n++-InAs/n-GaAs or n+Ge/n-GaAs heterojunctions are 

formed by MBE technology. The fourth possible solution is to apply a not alloyed 

superlattice with short lattice constant. This structure contains GaN and small band 

gap InN layers. The latter is inserted between GaN layers in a sandwich like 

structure with InN cover layer that forms Ohmic contact with the GaN. The fifth 

solution is to increase the number of recombination centers on the surface of 

semiconductors with surface roughening. This way the surface acts as an infinite 

drain of majority charge carriers of the contact. 

In addition to the high energy radiation damage, the incorporation of chemical 

contaminants into the semiconductor these recomibnation centers may cause the 

Fermi-level pinning [13] [14] [15]. This phenomenon may occur in bulk material, 

in the interface layer and on the surface as well. 

In bulk material the Fermi-level may move between the valence band and 

conductance band. Generally electrically active crystal defects influence the Fermi 

level as well. Crystal defects that act as donors prevent other defects from acting as 
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acceptors. These defects free electrons and push Fermi level upwards in the band 

gap, meanwhile other defects trap electrons and push Fermi level downwards. 

Forming a clean surface causes discontinuity in the external potential that leads to 

occurence of surface states. One must differentiate from mathematical point of view 

between the Shockley and Tamm states. The former stems from the pseudo free 

electron approximation, whence the latter stems from tight binding approximation. 

These states occure in high concentration that leads to Fermi-level pinning. The 

work function is almost independent of the location of bulk Fermi-level (doping 

level) which may be considered as pinned [16]. 

The study of Fermi level pinning near the interface is quite complicated, because of 

the multiple material on one hand and the several growing methods on the other 

hand. The barrier between the metal and semiconductor can be determined with the 

Schottky-Mott rule. This rule states that the thickness of the barrier is proportional 

with the difference of vacuum work function of the metal and the vacuum electron 

affinity of the semiconductor. This condition, called Schottky limit, is valid if there 

was no charge transfer between the metal and the semiconductor and there was no 

Fermi level pinning. Most of the materials do not show the phenomenon, because 

electric states are formed in the band gap of the semiconductor. These states 

contribute to charge transfer between the two materials and an electrostatic dipole 

is formed at the interface. The height of Schottky barrier is independent of work 

function and the Fermi level may be considered bended in this case. This condition 

is the Bardeen limit. 

2.1.1 I-V Characteristics 

The I-V characteristics of Schottky contacts can be measured in several ways. The 

possible methods are (1) measuring the photo reaction, (2) measuring I-V itself, and 

(3) and measuring C-V characteristics. 

Similarly, the rc specific contact resistance can be measured with multiple methods. 

Four ways of the possibilities [17] are (1) Cox-Strack method,(2) four point method, 

(3) Schockley extrapolation method, (4) transmission line method. In case of 

constant current density and homogenous surface of contact the Rc contact 

resistance may be obtained as: 

𝑅𝑐 =  
𝑟𝑐

𝐴
                                                                                                                     (4) 

The measured R resistance is approximately equal to Rc resistance in case of the 

most geometry of contact if rc ≥ 0.01 Ω*cm2. For smaller values of rc one must take 

into consideration the Rb spread resistance of the semiconductor and R0 resistance 

of contact wires and the bulk resistance of the substrate of the semiconductor. For 

this reason the measured R resistance is: 

𝑅 = 𝑅𝑐 + 𝑅𝑏 + 𝑅0                                                                                                   (5) 

where Rb and R0 depends on the geometry of metal/compound semiconductor. 
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It was supposed in the case of Cox-Strack method, that the contact is a circle with 

radius a, n-type film layer with specific resistance ρ and thickness of t [17] [18]. 

The spread reistance of the layer can be calculated as: 

𝑅𝑏 =
𝜌

𝑎
∗ 𝐹                                                                                                              (6) 

Where F is the function of a/t ratio. Experimentally, it was found that this function 

is approximately 

𝐹 (
𝑎

𝑡
) =

1

𝜋
∗ 𝑎𝑟𝑐𝑡𝑎𝑛 (

2∗𝑡

𝑎
)                                                                                       (7) 

It may be necessary to determine F more exactly in several cases [19]. If this value 

is known then the specific contact resistance will be: 

𝑟𝑐 = 𝜋 ∗ 𝑎2 ∗ (𝑅 −
𝜌

𝑎
∗ 𝐹 (

𝑎

𝑡
) − 𝑅0)                                                                      (8) 

It is necessary to metallize only one side of the slice, when using the four point 

method for obtaining rc [20]. The thickness of the layer is t. The layer can be 

epitaxial layer on semiconductor substrate or uniformly doped bulk material. The 

specific resistance in this case will be: 

𝑟𝑐 = 𝜋 ∗ 𝑎2 ∗ (
𝑉1

𝑙
−

𝑉1

𝑙
−

𝜌

𝑎
∗ 𝐹 (

𝑎

𝑡
))                                                                          (9) 

The potential distribution on the surface is rather logarithmic than exponential 

according to other authors [21]. The specific contact resistance will be in this case: 

𝑟𝑐 = 𝜋 ∗ 𝑎2 ∗ (
𝑉1

𝑙
−

𝑉1

𝑙
∗

ln(
3∗𝑠

2∗𝑎
−

1

2
)

2∗ln 2
−

𝜌

𝑎
∗ 𝐹 (

𝑎

𝑡
))                                                          (10) 

where v1 and v2  are the distance between the measurement point. 

The crucial point of the Shokley method [22] [23], that V(x) voltage drop is 

measured along the surface of the semiconductor layer with coplanar ohmic 

contacts. The extrapolated V0 voltage is used through contacts and this way the rc is 

found. Due to the Rs sheet resistance the contact resistance is not zero. The current 

is not distributed uniformly but concentrates under the contacts. The rc kcontact 

resistance can be calculated by the extrapolation of linear voltage drop between two 

contacts, thus 

𝑟𝑐 = 𝑅𝑏 ∗ 𝐿𝑇
2                                                                                                            (11) 

where LT is the so called transferlength that in turn can be calculated with the 

following expression LT = -x / ln(V(x)/V0). 

The planar contact is considered a resistive power line according to the power line 

method [24] [25] [26]. The resistance in this model is the can be calculated from a 

uniform Rs sheet resistance and specific rc contact resistance. The Re  total resitance 

can be calculated as: 
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𝑅𝑒 =
(𝑟𝑐∗𝑅𝑠)

1
2

𝑊
∗ coth (𝑑 ∗ (

𝑅𝑠

𝑟𝑐
)

1

2
)                                                                                 (12) 

where W is the width and is the d length of the power line. Since generally d* (Rs/Rc)-

2 the rc contact resistance can be calculated as: 

𝑟𝑐 =
𝑅𝑒

2∗𝑊2

𝑅𝑠
                                                                                                                (13) 

The I-V characteristics can be visualized on the so-called Gummel plot as well (Fig. 

3) [27]. The base and  collector current are shown at the same time as a function of 

base-emitter voltage. The vertical scale (current scale) is logarithmic. A lot of diode 

paramteres can be calculated using this chart, eg. the DC amplification [28] or the 

factor of ideality [29]. The value of the latter can imply the presence of 

recombination centers of volume of those of surface. The recombination centres can 

cause various problems (eg. Fermi-level pinnings). 

 

Figure 3 

Gummel plot (source: [28]) 

Another possibility for examining the metal/compound semiconductor transition 

zone is the capacitance transient spectroscopy [30]. The crucial point of this method 

is the monitoring temporal change of charge density in the depleted zone of the 

diode. The thickness of this region is independent of the charge density. The thermal 

emission of the fixed position charge carriers causes capacitance change in the 

space-charge. This way information is received on trap states, and trap activation 

energy, the cross section of trap states and the concetration of traps. The capacitance 

of depleted layer changes due to thermal emission as follows: 

𝐶(𝑡) = 𝐶𝑟 ∗ (1 −
𝑛𝑇0

2∗𝑁𝐷
∗ 𝑒

(−
𝑡

𝜏𝑒
)
)                                                                             (14) 
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where the nT0 is the density of filled traps at t = 0 sec, Cr is the capacity of the diode 

if all the traps are empty at Vr voltage, τe is the time constant of emission (τe = 1 / 

en, where en is the emission ratio). One variety of the process is the SCTS method 

[31]. 

Deep-level transient spectroscopy, DLTS is a robust and widely used measuresment 

method for determining the electrically acitve traps in the semiconductor [32] [33]. 

The DLTS is a correlation method where the transient of the capacity is multiplied 

with a correlation function (the signal of reference) and the product will be 

integrated.  

Several parameters can be measure several parameters as the activation energy of 

defects, the trap cross sections and the density of traps. 

There are no measurable surface and induced states and the metal/compound 

semiconductor transition zone is charge neutral in an ideal case [34]. Unfortunately 

this is not so in the case of eg.  GaAs and several other semiconductor. 

3 Technological Aspects of the Contacts 

3.1 Metallization 

As it was mentioned in section 2.1. the contacts have important role regarding the 

connection of the device and is environment. This is essential at Ohmic contacts, 

because in the case of several devices and several circuit applications the 

examination of physiscal and electric properties of bulk material requres good 

quality Ohmic contacts [35]. 

The Ohmic contacts can be fabricated in two ways [36]: (1) any metals deposited 

onto semiconductor the contact will be Ohmic (in situ ohmic contacts), (2) if the 

deposited metal is annealed properly then it will be Ohmic. In the latter case it is 

crucial to take in consideration: (1) the decomposition the surface of GaAs with the 

possible vaporing of As (2) the deviation in reactivity of GaAs that depends on the 

initial composition of the compound semiconductor (stochimetric ratio, presence of 

remaining oxides, contaminations, passivating chemical elements). 

The change of I—V characteristics of some Ohmic contacts grown on n-GaAs and 

p-GaAs will be examined as result of annealing process. 

Firstly, contacts made of gold on the surface of GaAs was examined [37]. On such 

solution is the application of Au-Ge/In Ohmic contacts on n-GaAs substrate [36]. 

One system of this kind is shown in Fig. 4 before annealing (A) and after annealing 

at 495 oC for 5 mintue (B). 
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Figure 4 

I-V characteristics of Au-Ge/In ohmic contact on n-GaAs substrate before annealing (A) and after 

annealing at 495 oC for 5 minutes (B) 

A problem is that this metal reacts with GaAs at a relatively low temperature (above 

350 °C). Further problems are the occurence of all the three, the parasitic subtrate 

currents and the deep and shallow trap states [38]. For this reason several other 

solutions were found to substitute Au metalling. 

Cu was used instead of Au in one experiment [39]. A Pd/Ge/Cu metalling was 

applied to n-type GaAs and Pt/Ti/Pt/Cu metalling was applied to p-type GaAs. A 

comparision of Au and Cu based metallizationon on n-GaAs (Fig. 5/A) and on p-

GaAs (Fig. 5/B) substrate. 

 

Figure 5 

Comparision of Au and Cu metallization on n-GaAs (A) and on p-GaAs (B) substrate (source: [40]) 

The other possible solution also with Cu is Pd/Ge/Cu metallization on n-GaAs 

substrate [40]. This paper descibes an experiment annealing in N gas environment 

for 20 minutes between 150 oC and 400 oC. The authors examined the resistance of 

the contact as a function of annealing temperature with different Pd (Fig. 6/A) and 

different Ge layer thicknesses (Fig. 6/B). 



A. Ürmös et al. Contact Problems in GaAs-based Solar Cells 

 
– 108 – 

 

Figure 6 

Comparision of Cu based metallizations as a function of thickness of Pd layer (A) and thickness of the 

Ge layer (B) (source: [41]) 

A third possible solution, a non-copper based one, is the NiGe metallization on n-

GaAs [41]. The authors of this paper examined several samples with different metal 

layer thickness. Sample 3 shown in Fig. 7 the Ni layer is 75 nm and the Ge layer is 

90 nm thick after 5 minutes annealing. The sample shown on Fig. 8 the authors 

applied 400 oC isoterm annealing and the specifice resistance was measured at 

identical time intervals. Sample 3 had a Ni layer thickness of 75 nm and that of Ge 

90 nm, whence sample 5 had 15 nm thick first Ni layer and 72 nm Ge layer and the 

second Ni layer was 75 nm. 

 

Figure 7 

The Ni layer is 75 nm thick and the Ge layer 90 nm thick, after 5 minutes annealing between 550 oC 

and 650 oC (source: [42]) 
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Figure 8 

The contact resistance as a function of annealing time period (NiGe metallization), in case of sample 3 

and sample 5, in 400 oC isotherm annealing (source: [42]) 

The fourth possible solution is application of NiSiW metallization [42]. The first Ni 

layer is 30 nm thick, the Si layer is 40 nm thick, the second Ni layer is 15 nm thick, 

thus the W layer is 40 nm in sample shown in Fig. 9. The specific contact resistance 

is shown as a function of temparature of annealing (Fig. 9/A) and as a function of 

time interval of annealing (Fig. 9/B). 

 

Figure 9 

Values of contact resistance as a function of annealing time (NiSiW metallization), 400 oC isotherm 

annealing. The contact resistance is shown as a function of anneling temperature (A) and as a function 

of annealing time (B). (source: [42]) 

The fifth possible solution is application of Pd/Sn metallization on n-GaAs substrate 

[43]. The authors of the above mentioned paper applied a 32.4 nm thick Pd layer 
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and a 150 nm thick SN layer as metallization and the time interval of annealing was 

30 minutes. The contact resistance- annealing temperature diagram can be seen in 

Fig. 10. 

The sixth possible solution is to apply Pd/Ge metallization on n-GaAs substrate 

[44]. The sample was annealed for 30 minutes in N gas environment between 200 
oC and 250 oC as mentioned in this paper. The contact showed increasingly ohmic 

characteristics with increasing annealing temperature as shown in Fig. 11/A. The 

contact resistance-annealing temperature diagram of the same material system is 

shown in Fig. 11/B. 

 

Figure 10 

Contact resistance – annealing temperature diagram of Pd/Sn metallization (source: [43]) 

The selection of the contact material for compound semiconductors and the 

determining the appropriate thermal profile for different contact metallizations is a 

problematic area, and several researches are in progress. The main problem is that 

when a simple metal is used for GaAs metallization the system is instable in terms 

chemistry and thermal phenomena [45]. 

During the formation process of contact the extent to which the metal wets the 

surface under consideration has an important role. The wetting is the attachment 

ability of liquid phase material to a solid surface. This attachment ability is the 

macroscopic approach of intermolecular effects [46] [47] [48]. The degree of 

wetting depends on the balance of adhesive and cohesive forces. Wetting is related 

to solid, liquid and gasous phases as well. Wetting has an important role when the 

binding of two different materials is studied. Wetting has two types, reactive and 

non-reactive [49]. 
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Figure 11 

I-V diagram of Pd/Ge metallization with annealing temperature as parameter (A) and the contact 

resistance as a function of annealing temperature of the material system (B) (source: [44]) 

The properties of Ohmic contacts depend on the applied material system and the 

temperature of the applied annealing [50]. For this reason it is necessary to take into 

consideration two factors when examining the metal/compound semiconductor 

system during the annealing process [51] [35]. The first factor is the surface 

decomposition at relatively low temperature. It is the vaporization of volatile 

component. In case of GaAs the As is the volatile component [52] [53] [54]. The 

second factor is the varying reactivity of GaAs surface that depends on the initial 

structure of the substrate (stoichiometry, contaminants, residual oxides and 

presence of passivating materials). This temperature dependence was examined for 

material systems of Au/Pd [55], Pd [54], Au/Ge [56] [57] and Au/Ge/Ni [57] [58] 

[59] [60]. During the annealing process the volatile component evaporates. The 

volatile component if As in case of GaAs, and P in case of InP [55]. The result of 

thermal mutual effect in case of a thin layer system and compound semiconductor 

(eg. InP) was observed by scanning electron microscope [54] [61] [62] [63] [64] 

[65] [66]. The samples were examined in heated sample holder. Different surface 

features were produced by different material science processes (eg. Surface 

migration). The goal of the researchers was to determine the connection between 

the conditions of interaction, the materials involved and the attributes of the 

substrate. The temperature dependence of vaporized volatile component was 

examined in the given experimental arrangement. The amount of the vaporized 

component was measured by a quadropole mass spectrometer (EGA – evolved gas 

analysis). The electrical parameters of the fabricated contact were deduced then. 

3.2 Geometrical Investigation 

The metallization patterns that formed on the surface of GaAs contact can be 

described by multiple models. These models can be divided into two groups., the 

continuum and atomic ones. Such a nonlinear continuum model is the Kardar-

Parisi-Zhang equation [67] [68] [69]: 



A. Ürmös et al. Contact Problems in GaAs-based Solar Cells 

 
– 112 – 

𝜕ℎ(𝑥,𝑡)

𝜕𝑡
= 𝜐 ∗ Δℎ(𝑥, 𝑡) +

𝜆

2
∗ (∇ℎ(𝑥, 𝑡))

2
+ 𝐹 +  𝜂(𝑥, 𝑡)                                            (15) 

where  is the surface tension, t is the time, h(x,t) is the height of interface at point 

x,  is the wavelength, F is the incoming atomic flux, the η(x,t) is the noise 

component (flux of the random inbound atoms. Atomic model eg. the so-called 

Kinetic Monte-Carlo algorithm [70] [71] [72], or the kinetic mean field model [73]. 

The surface can be charcterized, in addition to surface roughness, in other ways, eg. 

examining the surface patterns. Many surface pattern investigations are in the 

literature in case of GaAs substrate [54] [55] [57] and in case of InP substrate [74] 

[58] [61] as well. The biggest obstacle of the examination is the segmentation of 

clusters a difficult task to do. The contast may be weak thus it is hard to separate 

the cluster from the backgroud according to tone tresholds. This problem can be 

solved in multiple ways, eg. by the GOFM (grade of membership method) [75] [76], 

or by fractalmathematical methods [77] [78] [79], or by structural entropy [80] [81]. 

The crucial step of grade of membership method (GOFM) is to separate the surface 

and the structure with the subsequent function when examining the given surface 

pattern: 

𝐺(𝑥) =
1

∑ (
(𝑥−𝑣𝑖)

2

(𝑥−𝑣𝑗)
2)

1
𝑚−1

𝑛
𝑗=1

                                                                                           (16) 

where x is the brightness of the pixel, vi is the brightness of the pixel in the center 

of ith cluster, n is the number of the clusters, m is the membership weight. 

The surface patterns can be analysed by fractal theory as well. The fractals are 

infinitely complex, in terms of statistics „self similar”, mathematical objects. In the 

countless different formation of fractals, there is at least one repetition that can be 

described by mathematical toolset [77] [78] [79]. 

The analyses utilizing the fractal theory can be found in [62] [74]. These analyses 

are based on in situ SEM images of the surface of contacts during the annealing 

process. These pictures were taken by L. Dobos et al, in a converted SEM. They 

provided the technical possibility of fast annealing processes at maximum of 700 

°C. Bitmap (BMP) files were obtained by digitalizing SEM images. Further, the 

BMP images were processed by software [63]. 

The surface of a given, non-continuous thin layer is considered to be of fractal 

pattern if the black and white image of the surface has dimension between 1 and 2. 

The more regular and the more complete the coverage of the plane, the closer the 

dimension gets to 2. 

The most widespread method of measurement of fractal dimensions of fractals in 

terms of mathematics (eg. bicolor images) is the so-called box-counting 

methodology elaborated by B. Mandelbrot [82] and Hausdorff [83]. 
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In the course of our research Au, Pd and Au/Pd thin layers were deposited onto InP 

surface [74]. The data of the material system can be found in Table 1. 

Table 1 

The data of the examined material system 

Orientation of substrate Au/InP(111) Pd/InP(100) Au/Pd  InP(100) 

Layer thickness [nm] 60 50 85/50 

Our goal was to thoroughly examine the surface morphology of Au, Pd and Au/Pd 

layers in terms of fractal patterns. 

During the research the original records were cut. During the next step the records 

were converted to binary format according to Hausdorff measure. The boxes of 

diameter n necessary to cover the white pixels, were counted. This step was repeated 

with boxes of diameters of n/2, and so on until boxes of one pixel were reached. 

If the logarithm of box count is plotted on a diagram as a function of number of the 

steps and a line is matched onto these points, then the fractal dimension is obtained. 

In addition to fractal geometry, the same surfaces were examined by both filling 

factor and structural entropy methods. The structural entropy [80] [81] [84] [85] 

determines the localization type of probability distribution defined on lattices. In 

other words, this method defines the function according which the agglomerations 

of the probability distribution fade. 

Let us have n lattice points of which only m points are filled. The filling factors are 

identical pi = 1/m and these values are pi = 0 for the rest of lattice points. The 

structural entropy is that part of the entropy of the system which tells us accordingly, 

which functions, in the filled lattice, points decay. The shape of the fading is 

characterized by structural entropy which has the algebraic expression: 

𝑆𝑠𝑡𝑟 = 𝑠 − ln 𝑑 = ∑ 𝑝𝑖
𝑛
𝑖=1 ∗ ln 𝑝𝑖 − 𝑙𝑛

1

∑ 𝑝𝑖
2𝑛

𝑖=1

                                                              (17) 

In case of two valued step like distribution the value will be zero because the 

Shannon entropy will be exactly ln d. For this reason, these calculations were 

carried out on grayscale images. 

A variable that indicates the mean filling of a lattice point was introduced: 

𝑞 =
𝑑

𝑛
=

1

𝑛 ∑ 𝑝𝑖
2𝑛

𝑖=1

                                                                                                         (18) 

This variable is the filling ratio. If structural entropy was plotted as a function of 

filling ratio then it is observed that the graph of each fading functions (eg. the 

Gaussian function, the power functions etc.) is a well-defined curve on the Q – Sstr 

plane. If it was examined that which function fits the point of the distribution, then 

the type of fading can be determined [80] [86]. The underlying theory is detailed is 

[81]. The shaded area can be characterized by inequalities 0 < q < 1 and 0 < Sstr < 
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-log q (Fig. 12). The structural entropy and localization factor can be used for 

analysis of AFM and in addition to, SEM records [87] [90]. 

 

Figure 12 

Allowed region of structural entropy plot 

In the Fig. 13 the surface of the Au (60 nm) layer on GaAs (100) substrate (Fig. 

13/a) at 400 oC temperature, (Fig. 13/b) at 500 oC temperature (Fig. 13/c) at 630 oC 

temperature (magnitude is 500x). 

 

Figure 13 

The surface of the Au (60 nm) layer on GaAs (100) substrate (a) at 400 oC temperature, (b) at 500 oC 

temperature, (c) at 630 oC temperature (magnitude: 500x) 

In the next two subchapters the Au/GaAs and Au/TiN/GaAs material systems are 

characterized by fractal dimension and by structural entropy as well. 

3.2.1 Au/GaAs Material System 

In the Au/GaAs system, the change of the fractal dimensions is shown in the Fig. 

14, between 440 oC and 600 oC. In case of Fig. 14/b, the width of the Au layer is 40 

nm and the fractal dimension decreases significantly in the function of the 

temperature. In case of Fig. 14/b the width of the Au layer is 60 nm and the fractal 

dimension is nearly constant. Probably the reason of this phenomena is the 

decreasing of the fractal dimension, which is caused by the evaporation of the illicit 
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component of the substrate (this is the As component, in case of GaAs). As it is 

shown in the Fig. 14, in case of the 40 nm Au layer thickness (Fig. 14/a), the 

evaporation of the illicit component is larger than in the case of the 60 nm Au layer 

(Fig. 14/b). According to this result, this phenomenon depends on the thickness of 

the Au layer. 

 

Figure 14 

The change of the fractal dimension between 440 oC and 600 oC. 

The width of the Au layer is (a) 40 nm and (b) 60 nm. 

In Fig. 15, the structural entropy is shown, in case of 40 nm (Fig. 15/a) and in case 

of 60 nm (Fig. 15/b) Au layer width. The investigated temperature is 500 oC. Based 

on Fig. 15, it is apparent, that the decay of the structural entropy is slower than the 

Gaussian function. 

 

Figure 15 

The structural entropy of the Au/GaAs system in 500 oC temperature.            

The width of the Au layer is (a) 40 nm and (b) 60 nm. 

As it is visible in the Fig. 16, the localization factor between 440 oC and 600 oC also 

depends on the width of the Au layer. In case of the Fig. 16/b (60 nm Au layer 

width) the steepness is twice lager as the Fig. 16/a (40 nm Au layer width), between 

440 oC and 472 oC, 472 oC and 504 oC, 504 oC and 536 oC. 
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Figure 16 

The change of the localization factor between 440 oC and 600 oC. 

The width of the Au layer is (a) 40 nm and (b) 60 nm. 

3.2.2 The Au-TiN/GaAs Material System 

As it is shown in the Fig. 17/a, the fractal dimension in the 15 nm thick Au-

TiN/GaAs layer is increasing in the function of the temperature. Unfortunately, the 

reason of this phenomenon is not known. In the Fig. 17/b, the fractal dimension 

decreases in the function of the temperature. The width of the Au-TiN layer is 25 

nm, unfortunately more samples were not available. 

 

Figure 17 

The change of the fractal dimension between 440 oC and 600 oC. 

The width of the Au-TiN layer is (a) 15 nm and (b) 25 nm. 

Similar to the previous material system, in the Fig. 18 it is also visible, that the 

structural entropy depends on the width of the TiN layer. The investigated 

temperature is 500 oC. It is apparent, that the decay of the exponential curves 

structural entropy decays as a Gaussian (Fig. 18/b) or third-order exponential 

function (Fig. 18/a). 
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Figure 18 

The structural entropy of the Au-TiN/GaAs in 500 oC. 

The width of the Au-TiN layer is (a) 15 nm and (b) 25 nm. 

As it is visible in the Fig. 19, the localization factor of the 15 nm thick Au-TiN/GaAs 

material system is third-order (Fig. 19/a). The localization factor of the 25 nm thick 

Au-TiN/GaAs material system is Gaussian (Fig. 19/b). The values of the 

localization factors are constant, so – in the investigated temperature range – of the 

localization factors are independent from the temperature. 

 

Figure 19 

The change of the localization factor between 440 oC and 600 oC. 

The width of the Au-TiN layer is (A) 15 nm and (B) 25 nm. 

Conclusion 

This paper focused on the electric and morphologic attributes of metal/compound 

semiconductor contacts. Detailed results were presented on electric qualities of 

Ohmic and Schottky contacts, on measurement technology and on different types 

of metallization, after the introduction. An examination of patterns on the surface 

of metallization was also explored. With the fabrication of solar cells in mind, the 

crucial point is the formation of internally homogeneous Ohmic contacts. The 

electric features and factors of lateral inhomogenity were summarized and the 
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obtained morpphologies were examined. The next phase of our work will be the 

relationships of different morphologies and their electric qualities. 
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