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Abstract: It is well-known, that several areas of science (for example electronics)  have 

been revolutionized by the application of nano structures. For this reason, it is important to 

simulate the evolution of these nano structures. The III-V- composite semiconductor based 

nanohole backfilling is modeled in this paper. The backfilling is described with the viscosity 

of the liquid gallium, instead of modeling of the real atomic displacements. The 

construction of the model begins with the macroscopic interpretation of the viscosity. In 

order to model the atomic displacement at microscopic level, the microscopic viscosity was 

introduced. It is shown, that under certain conditions we get back the original Arrhenius-

Andrande equation from the microscopic viscosity model. During the simulation, both the 

viscosity and the equilibrium height of the backfilled nanohole was determined as a 

function of temperature. 
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1 Introduction 

It is well-known, that several areas of science were revolutionized by the 

application of nano structures. Recently, increasing proportion of electronic 

devices containing nanostructures are found. 

One excellent example is the III-N-based semiconductor devices, for example the 

GaN-based blue LEDs. The active regions of these devices consist one or more 

InGaN quantum wells. These wells are inserted between thicker GaN layers, in a 

sandwich-like manner. By topologically changing the InN and GaN regions in the 

InGaN wells, the wavelength of emitted light extends from the ultraviolet to the 

color of amber. Another possibility is the application of quantum dots, instead of 

quantum wells. In this case, the large light intensity of the LED is generated by 

InGaN quantum dots with the aid of phase separation effect [1]. 

Another example is the nanostructured solar cells. The efficiency of these cells is 

significantly influenced by the electronic band structure of the semiconductor. A 

good solution is the application of various nanostructures such as quantum dots 

and quantum wells [2-4] for increasing of the efficiency of the structure. 
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Figure 1 

The efficiency of the solar cells can be increased with the application of the multiple quantum wells (a) 

and quantum dots (b) (source: [3]) 

With the application of these structures, the solar cells can utilize wider 

wavelength range of the solar spectrum. Efficiencies of over 40% can be achieved 

with multilayer solar cells that contain quantum dots. These devices operate on the 

principle of tunnel effect. In the case of another nano structured solar cells 

containing quantum wells, up to 40% efficiency can be achieved through the 

utilization of tunnel effect (Figure 1a). This excellent solar cell efficiency can be 

surpassed by the usage of quantum dots (Figure 1b). In this case, intermediate 

energy levels are created in the energy band gap of the semiconductor. This 

structure is able to utilize the energy of photons, the energy of which differs from 

the energy determined by gap of the original semiconductor. This way, an 

efficiency of 60% can be achieved. 

An important requisite for the fabrication of the GaAs-based nanostructures, 

presented in this chapter, is the controlled growth of semiconductor crystal layers 

and nanostructures. Primarily, these thin, several monolayer thick layers and other 

nano objects can be grown with the method of molecular-beam-epitaxy (MBE) [5] 

[6]. 

2 The Droplet Epitaxy 

The various nanostructures can be fabricated with several growth method. There 

are three growth regimes such as the traditional Frank Van Der Merve, Volmer-

Weber and Stransky-Krastanov methods. The difference among these methods, is 

the difference of the bonding energies between atom-substrate and the atom-

neighboring atom relations. In the case of Frank Van Der Merve growth, the atom-

substrate bonding energy is bigger than the atom-neighboring atom bonding 

energy, so mainly two dimensional layers are formed. In case of Volmer-Weber 

growth the atom-substrate bonding energy is smaller than the atom-neighboring 

atom bonding energy, so clusters are primarily formed. In case of Stransky-

Krastanov growth the adatom-substrate bonding energy and the adatom-
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neighboring atom bonding energy are comparable, so both clusters and layers can 

be formed. 

 

Figure 2 

The development of different nanostructures in the function of the temperature of the sample and the 

pressure of the remaining gas (source: [11]) 

With the aforementioned methods, only layers or clusters or dots can be formed. A 

novel technique, called droplet epitaxy allow us to create not only quantum dots 

but also quantum rings, double quantum rings and nanoholes. The conception of 

the droplet epitaxy was developed by Koguchi and his co-workers, in the 

beginning of the 1990 years [7, 8, 9, 10]. The droplet epitaxy is a two stages 

technology. Firstly a metal droplet of the III. main group of the periodic system 

(for example Ga) is deposited onto the substrate surface (for example GaAs). 

After that metallic nano-clusters are created, the final shape which is determined 

by the sample temperature and by the gas pressure of the residual main group V 

element (for example arsenic). In this way, various nanostructures can be 

developed (Figure 2). 

As it can be seen on Figure 3, the nanoholes are formed in high temperature and 

minimal arsenic pressure [12]. The formation of the nanoholes are the following: a 

gallium droplet is deposited to the substrate surface. Because of the concentration 

gradient, the arsenic atoms diffuse into the gallium droplet. In the same time, the 

gallium atoms leave the droplet in the manner of surface diffusion. Finally, the 

nanohole forms. The process is explained in the Figure 3. 

 

Figure 3 

The formation of the nanoholes (source: [12]). The formation of the nanoholes are the following: a 

gallium droplet are deposited to the substrate (a). The arsenic atoms move to the droplet and the same 

time the gallium atoms leave the droplet (b). Finally nanohole forms (c) 
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The variables of Figure 3/c are explained below: 𝑟0 is the outer radius (nanohole 

and the ring), ℎ𝑤 is the height of the ring, 𝑑𝐻 is the depth of the nanohole. If the 

nanoholes, formed on this way, were filled with metal atoms (for example 

gallium), then we talk about inverted quantum dots. There are 4 types of inverted 

quantum dots: type 1 quantum dots are the white light emitters, type 2 quantum 

dots are the uniform quantum dots, type 3 quantum dots are the ultra low-density 

quantum dots, type 4 quantum dots are the vertically stacked quantum dot 

molecules (Figure 4) [12]. 

In Figure 4, Type 1 quantum dots (white light emitters) are shown which were 

fabricated by local droplet etching on AlGaAs surface at T=550-620 
o
C 

temperature. Bimodal, shallow and deep nanoholes are formed with this method. 

During the backfilling process of the nanoholes, the shallow ones are fully and the 

deep ones are partially filled. Local droplet etching creates Type 2 (uniform) 

forms (Figure 4b) and the density of shallow holes reduced at elevated 

temperature. These quantum dots are partially buried and their size accurately 

controlled through the amount of the deposited GaAs. The ultra-low density 

(ULD, Type 3) quantum dots, filled with GaAs, can be characterized with even 

lower density and deeper holes (Figure 4c). Figure 4d displays vertically stacked 

quantum dot molecule, which consists of two closely placed quantum dots. This is 

the simplest interacting system, made of nanostructures. This structure contains 

two double filled ultra-low density quantum dots. The two quantum dots are 

separated with two well-defined AlGaAs barriers. 

  

Figure 4 

Formation of the inverted quantum dots. The a) is the group of Type 1 quantum dots, the b) is the 

group of Type 2 quantum dot, the c) is the group of Type3 quantum dots and d) is the vertically 

stacked quantum dot molecule (source: [12]). 

3 The Simulation Algorithm 

In the simulation, the initial state is the nanohole, showed in the Figure 5 [13]. “A” 

denotes the area adjacent to the ring, “B” denotes the ring and “C” is the 

nanohole. The 𝐷𝑟𝑖𝑛𝑔 is the width of the ring (radius of outer circle of the ring less 
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radius of inner circle of the ring), the 𝐷ℎ𝑜𝑙𝑒  is the diameter of the hole, the 𝐿 is the 

height of the ring above the substrate surface, the 𝐻 is the height of the ring above 

the bottom of the nanohole. The angle 𝛼 is the half angle of the orifice of the nano 

hole, the value of which value is 55𝑜. 

 

Figure 5 

The base structure of the nanohole. The point “A” is the area next to the ring, the point “B” is the ring 

and the point “C” is the nanohole. A 𝐷𝑟𝑖𝑛𝑔 is the width of the ring, a 𝐷ℎ𝑜𝑙𝑒 is the diameter of the hole, 

the 𝐿 is the height of the ring above the surface of the substrate, the 𝐻 is the height of the ring above 

the bottom of the nanohole. The 𝛼 angle is the half angle of the orifice of the nano hole. 

During the simulation, in the first step, Ga was deposited to the substrate surface 

(Figure 6). In this chapter, the ideal case is investigated, when there is no surface 

diffusion, meaning that the deposited atoms do not migrate on the surface. 

 

Figure 6 

The parts of the volume, that get to different parts of the nanohole, during the deposition (base layer) 

From the volume of deposited layer, the volume I goes directly to the nanohole 

(𝑉𝐼.). The volume that is deposited directly to the nanohole can be obtained from 

the followng equation: 

𝑉𝐼. = 𝑟ℎ𝑜𝑙𝑒
2 ∗ 𝜋 ∗ 𝛿                                                                                                   (1) 

where the 𝑟ℎ𝑜𝑙𝑒  is the radius of the nanohole and 𝛿 is the thickness of the deposited 

layer. The height of the newly deposited volume in the cone can be computed by 

the cone volume formula: 

𝑚 = √
3∗𝑉𝐼.

𝜋∗𝑡𝑔2𝛼

3
                                                                                                          (2) 

where the 𝑚 is the backfilled height from the point of the cone and the 𝑉𝐼. is the 

volume gets directly into the nanohole. The volume 𝐼𝐼, is the additional ring 
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volume, the volume 𝐼𝐼𝐼 is the volume that is deposited aside the ring, 𝛿 denotes 

the thickness of the layer (Figure 7). 

 

Figure 7 

The parts of the volume, that get to different parts of the nanohole, during the deposition (first layer). 

The heights on the ring and next to the ring is 𝛿. 

In the course of the second step another layer is deposited, the thickness of which 

is also 𝛿 (Figure 8). The volumes in the ring and aside ring to the ring are equal, 

and the monolayer thickness will be also 𝛿. There are two ways to compute the 

filled height in the nano hole. According to the first method, we compute it with 

the volume of the cone, which is the following: 

  𝑚2 = √
3∗(𝑉𝐼.1+𝑉𝐼.2)

𝜋∗𝑡𝑔2𝛼

3
                                                                                               (3) 

where 𝑚2 is the height backfilled in the second step, a 𝑉𝐼.1 is the backfilled 

volume in the first step and 𝑉𝐼.2 is the backfilled volume in the second step. This 

formula can be generalized, in the following way: 

𝑚𝑖 = √
3∗ ∑ 𝑉𝐼.𝑘

𝑖
𝑘=1  

𝜋∗𝑡𝑔2𝛼

3
                                                                                                  (4) 

where 𝑚𝑖 is the backfilled height in the 𝑖-th step and ∑ 𝑉𝐼.𝑘
𝑖
𝑘=0  is the the sum of 

the volume deposited in 𝑖-th step and the previous steps. 

 

Figure 8 

The parts of the volume, that get to different parts of the nanohole, during the deposition (second 

layer). The heights on the ring and next to the ring is 𝛿. 

Another possible solution is, that we can compute the height of the truncated cone, 

solving a third order equation. This equation is as follows: 
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𝑚𝑘
3 ∗ (

𝜋

3
∗ 𝑡𝑔255) + 𝑚𝑘

2 ∗ (𝜋 ∗ 𝑟𝑘−1 ∗ 𝑡𝑔55) + 𝑚𝑘 ∗ (𝜋 ∗ 𝑟𝑘−1
2 ) − 𝑉𝑘 = 0          (5) 

where 𝑚𝑘 is the height of the truncated cone, 𝑟𝑘−1 is the radius of the circle of the 

top of the deposited material within the cone, computed in the previous step, the 

𝑉𝑘 is the volume of the truncated cone, which is equal to the volume 𝑉𝐼.𝑘, which 

gets directly to the nanohole in the 𝑘-th step. In the next step, this height is added 

to the total sum of the backfilled heights, computed in the previous steps: 

𝑚𝑖 = ∑ 𝑚𝑘 .    𝑖
𝑘=1                                                                                                    (6) 

The ring volume 𝑉𝐼𝐼. can be computed, that the volume of the inner truncated cone 

(𝑉𝑖𝑡𝑐) is subtracted from the total volume (which is the sum of the volume of the 

inner truncated cone (𝑉𝑖𝑡𝑐) and the ring volume 𝑉𝐼𝐼.). The 𝑉𝑖𝑡𝑐 volume of the inner 

truncated cone can be calculated by the following formula: 

𝑉𝑖𝑡𝑐 =
𝜋

3
𝑚𝑖𝑡𝑐(𝑅𝑖𝑡𝑐

2 + 𝑟𝑖𝑡𝑐
2 + 𝑅𝑖𝑡𝑐 ∗ 𝑟𝑖𝑡𝑐)                                                                   (7) 

where 𝑅𝑖𝑡𝑐 is the larger radius, the 𝑟𝑖𝑡𝑐 is the smaller radius and 𝑚𝑖𝑡𝑐 is the height 

of the inner truncated cone. The 𝑟𝑖𝑡𝑐 is the smaller radius can be computed by the 

following formulae: 

𝑟𝑖𝑡𝑐 = 𝐻 ∗ 𝑡𝑔𝛼                                                                                                       (8) 

where 𝐻 is the depth of nanohole, the 𝛼 is the half angle of the orifice of the 

nanohole (its value is 55
o
). The 𝑅𝑖𝑡𝑐 is the larger radius can be computed by 

𝑅𝑖𝑡𝑐 = 𝐻 ∗ 𝑡𝑔𝛼 + 𝑚𝑖𝑡𝑐 ∗ 𝑡𝑔𝛼                                                                                (9) 

formula, where 𝐻 is the depth of nanohole, the 𝑚𝑖𝑡𝑐 is the height of the inner 

truncated cone and the 𝛼 is the half angle of the orifice of the nanohole (its value 

is 55
o
). As a consequence, the volume of the inner truncated cone: 

𝑉𝑖𝑡𝑐 = 𝑚𝑖𝑡𝑐
3 ∗ (

𝜋

3
∗ 𝑡𝑔2𝛼) + 𝑚𝑖𝑡𝑐

2 ∗ (𝐻 ∗ 𝜋 ∗ 𝑡𝑔2𝛼) + 𝑚𝑖𝑡𝑐 ∗ (𝐻2 ∗ 𝜋 ∗ 𝑡𝑔2𝛼).  (10) 

Figure 9 illustrates the parameters. 𝑅𝑖𝑡𝑐, 𝑟𝑖𝑡𝑐,𝑚𝑖𝑡𝑐 are the larger radius, the smaller 

radius and the height of the inner truncated cone respectively. The 𝛼 is the half 

angle of the orifice of the nanohole (its value is 55
o
), 𝐻 is the depth of nanohole 

and the 𝑦 an auxiliary variable, the value of which is 𝑦 = 𝑚𝑖𝑡𝑐 ∗ 𝑡𝑔𝛼. 

 

Figure 9 

The interpretation of the parameters. In the figure 𝑅𝑖𝑡𝑐 is the larger radius, the 𝑟𝑖𝑡𝑐 is the smaller radius 

and 𝑚𝑖𝑡𝑐 is the height of the inner truncated cone, the 𝛼 is the half angle of the orifice of the nanohole 

(its value is 55o), 𝐻 is the depth of the nanohole and the 𝑦 an auxiliary variable, the value of which is 

𝑦 = 𝑚𝑖𝑡𝑐 ∗ 𝑡𝑔𝛼. 
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The total volume (𝑉𝑡𝑐) can be computed by the following formula: 

𝑉𝑡𝑐 =
𝜋

3
𝑚𝑡𝑐(𝑅𝑡𝑐

2 + 𝑟𝑡𝑐
2 + 𝑅𝑡𝑐 ∗ 𝑟𝑡𝑐)                                                                       (11) 

where 𝑅𝑡𝑐 is the greater radius, 𝑟𝑡𝑐 smaller radius, az 𝑚𝑡𝑐 the height of the total 

truncated cone. The 𝑟𝑡𝑐 smaller radius can be computed by the following formula 

𝑟𝑡𝑐 = 𝐻 ∗ 𝑡𝑔𝛼 + 𝑑 − 𝑚𝑡𝑐 ∗ 𝑡𝑔𝛼                                                                          (12) 

where 𝐻 is the depth of the nanohole, 𝑚𝑡𝑐 the height of the truncated cone and 𝛼 

is the half angle of the orifice of nanohole (its value is 55
o
). The 𝑅𝑡𝑐 bigger radius 

can be computed by the following formula: 

𝑅𝑡𝑐 = 𝐻 ∗ 𝑡𝑔𝛼 + 𝑚𝑡𝑐 ∗ 𝑡𝑔𝛼                                                                                (13) 

where 𝐻 is the depth of the nanohole, 𝑚𝑡𝑐 the height of the complete truncated 

cone (in this case it is the thickness of the deposited layer) and 𝛼 is the half angle 

of the orifice of the nanohole (the value of which is 55
o
). As a consequence, the 

volume of the truncated cone: 

𝑉𝑡𝑐 = 𝑚𝑡𝑐
3 ∗ (

𝜋

3
∗ 𝑡𝑔2𝛼) − 𝑚𝑡𝑐

2 ∗ (𝑑 ∗ 𝜋 ∗ 𝑡𝑔𝛼 − 𝐻 ∗ 𝜋 ∗ 𝑡𝑔2𝛼) + 𝑚𝑡𝑐 ∗

(𝑑2 ∗ 𝜋 + 2 ∗ 𝑑 ∗ 𝐻 ∗ 𝜋 ∗ 𝑡𝑔𝛼 + 𝐻2 ∗ 𝜋 ∗ 𝑡𝑔2𝛼)                                                (14) 

where 𝐻 is the depth of the nanohole, 𝑚𝑡𝑐 the height of the truncated cone (in this 

case is the thickness of the deposited layer) and 𝛼 is the half angle of the orifice of 

the nanohole (its value is 55
o
). 

Figure 10 illustrates the parameters. 𝑅𝑡𝑐, 𝑟𝑡𝑐, 𝑚𝑡𝑐 are the greater radius, the 

smaller radius and the height of the inner truncated cone, respectively. The 𝛼 is 

the half angle of the orifice of the nanohole (its value is 55
o
), 𝐻 is the depth of the 

nanohole, the 𝑑 is the lower plateau of the ring and the 𝑥 is the upper plateau of 

the ring. 

 

Figure 10 

The interpretation of the parameters. In the figure 𝑅𝑡𝑐 is the larger radius, the 𝑟𝑡𝑐  is the smaller radius 

and 𝑚𝑡𝑐 is the height of the inner truncated cone, the 𝛼 is the half angle of the nanohole (its value is 

55o), 𝐻 is the depth of the nanohole, the 𝑑 is the lower plateau of the ring and the 𝑥 is the upper plateau 

of the ring. 
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Taking into consideration the parameters defined above, the 𝑉𝐼𝐼. ring volume can 

be easily described by the following formula: 

𝑉𝐼𝐼. = 𝑉𝑡𝑐 − 𝑉𝑖𝑡𝑐                                                                                                    (15) 

where 𝑉𝑡𝑐 is the volume of the complete truncated cone, a 𝑉𝑖𝑡𝑐 is the volume of the 

inner truncated cone. This substraction takes the form (with substituting the 

respective/appropriate parameters): 

𝑉𝐼𝐼. = −𝑚𝑟𝑖𝑛𝑔
2 ∗ (𝑑 ∗ 𝜋 ∗ 𝑡𝑔𝛼 + 2 ∗ 𝐻 ∗ 𝜋 ∗ 𝑡𝑔2𝛼) + 𝑚𝑟𝑖𝑛𝑔 ∗ (𝑑2 ∗ 𝜋 + 2 ∗ 𝑑 ∗

𝐻 ∗ 𝜋 ∗ 𝑡𝑔𝛼)                                                                                                        (16) 

where 𝐻 is the depth of the nanohole, 𝑚𝑟𝑖𝑛𝑔 the height of the ring (in this case is 

the thickness of the deposited layer) and 𝛼 is the half angle of the orifice of the 

nanohole (its value is 55
o
), the 𝑑 is the width of the lower plateau of the ring. 

4 The Mechanism of the Atomic Displacement 

In the reality, at finite temperature (𝑛 ∗ 𝑘 ∗ 𝑇 > 𝐸𝑏𝑜𝑛𝑑𝑖𝑛𝑔) the atoms migrate on 

the surface. The parameters of migration depend on the temperature. This surface 

migration can be modeled by many methods, for example Kinetic Monte-Carlo 

method [14, 15]. In this paper, instead of this algorithm the dynamic viscosity of 

liquid gallium will be applied. This is an approximation, and this attribute 

originates from the macroscopic description. The viscosity is the function of the 

temperature. From macroscopic point of view, the dynamical viscosity is a 

proportionality factor, depends on the properties of the liquid material. Dynamic 

viscosity is the ratio of shear stress to shear velocity: 

𝜏 = 𝜂 ∗
𝑑𝛾

𝑑𝑡
                                                                                                             (17) 

where 𝜏 is the shear stress, 𝜂 is the dynamic viscosity, 
𝑑𝛾

𝑑𝑡
 is the shear velocity. In 

case of liquid metals, the viscosity can be determined in a multiple ways [16-20]. 

In this paper, the Arrhenius-Andrande equation is used [20], its formula is the 

following: 

𝜇(𝑇) = 𝜇0 ∗ 𝑒
𝐸

𝑅∗𝑇.                                                                                                 (18) 

In this formula, the 𝜇(𝑇) is the dynamic viscosity, the 𝜇0 is a pre-exponential 

factor (in case of gallium its value is 0.436), 𝐸 is the activation energy (its value in 

case of Ga is 4000 
𝐽

𝑚𝑜𝑙
), the 𝑅 is universal gas constant (its value is 8,3144 

𝐽

𝐾∗𝑚𝑜𝑙
) 

and the 𝑇 is the temperature (on Kelvin scale). 

In the microscopic approach the probability of the occurrence of the event is given 

at atomic level in order to determine the dynamic viscosity [15, 21]: 
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𝑃(𝐸𝑎 , 𝑇) = 𝑒−
𝐸𝑎

𝑅∗𝑇                                                                                                 (19) 

where 𝐸𝑎 is the activation energy of the given event, 𝑇 is the temperature (on 

Kelvin scale), 𝑅 is the universal gas constant (its value is 8,3144 
𝐽

𝑚𝑜𝑙∗𝐾
). The 𝑘 

hopping frequency is calculated by this formula: 

𝑘 = 𝑘0 ∗ 𝑒−
𝐸𝑎

𝑅∗𝑇                                                                                                     (20) 

where 𝑘0 is the atomic vibration frequency. Parameter 𝑘0 can be determined in the 

subsequent way: 

𝑘0 =
2∗𝑘𝐵∗𝑇

ℎ
                                                                                                          (21) 

where 𝑘𝐵 is the Boltzmann constant, ℎ is the Planck constant. After this step the 

𝜌 = 𝜌(𝐸𝑎 , 𝑇) geometrical factor is introduced, in the following way [26]: 

𝜌(𝐸𝑎 , 𝑇) = 𝑙 ∗ 𝑒
2𝐸𝑎
𝑅∗𝑇                                                                                              (22) 

where 𝑙 is a scalar value, but it can be both a single variable or a multivariable 

function. Let 𝐸0 = 𝐸𝑎[𝑛], where 𝐸0 is the bulk activation energy, 𝐸𝑎[𝑛] an density 

functional, which gives the binding energy of the atomic multeity, consists of 𝑛 

binding energy, with taking into consideration of atom-atom, atom-electron, 

electron-electron interactions. Consequently the dynamic viscosity is: 

𝜇(𝑇) = 𝜌(𝐸0, 𝑇) ∗ 𝑘 = 𝑘0 ∗ 𝑙 ∗ 𝑒
𝐸0

𝑅∗𝑇                                                                 (23) 

where the 𝑘0 ∗ 𝑙 product is the 𝜇0 pre-exponential factor. Thus the equation 18 is 

obtained. The effect of the viscosity is taken into consideration according the 

subsequent way in this paper: the volume of the ring is multiplied by an 𝜂(𝑇) 

volume proportional factor, which can be computed with the next formula: 

𝜂(𝑇) =
𝜇(𝑇)

𝜇(𝑇𝑚)
= 𝑒

𝐸

𝑅
(

𝑇𝑚−𝑇

𝑇∗𝑇𝑚
)
                                                                                     (24) 

where 𝑇 is the temperature (on Kelvin scale), the 𝜂(𝑇) = 𝜂 is a volume 

proportional factor, 𝜇(𝑇) is the temperature dependent dynamical viscosity, 𝜇(𝑇𝑚) 

is the melting temperature dependent dynamical viscosity. According to the 

formulae above, the 𝑉𝐼𝐼. ring volume can be computed in the subsequent way: 

𝑉′𝐼𝐼. = 𝜂 ∗ 𝑉𝐼𝐼.                                                                                                       (25) 

where 𝑉𝐼𝐼. is the volume of the ring, 𝑉′𝐼𝐼. volume that remains on the ring and 𝜂 is 

the viscosity. The thickness of the layer remaining on the ring is proportional with 

the viscosity, thus 𝑚𝑟𝑖𝑛𝑔 = 𝜂 ∗ 𝛿. As a consequence, if this formula was 

substituted to the 11 equation, then: 

𝑉′𝐼𝐼. = −(𝜂 ∗ 𝛿)2 ∗ (𝑑 ∗ 𝜋 ∗ 𝑡𝑔𝛼 + 2 ∗ 𝐻 ∗ 𝜋 ∗ 𝑡𝑔2𝛼) + (𝜂 ∗ 𝛿) ∗ (𝑑2 ∗ 𝜋 + 2 ∗
𝑑 ∗ 𝐻 ∗ 𝜋 ∗ 𝑡𝑔𝛼)                                                                                                  (26) 



Acta Polytechnica Hungarica Vol. 14, No. 2, 2017 

 – 101 – 

where 𝜂 is the volume proportionality factor, the 𝛿 is the thickness of the 

deposited layer, 𝐻 is the depth of the nanohole, the 𝛼 is the half angle of the 

orifice of the nanohole (its value is 55
o
), the 𝑑 is the width of the lower plateau of 

the ring. As a consequence the volume that moves into the nano hole is a sum of 

the volume moving directly to the nanohole and that moving indirectly into the 

nanohole, i.e.: 

𝑉′𝐼. = 𝑉𝐼. + 𝑉"𝐼𝐼.                                                                                                   (27) 

where 𝑉𝐼. is the volume, moving directly to the nanohole and 𝑉"𝐼𝐼. is the volume 

moving indirectly to the nanohole. The latter originates from the ring. This volume 

can be computed by the following formula: 

𝑉"𝐼𝐼. =
(1−𝜂)

2
*𝑉𝐼𝐼.                                                                                                  (28) 

where volume of 𝑉"𝐼𝐼. that gets indirectly from the ring to the hole, and 𝑉𝐼𝐼. is the 

volume remaining to the ring. The reason of ½ factor is, that the half of the 

volume that leaves the ring flows to the nanohole, and the other half of this 

volume flows to the area adjacent to the ring. 

Similarly as in the previous chapter, a 𝛿 thick layer is deposited also (Figure 11). 

The arrows show, that 
(1−𝜂)

2
 percent of the ring volume flows down into the hole 

and aside the ring. The height of the layer on the ring will be 𝜂 ∗ 𝛿. The height of 

the volume in the nanohole can be calculated by the volume formula of the cone: 

𝑚 = √
3∗𝑉′𝐼.

𝜋∗𝑡𝑔2𝛼

3
                                                                                                       (29) 

where 𝑚 is the backfilled height, 𝑉′𝐼. is the volume that arrives to the nanohole, 

which can be computed by the formula 4 and 5. 

 

Figure 11 

The parts of the volume, move to different parts of the nanohole, during the deposition (first layer). 

The arrows shows, that 
(1−𝜂)

2
 percent of the ring volume flows down to the hole and aside the ring. The 

height of the layer on the ring will be 𝜂 ∗ 𝛿 and aside the ring is 𝛿. 

In the second step also a 𝛿 thick layer is deposited (Figure 12). The arrows 

(similarly as is the previous figure) shows, that 
(1−𝜂)

2
 percent of the ring volume 

flows down into the hole and aside the ring. The height of the layer on the ring 
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will be 𝜂 ∗ 𝛿 and aside the ring will be 𝛿. The backfilled height in the nanohole, - 

similarly to the previous chapter - can be computed in two different ways. 

According to the first method, using the volume formula of the cone, the formula 

of the backfilled height is 

𝑚2 = √
3∗(𝑉′𝐼.1+𝑉′𝐼.2)

𝜋∗𝑡𝑔2𝛼

3
                                                                                             (30) 

where 𝑚2 is the backfilled height in the second step, the 𝑉′𝐼.1 is the backfilled 

volume in the first step and the 𝑉′𝐼.2 is the backfilled volume in the second step. 

This formula can be generalized according to the subsequent way: 

𝑚𝑖 = √
3∗ ∑ 𝑉′𝐼.𝑘

𝑖
𝑘=1  

𝜋∗𝑡𝑔2𝛼

3
                                                                                               (31) 

where 𝑚𝑖 is the filled height in the 𝑖-th step and ∑ 𝑉′𝐼.𝑘
𝑖
𝑘=0  is the the sum of the 

volumes deposited in the 𝑖-th and in all of the previous steps. Another possible 

solution is that with equation 5 a third-order equation is solved and the height of 

the truncated cone is obtained this way. Afterwards the height is added to the sum 

of the heights which is in already in the nanohole (equation 6). 

 

Figure 12 

 The parts of the volume, goes to different parts of the nanohole, during the deposition (first layer). The 

arrows shows, that 
(1−𝜂)

2
 percent of the ring volume flows down to the hole and aside the hole. The 

height of the layer on the ring will be 𝜂 ∗ 𝛿 and next to the ring is 𝛿. 

5 Discussion 

During the simulation it was investigated as to how the nanohole was filled with 

GaAs after crystallization. (It means, that the atomic movement described with the 

help of viscosity of metallic Ga, but the thicknesses calculated from the 

crystallized GaAs.) The backfilling process (Ga movement) was simulated as the 

function of the temperature. The height of the ring next to the nanohole increases 

as the layers are built upon each other. In other words, it was investigated that 

when the heights of the material inside of the hole and that on the ring became 

approximately equal. The time was determined as the number of layers already 

deposited. These two heights considered to be equal, when the differences of the 
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top levels of the appropriate structures are closer to each other than unit. The 

average value of these two heights is called equilibrium height. During the 

simulation it was our goal to determine, the temperature, where for a given 

number of layers the height difference between the hole and the ring was minimal. 

Figure 13 shows the backfilling process of the nanohole. The number of layers 

already deposited were 1 (denoted with a), 3 (denoted with b), 5 (c) and 7 (d), 

respectively. If the temperature dependence of the viscosity is neglected, then 

equilibrium height can be observed at the 22-nd layer. In our example each of the 

layers contain 2 monolayer thick GaAs deposition. It is important, that in case of 

GaAs the lattice constant is 0.526 nm, which corresponds 2 monolayers (because 

this material consists of two components). Here, one monolayer corresponds to 10 

pixels, (which is 
0,284

10
= 0.0284 nm) in the software, used for the simulation. 

 

Figure 13 

The filling process of the nanohole, in case of 1 (a), 3 (b), 5 (c) and 7 (d) layers 

 

The flow-chart of the simulation algorithm is shown in the Figure 14. 

This ideal case exists below 49 
o
C substrate temperature. Over this temperature, 

the equilibrium height and number of layers corresponding to equilibrium height 

(hereinafter equilibrium number of layers) decrease. As Fig. 15 shows, at 51.6 
o
C 

substrate temperature the nanohole totally filled with the 20-th layer. At this point 

the equilibrium height is 15.2945 nm. The bottom line of the charts below 

represents the filled height in the nanohole (measurement point “C”), while the top 

line (measurement point “B”) represent the ring height. The point, where these 

two lines cross each other is the place of the equilibrium height. The absolute error 

value is maximal at the layer 18, its value is 0.0078 (the relative error is 1.561*10
-

3
%). On each parts of chart, the equilibrium height and equilibrium layer pairs are 

marked with a red lines. It can also be seen that a unit change of the equilibrium 

height corresponds to increasing change of temperature as the temperature itself 

rises. Point “A” is selected as reference point (denoting 0 height). 
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Figure 14 

The flowchart of the simulation algorithm 

 

 

Figure 15 

Layer number and equilibrium height diagrams in different temperatures 
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On Figure 16 the top diagram shows the equilibrium height as the function of the 

temperature and the bottom ones shows the equilibrium height as the function of 

the viscosity. 

 

Figure 16 

Equilibrium height-temperature (top) and equilibrium height-viscosity (bottom) diagrams 

Here, the macroscopic viscosity of Ga is calculated by Arrhenius-Andrande 

formula (18 equation). Figure 17 shows the macroscopic temperature-viscosity 

diagram of Ga. 

 

Figure 17 

The macroscopic temperature-viscosity diagram of gallium 

For the purpose to determine the microscopic temperature-viscosity diagram, first 

the maximum value of the microscopic viscosity is calculated. For the 

determination of this, the starting point was the equation 18. At first, the activation 

energy of the particles is determined, using the following formula [22]: 

𝐸𝑝 = 𝐸0 ∗ (1 − 6𝛼 ∗
𝑟

𝐷
)                                                                                       (32) 

where the 𝐸0 the bulk activation energy (its value is in case of gallium 4000 
𝐽

𝑚𝑜𝑙
), 

𝐸𝑝 is the cohesive energy of the metal droplets, the 𝛼 shape factor (in case of 

sphere shaped particles its value is 1), the 𝑟 is the radius of the atom, a 𝐷 is the 
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size of particle. Let the melting point of the gallium droplets be 254 K (-19.15 
o
C) 

[23]. The size of the particle is determined by the following formula [24]: 

𝐷 =
9∗𝑟∗𝑇𝑚𝑏

𝑇𝑚𝑏−𝑇𝑚𝑝
                                                                                                        (33) 

From this equation, in case of Ga, the atomic radius is 1.36*10
-10

 m and the size of 

the particle (at 254 K temperature) is 7.5688*10
-9

 m. If the activation energy is 

𝐸𝑝 = 3568 
𝐽

𝑚𝑜𝑙
 and the particle melting point is 𝑇𝑚𝑝 = 254𝐾, then the maximum 

value of the microscopic viscosity is 2.3626. 

In microscopic level, the temperature-viscosity value pairs of Ga showed in Figure 

18 and 19. If one-term power-law is fitted on this value pair series, then the 

maximum relative error of the fitting is 1.798%, while in case of one-term 

exponential function the maximum relative error of the fitting is 3.499%. Despite 

this two-term power and exponential functions are fitting, because the maximum 

values of the relative error are under 1%. If two-term power law is fitted to the 

point series (Figure 18), then the temperature-viscosity formula will be the 

following [25]: 

𝜇𝑝,𝑀𝑖(𝑇) = 𝑎 ∗ 𝑥𝑏 + 𝑐 = 𝑎 ∗ 𝑇𝑏 + 𝑐                                                                  (34) 

where 𝜇𝑝,𝑀𝑖(𝑇) is the viscosity as a function of teperature, the 𝑎, 𝑏, 𝑐 values are 

material dependent empirical constants, the 𝑥 = 𝑇. Here, the temperature is given 

in Kelvin. The value of 𝑎 is 7.766*10
5
, 𝑏 is -2.292 and 𝑐 is -0.7616. The upper 

part of the figure is the power function, fitted to the point series, the bottom graph 

of the figure shows the error values of the function fitting in the individual points. 

The maximum value of the fitting error is 0,0008515 (the relative error is 

0.0523%), which is at 123.15 
o
C (396.3 

o
K) temperature. 

 

Figure 18 

The temperature-viscosity diagram of gallium in microscopic level. Power function is fitted to the 

point series. The top part of the diagram is the power function, fitted to the point series, the bottom part 

of the diagram shows the residuals of the function fitting in the individual points. 
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If the 𝑎 coefficient is 𝑘0 ∗ 𝑙 = 𝜏0, the 𝑏 coefficient is 1, the 𝑐 coefficient is 0 and 

the 𝑥 = 𝑒
𝐸0

𝑅∗𝑇, the the equation 18 is obtained. From this we can conclude, that the 

equation 35 is the microscopic form of equation 18. If exponential sum function 

was fitted to the point series (Figure 19), then the temperature-viscosity formula 

would be as follows: 

𝜇𝑒,𝑀𝑖(𝑇) = 𝑎 ∗ 𝑒𝑏𝑥 + 𝑐 ∗ 𝑒𝑑𝑥 = 𝑎 ∗ 𝑒𝑏𝑇 + 𝑐 ∗ 𝑒𝑑𝑇                                            (35) 

where 𝜇𝑒,𝑀𝑖(𝑇) the viscosity as a function of teperature, the 𝑎, 𝑏, 𝑐 values are 

material dependent empirical constants, the 𝑥 = 𝑇. The value of 𝑎  parameter is 

41.77, 𝑏 parameter is -0.01341, 𝑐  parameter is 1.382 and 𝑑 parameter is -

0.001554. The upper part of the diagram is the exponential function fitted to the 

point series, the bottom graph of the diagram shows the error values of the 

function fitted to the individual points. The maximum value of the fitting error is 

0.0001338 (the relative error is 0.00822%), which is at 123.1 
o
C (396.3 

o
K) 

temperature. 

 

Figure 19 

The temperature-viscosity diagram of gallium in microscopic level. Exponential function is fitted to the 

point series. The top part of the diagram is the power function, fitted to the point series, the bottom part 

of the diagram shows the residuals of the function fitting in the individual points. 

If the 𝑎 coefficient is 𝑘0 ∗ 𝑙 = 𝜏0, the 𝑏 coefficient is 1, the 𝑐 coefficient is 0 and 

the 𝑥 =
𝐸0

𝑅∗𝑇
, the the equation 18 is obtained. From this we can conclude, that the 

equation 5.5 is the microscopic form of equation 18. 

The analytical determination of equilibrium height, power function and 

exponential function are fitted to the temperature-equilibrium height point series. 

If one-term power function is fitted to this point pair series, then the maximum 

relative error of the fitting is 36.31%, while in case of one-term exponential 

function the maximum relative error of the fitting is 39.81%. Two-term power 

function does not fit at all, if Kelvin scale is used. In spite of this, exponential sum 
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function can be fitted well (Figure 20), so the temperature-equilibrium height 

formula will be the following: 

ℎ𝑒(𝑇) = 𝑎 ∗ 𝑒𝑏𝑥 + 𝑐 ∗ 𝑒𝑑𝑥 = 𝑎 ∗ 𝑒𝑏∗𝑇 + 𝑐 ∗ 𝑒𝑑∗𝑇                                              (36) 

where ℎ𝑒(𝑇) the equilibrium height in the function of temperature, the 𝑎, 𝑏, 𝑐, 𝑑 

values are material dependent empirical constants, the 𝑥 = 𝑇. The value of 𝑎 

parameter is 3.278*10
10

, 𝑏 parameter is –0.06904, 𝑐 parameter is 16.2 and 𝑑 

parameter is -0.001783. The top part of the diagram is the two-terms exponential 

function, fitted to the point series, the bottom part of the diagram shows the value 

of error of the fitting at individual points. The maximum value of the fitting error 

is 0.3822 (the relative error is 2.39 %), which is at 48.95 
o
C (322.1 

o
K). 

 

Figure 20 

The temperature-equilibrium height diagram of gallium in microscopic level. Exponential function is 

fitted to the point series. The top part of the diagram is the power function, fitted to the point series, the 

bottom part of the diagram shows the residuals of the function fitting in the individual points. 

Conclusion 

The nanohole backfilling was modeled on a III-V substrate, in this paper. The 

backfilling was described with the viscosity of liquid gallium, instead of modeling 

of the real atomic displacements. The crystallization by arsenic was considered as 

a quick bulk process. During the modeling, we started with the macroscopic 

interpretation of the viscosity. Microscopic viscosity was introduced in order to 

enable he presentation of a statistical, microscopic description of the atomic 

displacement. This was shown for the cases when the original Arrhenius-

Andrande equation that the microscopic viscosity is returned. During the 

simulation, the viscosity and the equilibrium height of the filled nanohole was 

determined as a function of temperature. 
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