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Abstract: H2 and H∞ controllers minimise the H2 or the H∞ norm of a suitable loop transfer 
function involving the plant to control and some weighing transfer functions chosen to fulfil 
performance specifications. In this paper this type of controllers is developed for the case 
when the plant and / or the weighing transfer functions are of fractional (commensurate) 
order. Since no analytical results similar to those existing for the integer case have been 
found, a genetic algorithm is used to minimise the desired norm. An application to 
temperature control is used to illustrate the method. 
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1 Introduction 

Over the last decades, a technique for devising controllers has been developed that 
consists essentially in minimising the H2 or the H∞ norm of the control loop. These 
two norms have simple interpretations: to put it plainly, the H2 norm reflects how 
much a dynamic system amplifies – or attenuates – its input over all frequencies, 
and the H∞ norm reflects how much a dynamic system amplifies – or attenuates – 
its input at the frequency at which the amplification is maximal. This control 
technique may be applied to both SISO (single-input, single-output) and MIMO 
(multiple-input, multiple-output) plants, and its results achieve a remarkable 
robustness (Lublin et al., 1996; Doyle et al., 1989). 

The usual method for developing this sort of controllers is based upon a state-
space representation of the plant. It cannot, unfortunately, be applied to plants of 
fractional order – that is to say, to plants that have a dynamic behaviour 
corresponding to differential equations involving fractional derivatives. State-
space representations for such plants do exist (Malti et al., 2003), but, since they 
involve fractional derivatives of the states, the algorithms developed for integer-
order plants (those with a dynamic behaviour corresponding to differential 
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equations involving usual, integer-order derivatives only) cannot be directly 
transposed to fractional-order plants. 

In this paper this problem is addressed by using a numerical minimisation method 
to perform the minimisation of the H2 or the H∞ norm when the plant is of 
fractional order. The following sections cover the following issues. Section 2 
briefly summarizes a few results from the theory of fractional calculus. Section 3 
summarizes algorithms for reckoning the H2 norm of a plant. Section 4 
summarizes algorithms for reckoning the H∞ norm of a plant. Section 5 describes 
the control loop usually employed together with H2 and H∞ controllers. Section 6 
describes algorithms to minimise an appropriate norm of that control loop. Section 
7 documents an example of application of this control strategy to a fractional order 
plant. The paper closes with some conclusions. 

2 Fractional Order Systems 

Fractional calculus is a generalisation of ordinary calculus. Its main idea is to 
develop a functional operator D, associated to an order ν (not restricted to integer 
numbers), that generalises the usual notions of derivatives (for a positive ν) and 
integrals (for a negative ν). There are several alternative definitions of operator D; 
the one addressed here is due to the works of Grünwald and Letnikoff. It 
generalises the usual definition of derivative: 
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has the convenient property of generalising the factorial to all real numbers (with 
the exception of negative integers, for which it is not defined), since 
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( )1 !,n n nΓ + = ∈`  (4) 

and this property may be used to generalise combinations for non-natural numbers 
as follows: 
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As a consequence, (2) gives the same result as 

( )
( ) ( )

0

0

1
lim , ,

m
k

kn
nh

n
f x kh

k
D f x m n m n

h
=

→

⎛ ⎞
− −⎜ ⎟

⎝ ⎠= ∈ ∧ >
∑

`  (6) 

since 

( )
( ) ( )

1 ! 0
1 1 !

nn n
k k n k k

Γ +⎛ ⎞
= = =⎜ ⎟ Γ + Γ − + ∞⎝ ⎠

 (7) 

And expression (6) may be generalised for non-natural differentiation orders as 
follows: 
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Two things should be taken into account. First, the upper limit of the summation m 
has to be taken up to infinity because, since ν need not be integer, terms will not 
be zero from some value of k on. Second, when ν is a negative integer, the result 
should be an integration, and it would be good to know which integration indexes 
result from using this definition. This question is easy to answer for 1ν = − ; we 
will have 
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Now this is the Riemann definition of integral ( )1
c xD f x−  if ( )h x c m= − . So, for 

orders other than –1, we will have 
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This is the Grünwald-Letnikoff definition of fractional derivative. Notice that 
when ν is a non-integer positive number operator D still needs integration limits; 
in other words, D is a local operator only when ν is a natural number (the case of 
usual derivatives). Thorough expositions of the theory of fractional calculus may 
be found in (Miller and Ross, 1993; Podlubny, 1999; Samko et al., 1993). 

The Laplace transform of D follows rules similar to those for integer derivatives 
and integrals: 

( ) ( )0 xD f x s F sν ν⎡ ⎤ =⎣ ⎦L  (11) 

Zero initial conditions being assumed, systems with a dynamic behaviour 
described by differential equations involving fractional derivatives give rise to 
transfer functions with fractional powers of s. 

«Fractional» calculus and «fractional» order systems are the usual names though ν 
may assume irrational values as well – definition (10) handles both cases without 
distinction. In practice all orders are known with limited precision and all orders 
may indeed be assumed rational. Fractional transfer functions G(s) dealt with 
become far more manageable if there is a Q verifying 
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Such fractional transfer functions are called commensurate. The rational 
commensurate order is 1/Q. All transfer functions addressed hereafter are assumed 
to be like (12). Such transfer functions may be used to model several physical 
systems in different areas, such as heat transfer, diffusion, behaviour of 
viscoelastic materials, electrical circuits, and many more (Podlubny, 1999, pp. 
243-308). 

3 The H2 Norm 

The H2 norm of a transfer function matrix G is defined as 
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Now let A be a matrix with m lines and n columns. Then the product TAA  is a 
square matrix with m lines and m columns. Its elements are given by 
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From the definition of trace, we get 
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The result above means that, for a MIMO system with n lines and m columns, 
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So the problem of finding the H2 norm is reduced to SISO systems. 

3.1 Integer Plants 

Let G be an integer order system given by the state-space representation 

x x u
y x u
= +
= +

A B
C D

�
 (18) 

Then its H2 norm may be found solving one of the equations (Lublin et al., 1996, 
p. 636) 

T T
C C+ + =AL L A BB 0  (19) 

T T
O O+ + =A L L A C C 0  (20) 

for LC (the controllability gramian matrix) or LO (the observability gramian 
matrix). (These two linear matrix equations belong to a class of equations known 
as Riccatti type equations.) Then 
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( )2
tr T

C=G B L B  (22) 

3.2 Fractional Plants 

No results similar to (21) or (22) have been found for fractional systems, but the 
norm may be found as follows (Malti et al., 2003). Let 1 / Q be the commensurate 
order of the system, and 
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Since the complex conjugate may be obtained changing the sign of the imaginary 
part, we will have 
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Let A and B be the polynomials in the numerator and denominator of product 
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Notice that the imaginary unit j has been considered as part of polynomials A and 
B. If we now let 
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(where deg(P) represents the degree of polynomial P), then (25) becomes 
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Three cases are to be distinguished when reckoning (28). 

3.2.1 Case ( ) ( )deg deg 0q A B+ − >  

In this case the summation in (28) is not identically zero. Its integral will be 
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and since k is 1 or higher and p is positive, 
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3.2.2 Case ( ) ( )deg deg 0 0q A B p+ − ≤ ∧ ≠  

In this case let ( )B x  have b different poles, 1 2, , bs s s… , and let km  be the 
multiplicity of pole ks . Then we may perform a partial fraction expansion of 
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(Recall that a pole of multiplicity m will appear m times in the expansion.) Then 
(28) becomes 
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This becomes (Gradshteyn and Ryzhik, 1980, p. 285) 
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3.2.3 Case ( ) ( )deg deg 0 0q A B p+ − ≤ ∧ =  

In this case the integration rule quoted above cannot be applied, so an alternative 
expansion is carried out. Let 1s  be one of the poles of (31), arbitrarily chosen. 
(Actually it would be better to choose the one minimising numerical errors, but it 
is difficult to know beforehand which one does.) Then we may write 
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Notice that poles with multiplicity 1 do not appear in the second summation. After 
some straightforward calculus, expression (28) becomes 
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3.3 Summing up 

The algorithm for finding the H2 norm of G may be summed up as follows: 

▪ If G is of integer order (Q = 1), then apply (19) and (21) or (20) and (22). 

▪ If G is of fractional order (Q ≠ 1), then: 

▪ If G is MIMO, find the H2 norm of its components and then apply (17). 

▪ If G is SISO, then: 

▪ If ( ) ( )deg deg 0q A B+ − > , the norm is ∞. 

▪ If ( ) ( )deg deg 0q A B+ − ≤ , then: 

▪ If p ≠ 0, apply (33). 

▪ If p = 0, apply (35). 

It should be noticed that, even though several different formulas are to be applied 
depending on the value of Q, the norm is a continuous function thereof. 

4 The H∞ Norm 

The H∞ norm of a transfer function matrix G is defined as 

( )sup maxG G j
ω

σ ω
∞
= ⎡ ⎤⎣ ⎦  (36) 

where ( )σ A  represents the set of singular values of matrix A. (This set has a finite 
number of values, and thus has a maximum; on the other hand, the set resulting of 
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sweeping all frequencies may have no maximum, but only a supreme value.) If G 
is SISO, (36) becomes simply 

( )sup maxG G j
ω

ω
∞
= . (37) 

This norm may be found by direct evaluation at several frequencies. Frequencies 
clearly above or below all the frequencies of poles and zeros need not be searched. 
The result is, of course, equal to or below the exact result – it can never be above. 

5 The Control Paradigm 

Roughly speaking, the idea of H2 and H∞ controllers is to minimise (at least over a 
certain range of frequencies we are interested in) one of those norms, ensuring that 
the input is never amplified to such an extent that instability will arise. It is usual 
to include judiciously chosen shaping transfer functions in the control loop so that 
control efforts be exerted at those frequencies desired by the control designer. 
Should the weights be adequately chosen, it is possible to find, by minimising one 
of the two norms, a control-loop that is stable and robust to plant variations. These 
are expected to cause a worse performance but not instability. (The above is of 
course an oversimplified description; see for instance Lublin et al. (1996) or 
Doyle et al. (1989) for details.) 

H2 and H∞ controllers make use of the control structures of the block diagrams in 
Figure 1, where K is the controller, A, B, C and D are the matrixes of the state 
space representation of G, and L models how noise affects the states (or the 
inputs, should L = B). Vector w collects all inputs (references, noise, 
disturbances…) save the control actions u. Vector z collects all variables showing 
the performance of the control system, namely outputs and control actions (whose 
magnitude may have to be limited). Weights W1 to W4 may be transfer functions, 
and usually are. They let the control designer shape the result by telling the loop in 
what frequencies control actions, outputs, etc., have to be large or small. 

The above interconnections give rise to this transfer function 

1 3 1 1 3 2 2 1

2 4 1 1 4 2 2

z W W W W w
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It is a norm of this matrix transfer function that we want to minimise. 
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Figure 1 

Block diagrams for H2 and H∞ controllers 

6 Finding Controllers 

For integer order plants it is possible to find a controller minimising either the H2 
or the H∞ norm of a suitable loop transfer function by analytical means (Lublin et 
al., 1996; Doyle et al., 1989). Unfortunately no such relations have yet been found 
for fractional-order plants; those for integer-order plants are derived from 
mathematical formulations for the norms very different from the formulations 
available for the fractional case. But it is possible to use numerical methods to 
minimise such norms. (Petras and Hypiusova (2002) also suggest a numerical 
multicriteria optimisation method for the H∞ case.) Among all possible 
optimisation algorithms, genetic algorithms have been used in this paper. 

Genetic algorithms are an optimisation method that emulates the evolutionary 
principle of the survival of the fittest. This is because several possible solutions for 
our minimisation problem are handled simultaneously, as though each were an 
individual of a population; each iteration attempts to discard the poorest solutions 
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and to improve the best already found. See for instance Jang (1997) for more 
details; the description of the particular genetic algorithm used, given below in 
section 7.1, also helps to make out how the optimisation is performed. 

Genetic algorithms were chosen for they ensure reasonable results for nearly all 
minimisation problems. Other methods may perform better in particular cases, but 
knowing in advance which ones might is guesswork. On the other hand, genetic 
algorithms have fairly good results in almost all cases (Silva et al., 2005). 

7 Example 

Let 

( ) 1.26

1
39.69 0.598

G s
s

=
+

. (42) 

This transfer function describes a thermal system heated by an electrical radiator 
(the input being a voltage) with the temperature measured by a pyrometer (the 
output being a voltage too) (Vinagre et al., 2001). 

The parameters of (42) have been identified by numerically fitting its step 
response to experimental values. So there are no reasons why the much more 
tractable commensurate (Q = 4) transfer function 

( ) 5 4

1
39.69 0.598

G s
s

=
+

 (43) 

should not be used instead, its step and frequency responses being 
indistinguishable from those of (42). Suppose that we model (white, 0.01 V2 
intensity) noise as affecting both input (L = B in Fig. 1) and output. We want the 
output to remain unchanged in spite of noise, with the transfer function from w1 to 
z1 smaller than -6 dB over all frequencies and the (not weighted) transfer function 
from w2 to z1 decaying significantly (say, at -40 dB/decade at least) for high 
frequencies (say, above 1 rad/s, given the nature of the plant). The transfer 
functions mentioned are those without weights, SG1 and SG2K. 

After some trial and error, the following weights have been selected: 
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These weights are fractional-order transfer functions, but integer-order weights 
might have been used instead. For this particular problem, fractional-order weights 
allowed attaining the control objectives more easily, but this is not always 
necessarily so. Integer-order weights have the additional advantage of having 
frequency responses easier to obtain. Furthermore, even though in this particular 
case a single set of weights sufficed for both the H2 and the H∞ controllers, this is 
not always necessarily so: different weights might have been necessary. 

7.1 Algorithm 

The algorithm to find a controller was as follows: 

▪ A population with fifty individuals is created. Each individual is a transfer 
function matrix with a dimension compatible with the dimensions of the plant (in 
this case, controllers are SISO). The orders of the numerators and the 
denominators are those of the plant or the ones immediately above or below. 
Parameters are stored as real numbers. 

▪ The H2 or H∞ norm of the matrix transfer function in (38) is evaluated for all 
individuals (in this case, this is a 2×2 matrix). The smaller the norm, the fitter the 
individual is. 

▪ A new population is created with 90% of the size of the original one. Individuals 
are selected for this group according to their fitness. These will be the parents in 
the next step. 

▪ The parents are recombined and replaced by their offspring. In other words, 
parents are matched in pairs; each pair is replaced by two new individuals, called 
the offspring; the parameters of each of the offspring are randomly chosen from 
those of its parents. 

▪ The offspring undergo a mutation. In other words, some of their parameters, 
randomly chosen, are changed by addition of random values. The mutation 
probability is such that the average number of mutated parameters per individual 
is 0.5. 

▪ These mutated descendents replace the less fit individuals in the original 
population. The resulting population is used for a new iteration, beginning with 
the evaluation of the norms, as explained in the second step above. 

▪ Iterations stop after a certain maximum number of iterations (500 in this case) or 
after a certain maximum number of iterations without improvement in the results 
(in this case 50 for the H2 norm and 30 for the H∞ norm; this last value was 
smaller because calculations were slower). 

The Genetic Algorithm Toolbox for Matlab (Chipperfield et al., 1994) was used to 
implement this algorithm. 



Acta Polytechnica Hungarica Vol. 3, No. 4, 2006 

 – 67 –

10
-3

10
-2

10
-1

10
0

10
1

-50

0

frequency / rad s-1
ga

in
 / 

dB

10
-3

10
-2

10
-1

10
0

10
1

-100

-50

0
ph

as
e 

/ º

 
Figure 2 

Bode diagram of SG1 for H2 controller (45) 
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Figure 3 

Bode diagram of SG2K for H2 controller (45) 
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Figure 4 

Singular values of loop transfer function (38) for H2 controller (45) 



D. Valério et al. Tuning of Fractional Controllers Minimising H2 and H∞ Norms 

 – 68 –

7.2 Results 

The following H2 controller was found, with a norm of (38) equal to 1.7905: 

( ) 5 4 3 4 1 2 1 4

5.704
10 10 9.999 9.422 5.399

K s
s s s s

=
+ + + + −

 (45) 

The relevant Bode and singular value plots are found in Figure 2, Figure 3 and Figure 
4. 

The following H∞ controller was found, resulting in a norm of (38) equal to 
6.7115: 

( ) 5 4 3 4 1 2 1 4

7.448
9.383 8.642 2.316 9.227 4.736

K s
s s s s s

=
+ + − + −

 (46) 

The relevant Bode and singular value plots are found in Figure 5, Figure 6 and Figure 
7. 

7.3 Discussion 

For both controllers, the magnitude of SG1 is always below -6 dB (actually its 
maximum is -6.05 dB for the H2 controller and -7.13 dB for the H∞ controller). 
SG2K decays with -45 dB/decade with both controllers. This means the objectives 
were attained in both cases. This is also shown by simulations of the resulting 
control loops. Changes in plant parameters are also handled by the resulting 
controllers. 

Other values for weights W1 to W4 allow obtaining different results and shaping 
the loop in other ways. Thus it would be possible to cope with different 
performance specifications. 
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Figure 5 

Bode diagram of SG1 for H∞ controller (46) 
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Figure 6 

Bode diagram of SG2K for H∞ controller (46) 
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Figure 7 

Singular values of loop transfer function (38) for H∞ controller (46) 

Two important questions arise from the use of a numerical minimisation method. 
The first is the time needed to reach a solution. For the H2 case of the problem 
above, this means about 1 minute and 38 seconds of computation per iteration are 
needed (in a Pentium IV @ 2.53 GHz); for the H∞ case, this may mean up to about 
2 minutes and 50 seconds per iteration (in the same machine), but depends on how 
close is the mesh of frequencies used to estimate the norm. These are bearable 
values, though faster results would, of course, be desirable. 

Still concerning this point, it is worth noticing that an increase in the dimension of 
(38) reflects very heavily on the computational effort needed. Dimensions above 4 
often prevent the numerical algorithm from reaching a solution. 

The second question concerns how far the optimisation went when it stops. The 
best validation possible is to use the algorithm for integer plants, for which there is 
an analytical solution available, and then compare both results. This was tried for 
several cases, and the numerical method always got very close to the analytical 
result. Assuming the same to happen with the fractional case, it seems that further 
possible reductions in norms are not very relevant. 
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Conclusion 
In this paper the task of finding H2 and H∞ controllers for fractional plants was 
successfully addressed. This involves finding the norms of transfer function 
matrixes. A numerical optimisation method (a genetic algorithm) was used, given 
the absence of known analytical methods. 
The drawbacks of this way of dealing with the problem are long simulation times 
(with the magnitude of hours) and the impossibility of knowing for sure how far 
the optimisation went. Thus, and beyond checking the validity of these results, the 
future work in this area consists in looking for analytic methods of developing 
these controllers. 
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