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Abstract: This paper presents a grid-based algorithm using Gaussian Processes to predict 

outputs using spatially and temporally dependent data. First, independent Gaussian 

Processes are formulated along space and time axes. Then, these processes are coupled with 

a common noise in the covariance kernel. This common noise acts as a smoothing parameter, 

trading off accuracy at knots for extrapolation capabilities. The algorithm can predict time-

series at unmeasured locations. The efficiency of the algorithm is demonstrated in a traffic 

flow prediction problem. Results suggest that applying a common additive noise term 

capturing cross covariances improves prediction accuracy when extrapolating outside the 

dataset. 
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1 Introduction 

A Gaussian Process (GP) is a collection of random variables of which have 

(consistent) joint Gaussian distributions. A GP is fully specified by its mean 

function and a covariance kernel. The main application of GPs is function 

approximation. Thus, Gaussian Processes can be interpreted as distributions over 

functions [1]. 

The general framework of Gaussian Processes cannot handle vector-valued 

functions, i.e., it is not trivial how to formulate cross-covariances between the 

outputs. Within machine learning, handling multiple inputs and outputs is vital. 

Neural networks have this feature by default [2]. On the other hand, kernel methods 

require some extensions in order to handle multiple outputs. 

The most important features of multivariate GPs are the cross-covariances between 

the outputs: they describe how the output processes are related to each other. 

Dependency can be tackled in several ways. For example, [3] employs shared 

dependency on a latent white noise process convolved with smoothing kernels.  
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In [4], the sum of separable kernels is employed to tackle dependent processes. [2] 

provides a comprehensive overview of how multivariate kernels can be constructed 

for GPs. In addition, multivariate GPs can be extended to handle heterogeneous data 

sources akin to neural networks [5] or constraints [6]. 

GPs are commonly used for both spatial and temporal function approximations.  

For example, a specialized version of GP in geostatistics called Kriging is 

commonly used. Kriging handles the mean separately as a generalized least squares 

estimate and variograms the common choice for kernels [7]. In spatial estimation, 

GPs can be used for meteorological forecasts [8, 9], sensor placement [10], or 

predicting traffic flow at unmeasured sites [11]. GPs are often used for time-series 

forecasting [12, 13]. Some specific applications involve fatigue analysis [14], wind 

speed forecasting [15], or economic predictions [16, 17]. From the above list, it is 

clear that GPs (despite some of their limitations) have powerful function 

approximation capabilities for a vast range of applications. 

One area where GPs fall short is spatio-temporal approximation. The challenge in 

predicting both spatially and temporally correlated data is modeling covariance 

between space and time dimensions. The distance between a point in a Euclidean 

space and a time instant cannot be exactly formulated using kernels: they are 

different domains. [18] uses the product of spatial and temporal kernels for 

neuroimaging. Spatio-temporal GPs are often handled in a state-space setting, 

predicting real-time system dynamics [19, 20]. 

This manuscript presents a grid-based spatio-temporal Gaussian Process function 

approximator. Instead of computing the hyperparameters together, independent GPs 

are formulated along space and time axes. Then, the independent processes are 

coupled with a noise term in the kernel. The algorithm can predict time-series 

modeled as Gaussian Processes at unmeasured locations demonstrated through an 

urban road traffic example. The main benefit of the proposed algorithm is its 

simplicity: the approximator is achieved through sequential GP fitting. 

The paper is organized as follows. Section 2 details the formulation of the predictor 

and the prediction procedure. Then, in Section 3, the algorithm is demonstrated 

through a traffic flow prediction example. Finally, the findings of the paper are 

summarized in the Conclusions section. 
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2 Spatio-Temporal Predictor 

2.1 Data 

Consider a dataset 𝑆 = (𝑋, 𝑇, 𝑌(𝑋, 𝑇)), with 𝑋 = [𝑥𝑖]𝑖=1
𝑁 ∈ ℝ𝑁×𝑛 being the design 

matrix of locations in the ℝ𝑛 dimensional Euclidean space. 𝑇 ∈ ℝ1×𝑘 is the set of 

discrete-time samples, and 𝑌(𝑋, 𝑇) ∈ ℝ𝑁×𝑘 is the vector-valued measurement data. 

One row of 𝑌(𝑋, 𝑇), 𝑌(𝑥𝑖 , 𝑇) represents one time series at location 𝑥𝑖 ∈ 𝑋. Each 

realization is assumed to be evenly sampled in time, and 𝑘 discrete time-steps long. 

Similarly, 𝑌(𝑋, 𝑡𝑝) denotes a spatial prediction at fixed time instant 𝑡𝑝 ∈ 𝑇: 𝑝 =

1,2, … , 𝑘. 

Figure 1 

Predicting space 𝑥 and time 𝑡 dependent outputs 𝑌 via multiple GPs. Data is denoted with dots and 

estimates are denoted with dashed lines. 

2.2 Spatial Gaussian Processes 

The first goal is approximating the underlying target functions 𝑓𝑝(𝑥, 𝑡𝑝) based on 

data points 𝑌(𝑋, 𝑡𝑝) for every 𝑝 ∈ 1,2, … , 𝑘 time instant. Consider 𝑘 independent 

Gaussian Processes 

𝑓𝑝(𝑥, 𝑡𝑝) ∼ 𝒢𝒫 (𝑚𝑝(𝑥), 𝑘𝑝(𝑥, 𝑥′)),  (1) 

with 𝑚𝑝(𝑥) ∈ ℝ𝑁×1 being the mean function, and 𝑘𝑝(𝑥, 𝑥′) being associated the 

covariance function, i.e., 

𝑚𝑝(𝑥) = 𝐸 (𝑓𝑝(𝑥, 𝑡𝑝)), (2) 

𝑘𝑝(𝑥, 𝑥′) = 𝐸 (𝑓𝑝(𝑥, 𝑡𝑝) − 𝑚𝑝(𝑥)) (𝑓𝑝(𝑥′, 𝑡𝑝) − 𝑚𝑝(𝑥′)).  (3) 
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For the sake of simplicity, assume 𝑚𝑝(𝑥) = 0, i.e., the process is first-order 

stationary. Besides, GPs are insensitive to the mean; defining the mean function is 

not that important [21]. 

The chosen kernel to model covariance is a squared exponential kernel with an 

additive independent identically distributed Gaussian noise term 

𝑘𝑝(𝑥, 𝑥′) = 𝜎𝑝
2𝑒

−
1

2𝜃𝑝
2 (𝑥−𝑥′)

𝑇
(𝑥−𝑥′)

+ 𝑎𝑝
2𝛿𝑥,𝑥′ ,  (4) 

where Θ𝑝 = [𝜎𝑝, 𝜃𝑝, 𝑎𝑝] are the hyperparameters of the 𝑝𝑡ℎ GP model. 𝛿𝑥,𝑥′ is the 

Kronecker delta. σ𝑝 scales the variance of the function between knots (design 

points), θ𝑝 is the length-scale parameter, calibrates the smoothness of the function, 

i.e., a large length-scale means a slowly changing function and more reliable 

extrapolations. Finally, the noise variance term 𝑎𝑝 scales the overall uncertainty of 

the estimate. This parameter helps to reduce overfitting [1]. 

Hyperparameters are commonly learned by minimizing the negative marginal log-

likelihood (NMLL) −𝑙𝑜𝑔 (𝑃(𝑌(𝑋, 𝑡𝑝)|𝑋, Θ𝑝)), which can be given as 

min
Θ𝑝

1

2
((𝑌(𝑋, 𝑡𝑝) − 𝑚𝑝(𝑋))

𝑇

𝐾𝑝(𝑋, 𝑋)−1 (𝑌(𝑋, 𝑡𝑝) − 𝑚𝑝(𝑋)) +

𝑙𝑜𝑔|𝐾𝑝(𝑋, 𝑋)| + 𝑘𝑙𝑜𝑔(2𝜋)) ,  (5) 

where 𝐾𝑝(𝑋, 𝑋) = [𝑘𝑝(𝑥𝑖 , 𝑥𝑗)]
𝑖,𝑗

, 𝑖, 𝑗 = 1,2, … , 𝑁 is the covariance matrix. 

2.3 Spatial Gaussian Processes 

In the same vein, GPs can be constructed for the time-series at every location. 

Define a temporal GP as 

𝑓𝑖(𝑥𝑖 , 𝑡) ∼ 𝒢𝒫(𝑚𝑖(𝑡), 𝑘𝑖(𝑡, 𝑡′))  (6) 

for each location 𝑖. Similarly, assume zero means 𝑚𝑖(𝑡) = 0 and squared 

exponential kernels with i.i.d. Gaussian noise: 

𝑘𝑖(𝑡, 𝑡′) = σ𝑖
2𝑒

−
1

2θ𝑖
2(𝑡−𝑡′)

2

+ 𝑎𝑖
2δ𝑡,𝑡′,  (7) 

with hyperparameters Θ𝑖 = [σ𝑖 ,  θ𝑖 ,  𝑎𝑖]. The hyperparameters can be obtained in 

the same fashion as for the spatial prediction: minimizing the negative marginal log-

likelihood −𝑙𝑜𝑔 (𝑃(𝑌(𝑥𝑖 , 𝑇)|𝑋, Θ𝑝)) as 

min
Θ𝑖

1

2
((𝑌(𝑥𝑖 , 𝑇) − 𝑚𝑖(𝑇))

𝑇
𝐾𝑖(𝑇, 𝑇)−1(𝑌(𝑥𝑖 , 𝑇) − 𝑚𝑖(𝑇)) + 𝑙𝑜𝑔|𝐾𝑖(𝑇, 𝑇)| +

𝑘𝑙𝑜𝑔(2𝜋)) ,  (8) 
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with 𝐾𝑖(𝑇, 𝑇) = [𝑘𝑖(𝑡α, 𝑡β)]
α,β

, α, β = 1,2, … , 𝑘 being the temporal covariance 

matrix at location 𝑖 [22]. 

2.4 Common Noise 

After solving the nonlinear optimizations in Eq. (5) and Eq. (8) 𝑘 spatial predictions 

(for each time step) and 𝑁 time-series predictions are obtained as independent zero-

mean GPs are obtained. Next, connect these processes with an additional i.i.d. 

Gaussian noise 𝑎𝑐. This common noise does not depend on spatial nor temporal 

distances, thus can be applied to both spatial and temporal predictions. In addition, 

it does not affect the structure of the kernel, i.e., a squared exponential kernel with 

an additive noise. Since every GP approximates functions based on data from 

𝑌(𝑋, 𝑇), it can be assumed that approximated function outputs are similar in 

magnitude too. Thus, it can be assumed that this noise will not corrupt some 

independent functions too much. 

The independent noise scales the uncertainty of every GP, reducing their overfitting, 

resulting in better extrapolation performance at the cost of worse fit on the training 

data. 

For every kernel 𝑘𝑝(𝑥, 𝑥′) and 𝑘𝑖(𝑡, 𝑡′) add 𝑎𝑐, i.e., 

𝐾𝑝
∗(𝑋, 𝑋) = [𝑘𝑝

∗ (𝑥𝑖 , 𝑥𝑗)]
𝑖,𝑗

= [𝑘𝑝(𝑥𝑖 , 𝑥𝑗) + 𝑎𝑐𝛿𝑥𝑖,𝑥𝑗
]

𝑖,𝑗
,  (9) 

𝐾𝑖
∗(𝑇, 𝑇) = [𝑘𝑖

∗(𝑡𝛼 , 𝑡𝛽)]
𝛼,𝛽

= [𝑘𝑖(𝑡𝛼 , 𝑡𝛽) + 𝑎𝑐𝛿𝛼,𝛽]
𝛼,𝛽

, (10) 

and 𝑖, 𝑗 =  1,2, … , 𝑁;  α, β, 𝑝 =  1,2, … , 𝑘. With fixed hyperparameters Θ𝑝, Θ𝑖 

perform the following nonlinear optimization: 

min
𝑎𝑐

∑
1

2
((𝑌(𝑋, 𝑡𝑝)  −  𝑚𝑝(𝑋))

𝑇

𝐾𝑝
∗(𝑋, 𝑋)−1 (𝑌(𝑋, 𝑡𝑝) − 𝑚𝑝(𝑋)) +𝑘

𝑝=1

𝑙𝑜𝑔|𝐾𝑝
∗(𝑋, 𝑋)| + 𝑁𝑙𝑜𝑔(2𝜋)) + ∑

1

2
((𝑌(𝑥𝑖 , 𝑇) −𝑁

𝑖=1

𝑚𝑖(𝑇))
𝑇

𝐾𝑖
∗(𝑇, 𝑇)−1(𝑌(𝑥𝑖 , 𝑇) − 𝑚𝑖(𝑇)) + 𝑙𝑜𝑔|𝐾𝑖

∗(𝑇, 𝑇)| + 𝑘𝑙𝑜𝑔(2𝜋)),  (11) 

i.e., minimize the sum of negative marginal log-likelihoods with respect to 𝑎𝑐 for 

every GP. In the proposed multi-step approach, it would make sense to omit 𝑎𝑝 and 

𝑎𝑖 noises from the initial kernels and find one common noise for the whole dataset. 

On the other hand, time series come from different sensors. Thus, their noise content 

might be different. In addition, simulation results suggest that without these terms, 

predictions become significantly worse. 
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2.5 Prediction 

Once the kernels corrupted with the common noise are constructed, both spatial and 

temporal predictions can be performed. One practical application is estimating time-

series at an unknown location 𝑥0. First, perform spatial predictions for every 

timestep 𝑡𝑝 ∈ 𝑇 using the respective spatial GP. 

Mathematically, the posterior mean 𝑌∗(𝑥0, 𝑡𝑝) and variance σ2∗(𝑥0, 𝑡𝑝) are given 

as follows: 

𝑌∗(𝑥0, 𝑡𝑝) = 𝑘𝑝
∗ (𝑥0, 𝑋)𝐾𝑝

∗(𝑋, 𝑋)𝑌(𝑋, 𝑡𝑝),  (12) 

𝜎2∗(𝑥0, 𝑡𝑝) = 𝑘𝑝
∗ (𝑥0, 𝑥0) + 𝑘𝑝

∗ (𝑥0, 𝑋)𝐾𝑝
∗(𝑋, 𝑋)𝑘𝑝

∗ (𝑥0, 𝑋)𝑇 .  (13) 

Next, connect the predicted points [𝑌∗(𝑥0, 𝑡𝑝),  σ2∗(𝑥0, 𝑡𝑝)]𝑝=1
𝑘  with a zero-mean 

(𝑚0(𝑥) = 0) GP as 

𝑓0(𝑥0, 𝑡) ∼ 𝒢𝒫(𝑚0(𝑥), 𝑘0(𝑡, 𝑡′)). (14) 

Note that at every predicted point, there is a corresponding variance too. Thus, fixed 

variance is assumed at the knots, which can be incorporated in the kernel 𝑘0(𝑡, 𝑡′) 

with the help of a Kronecker delta: σ2∗(𝑥0, 𝑡𝑝)δ𝑡,𝑡′, i.e., the variance at 𝑥0 at time 

𝑡𝑝 will be σ2∗(𝑥0, 𝑡𝑝) from Eq (13). This term imposes a smoothing effect on the 

posterior GP, considering the uncertainty of the independent predictions.  

The covariance kernel is defined as follows. 

𝑘0(𝑡, 𝑡′) = 𝜎0
2𝑒

−
1

2𝜃0
2(𝑡−𝑡′)

2

+ 𝜎2∗(𝑥0, 𝑡𝑝)𝛿𝑡,𝑡′.  (15) 

The remaining hyperparameters are Θ0 = [σ0, θ0]. Learning them can be done via 

substituting 𝑌∗(𝑥0, 𝑇) into Eq. (8). 

The above steps can be employed to estimate spatial dependency at an arbitrary time 

instant 𝑡0 too. In that case, temporal predictions shall be made at every location to 

the same time instant 𝑡0, and then the location-wise predictions shall relate to a new 

Gaussian Process. 

The discussed Gaussian Process-based spatio-temporal function approximator 

algorithm is summarized in Algorithm 1 and its usage for prediction in Algorithm 

2. 
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Algorithm 1 

Gaussian Process-based spatio-temporal function predictor 

Inputs: 𝑋, 𝑇, 𝑌(𝑋, 𝑇), 𝑥0, 𝑡0 

Outputs: Θ𝑝𝑝=1

𝑘 , Θ𝑖𝑖=1
𝑁 , 𝑎𝑐 

for 𝑝 = 1,2, … , 𝑘 do 

 Construct spatial GPs 𝑓𝑝(𝑥, 𝑡𝑝). 

 Find hyperparameters Θ𝑝. 

end 

for 𝑖 = 1,2, … , 𝑁 do 

 Construct temporal GPs 𝑓𝑖(𝑥𝑖 , 𝑡). 

 Find hyperparameters Θ𝑖. 

end  

Add a common noise 𝑎𝑐 to every kernel 𝐾𝑝(𝑋, 𝑋)𝑝=1
𝑘  and 𝐾𝑖(𝑇, 𝑇)𝑖=1

𝑁 .  

Optimize sum of NMLLs w.r.t. 𝑎𝑐. 

 

 

Algorithm 2 

Gaussian Process-based spatio-temporal prediction 

 

Inputs: 𝑋, 𝑇, 𝑌(𝑋, 𝑇), 𝑥0, 𝑡0, [Θ𝑝], [Θ𝑖]𝑖=1
𝑁 , 𝑎𝑐 

Outputs: 𝑌∗(𝑥0, 𝑡0), σ2∗(𝑥0, 𝑡0) 

for 𝑝 = 1,2, … , 𝑘 do 

 Predict posteriors [𝑌∗(𝑥0, 𝑡𝑝)]𝑝=1
𝑘  and σ2∗(𝑥0, 𝑡𝑝)}𝑝=1

𝑘 . 

end 

Construct a temporal GP 𝑓0(𝑥0, 𝑡) with [𝑌∗(𝑥0, 𝑡𝑝), σ2∗(𝑥0, 𝑡𝑝)]𝑝=1
𝑘 . 

Find hyperparameters Θ0. 

Predict 𝑌∗(𝑥0, 𝑡0) and 𝜎2∗(𝑥0, 𝑡0) with 𝑓0(𝑥0, 𝑡). 
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3 Numerical Example 

This section presents a numerical example to demonstrate the proposed algorithm. 

The input data is a set of one day-long traffic flow log with hourly sampling (in 

vehicles/hour) from 20 locations in Turin, Italy (Figure 2). Detector locations are 

not given with their geographical positions because it does not accurately describe 

their spatial dependency. For example, a detector is likely to be more correlated to 

another a few hundred meters downstream than to one that is next to it but 

measuring traffic in the opposite direction. Instead, the spatial dependency is given 

in a higher-dimensional Euclidean space. It is obtained by transforming an arbitrary 

similarity measure into a higher dimensional feature space via multidimensional 

scaling [23] as in [24]. 

Figure 2 

Detector locations in Turin, Italy. GPS coordinates of the predicted road section:  

lat: 45.095, lon: 7.6954. Source: https://snazzymaps.com 

The goal is to estimate the hourly traffic flow for one day (and also give short-term 

prediction) based on the logs of the other 20 traffic flow detectors. 

First, with the proposed algorithm, 24 independent spatial GPs are constructed (one 

for each hour), describing the functional relationship between detector locations in 

the Euclidean space. Then, temporal GPs are fitted on the traffic logs at every traffic 

https://snazzymaps.com/
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flow detector location. Finally, the common noise parameter is computed. Figure 3 

and Figure 4 depict the results of the approximated traffic flows at each location at 

a given hour without and with the common noise parameter, respectively. Similarly, 

one day's traffic flow at a fixed location is given in Figure 5 and Figure 6. Results 

suggest that both the independent and the dependent GPs can predict the traffic flow 

accurately. However, the independent GPs perform better in terms of variance and 

Root Mean Square Error (RMSE). In the spatial case, the RMSE is 30.47% higher 

when considering 𝑎𝑐 (in that particular time instant). It is slightly better for the 

spatial case: the dependent GP has only 14.54% higher RMSE. This result is 

expected: the independent GPs were trained for the approximated data. In contrast, 

an extra noise term will generalize the predictor for the whole dataset. When 

predicting outside of the dataset, better results are expected with the dependent 

solution. 

Next, focus on the unmeasured location 𝑥0. The aim is to estimate the hourly traffic 

flow at that location with a technique that can predict future traffic flow at 

unmeasured (intermittent or future) time instants. The input is the one-day-long 

traffic logs at every measured site. Traffic flow is estimated at location 𝑥0 with three 

methods: i) using independent spatial GPs (Figure 7), ii) using spatial GPs with the 

same additive noise 𝑎𝑐 (Figure 8), and iii) by fitting a temporal GP on the predicted 

data (Figure 9). 

In every case, spatial GPs are formulated every hour and predictions are made for 

the traffic flow at 𝑥0. When extrapolating with the independent GPs (because of 

their overfitting) the variance of the prediction becomes extremely high (Figure 7). 

On the other hand, the mean is accurately found with a relatively small RMSE. 

Series of spatial predictions with the common noise reduce the process variance 

significantly. In addition, the RMSE is reduced slightly, by 2.31%. This result 

validates the benefit of smoothing the independent GPs with an additive noise term. 

To be able to predict both spatially and temporally outside the dataset (i.e., an 

arbitrary time instant 𝑡0 at location 𝑥0), a new Gaussian Process is fit on the 

predicted data points in Figure 8. This GP imposes additional smoothing on the 

predicted daily traffic flow log at 𝑥0 and increases the prediction error, see Figure 

9. The variances at each knot match the predicted variance computed by the 

dependent spatial GPs, prescribed in Eq. (15). However, the means are offset by the 

smoothing. In addition, the rapidly growing variance after the last time instant (the 

23𝑡ℎ hour) suggests that the proposed algorithm is only capable of short-term 

temporal predictions. 

Experiments were run on a computer with a 7𝑡ℎ Generation Intel Core i7 processor 

running at 2.9 GHz using 8 GB RAM. Optimization was carried out in Python 3.7, 

using COBYLA solver from the SciPy library [25]. 
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Figure 3 

Spatial prediction at a fixed time without 𝑎𝑐. 𝑅𝑀𝑆𝐸 =  81.91 

 

Figure 4 

Spatial prediction at a fixed time with 𝑎𝑐. 𝑅𝑀𝑆𝐸 =  106.87 
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Figure. 5 

Temporal prediction at a fixed location without 𝑎𝑐. 𝑅𝑀𝑆𝐸 =  84.85 

 

Figure 6 

Temporal prediction at a fixed location with 𝑎𝑐. 𝑅𝑀𝑆𝐸 =  97.19 
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Figure 7 

Spatio-temporal prediction using independent spatial GPs. 𝑅𝑀𝑆𝐸 =  99.94 

 

Figure 8 

Spatio-temporal prediction with 𝑎𝑐. 𝑅𝑀𝑆𝐸 =  97.68 



Acta Polytechnica Hungarica Vol. 19, No. 5, 2022 

‒ 81 ‒ 

 

Figure 9 

Fitted GP on the posterior at location 𝑥0. 𝑅𝑀𝑆𝐸 =  118.35 

Conclusions 

The paper presented a method for approximating spatially and temporally 

dependent data. The method is based on constructing a set of independent Gaussian 

Processes and then combining them with a common noise term in the covariance 

function. The efficiency of the algorithm was demonstrated in a traffic flow 

prediction problem. Results show that the added noise term smoothens the 

predictions and reduces variance when extrapolating outside of the dataset. RMSE 

of the predictions increases slightly: in the example demonstrated in Section 3, it 

was reduced by 2.31%. It is also possible to fit an additional GP on the predicted 

data to predict both spatially and temporally (for the short-term) outside the dataset. 

The proposed methodology is universal and computationally light. The sole 

heuristic in the proposed approach is the selection of the covariance kernel.  

A different selection of the kernel might yield slightly improved results. 
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